JP2845689B2 - Forecast calculation processor - Google Patents

Forecast calculation processor

Info

Publication number
JP2845689B2
JP2845689B2 JP28523192A JP28523192A JP2845689B2 JP 2845689 B2 JP2845689 B2 JP 2845689B2 JP 28523192 A JP28523192 A JP 28523192A JP 28523192 A JP28523192 A JP 28523192A JP 2845689 B2 JP2845689 B2 JP 2845689B2
Authority
JP
Japan
Prior art keywords
unit
calculated
angle
depth
incident
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP28523192A
Other languages
Japanese (ja)
Other versions
JPH06109472A (en
Inventor
正広 畠山
賢 小沢
保 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON DENKI ENJINIARINGU KK
NEC Corp
Original Assignee
NIPPON DENKI ENJINIARINGU KK
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON DENKI ENJINIARINGU KK, Nippon Electric Co Ltd filed Critical NIPPON DENKI ENJINIARINGU KK
Priority to JP28523192A priority Critical patent/JP2845689B2/en
Publication of JPH06109472A publication Critical patent/JPH06109472A/en
Application granted granted Critical
Publication of JP2845689B2 publication Critical patent/JP2845689B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、目標の探知を行うソー
ナー装置の探知距離を予測計算する予察計算処理器に関
し、特に海底残響支配領域の予察計算処理器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a prediction calculation processor for predicting and calculating a detection distance of a sonar device for detecting a target, and more particularly to a prediction calculation processor for a submarine reverberation controlled area.

【0002】[0002]

【従来の技術】従来、この種の予察計算処理器において
は、図6に示すような構成を採用し、或る1つの海底深
度毎に海底残響支配領域における探知距離を計算してい
た。以下、図6を参照して従来の予察計算処理器を説明
する。
2. Description of the Related Art Conventionally, this kind of predictive calculation processor employs a configuration as shown in FIG. 6, and calculates a detection distance in a submarine reverberation dominant region for each certain submarine depth. Hereinafter, a conventional prediction calculation processor will be described with reference to FIG.

【0003】図6において、入力部11は、図示しない
キーボード等の入力装置から、送波レベル,周波数,音
源深度,ビーム幅等のソーナー諸元情報と、水深に対す
る水温分布データ等の環境条件と、水平距離および水深
についての計算範囲の情報に加え、今回計算する海底深
度,目標深度を入力する。
[0003] In FIG. 6, an input unit 11 receives input information such as a transmission level, a frequency, a sound source depth, a beam width, etc. from an input device such as a keyboard (not shown) and environmental conditions such as water temperature distribution data with respect to the water depth. In addition to the information on the calculation range for the horizontal distance and the water depth, the seabed depth and the target depth to be calculated this time are input.

【0004】次に伝搬損失算出部12は、ソーナー装置
の送波器から一定間隔の俯角毎に設定した音線に沿って
一定距離間隔のサンプリング点毎に伝搬損失を算出す
る。そして、音線深度が海底深度に達したサンプリング
点において入射補角算出部13は、音線と水平面とが為
す角である入射補角を算出する。
[0004] Next, a propagation loss calculating section 12 calculates a propagation loss at each sampling point at a fixed distance interval from a transmitter of the sonar device along a sound ray set at a fixed depression angle at a fixed interval. Then, at the sampling point where the sound ray depth has reached the seabed depth, the incident supplementary angle calculation unit 13 calculates the incident supplementary angle which is the angle between the sound ray and the horizontal plane.

【0005】以上のような処理を全ての音線について実
行した後、伝搬損失平均算出部14は、計算範囲に相当
する指定海域を例えば水平方向にm分割,深度方向にn
分割して得られるm×n個の各格子毎に、その各格子内
に含まれる音線のサンプリング点で計算された上記伝搬
損失の平均値を算出する。
After performing the above processing for all sound rays, the propagation loss average calculator 14 divides the designated sea area corresponding to the calculation range into, for example, m sections in the horizontal direction and n sections in the depth direction.
For each of the m × n grids obtained by the division, the average value of the above-mentioned propagation loss calculated at the sampling point of the sound ray included in each grid is calculated.

【0006】また、入射補角平均算出部15は、今回の
海底深度に相当する深度の各格子に含まれる音線のサン
プリング点で計算された上記入射補角の平均値を算出す
る。
The incident angle supplementary angle calculating unit 15 calculates the average value of the incident angle supplementary angle calculated at the sampling point of the sound ray included in each lattice at a depth corresponding to the current seabed depth.

【0007】次にシグナルエクセス算出部16は、入力
部11で入力されたソーナー諸元情報と、伝搬損失平均
算出部14で算出された各格子の伝搬損失平均値と、入
射補角平均算出部15で算出された今回の海底深度にお
ける入射補角の平均値に対応して海底散乱強度登録部1
7に登録されている海底散乱強度データ(海底残響レベ
ルデータ)を用いて、今回の海底深度に相当する深度の
各格子における海底残響支配領域のシグナルエクセス値
を算出する。
Next, the signal excess calculator 16 calculates the sonar specification information input by the input unit 11, the average value of the propagation loss of each grating calculated by the average calculation unit 14, and the average of the incident angle supplementary angle. The submarine scattering intensity registration unit 1 corresponding to the average value of the angle of incidence complement at the current depth of the seabed calculated in 15
Using the seafloor scattered intensity data (seafloor reverberation level data) registered in 7, the signal excess value of the seafloor reverberation dominant region in each grid at a depth corresponding to the current seafloor depth is calculated.

【0008】そして、探知距離算出部18は上記算出さ
れた各格子のシグナルエクセス値に基づき探知距離を算
出し、表示部19に、例えば図7に示すように、音源深
度Zs,目標深度Zt,海底深度Zb(以上は入力部1
1で入力された値)と共にその条件の下で算出した探知
距離Rbを表示する。
Then, the detection distance calculating section 18 calculates the detection distance based on the calculated signal excess value of each grid, and displays the sound source depth Zs, the target depth Zt, and the target depth Zs on the display section 19, for example, as shown in FIG. Seabed depth Zb (the above is input part 1
The detection distance Rb calculated under the condition is displayed together with the value input at 1).

【0009】以上で、或る1つの海底深度について海底
残響支配領域における探知距離が計算されたことにな
り、この計算を必要な海底深度毎に実行することによ
り、各海底深度毎の海底残響支配領域における探知距離
を求めていた。
As described above, the detection distance in the seafloor reverberation dominant region is calculated for a certain seafloor depth. By performing this calculation for each required seafloor depth, the seafloor reverberation dominance for each seafloor depth is calculated. The search distance in the area was determined.

【0010】[0010]

【発明が解決しようとする課題】このように従来の予察
計算処理器では、海底深度を固定して海底残響支配領域
における探知距離の計算を行うため、海底深度が連続的
に変化する海域においては、計算を何度も繰り返す必要
があった。即ち、N通りの海底深度について探知距離を
求める場合、図6で説明した計算をN回繰り返す必要が
あった。
As described above, in the conventional prediction calculation processor, since the detection distance is calculated in the seafloor reverberation dominating region with the seafloor depth fixed, in a sea area where the seafloor depth changes continuously, , The calculations had to be repeated many times. That is, when obtaining the detection distance for N different seabed depths, the calculation described in FIG. 6 has to be repeated N times.

【0011】本発明はこのような従来の問題点を解決し
たもので、その目的は、1度の計算で各深度毎の海底残
響支配領域における探知距離の計算が行えるようにする
ことにある。
An object of the present invention is to solve such a conventional problem, and an object of the present invention is to make it possible to calculate a detection distance in a seafloor reverberation dominated region at each depth by a single calculation.

【0012】[0012]

【課題を解決するための手段】本発明は上記の目的を達
成するために、水中目標の探知を行うソーナー装置の探
知距離を予測計算する予察計算処理器において、ソーナ
ー諸元情報,環境条件,計算範囲を入力する入力部と、
ソーナー装置の送波器から一定間隔の俯角毎に設定した
音線に沿って一定距離間隔のサンプリング点毎に伝搬損
失および入射補角を算出する伝搬損失・入射補角算出部
と、該伝搬損失・入射補角算出部で算出された伝搬損失
を入力し、指定海域を水平方向と深度方向に分割したと
きに得られる各格子単位に、伝搬損失の平均値を算出す
る伝搬損失平均算出部と、前記伝搬損失・入射補角算出
部で算出された入射補角を入力し、前記各格子単位に入
射補角の平均値を算出する入射補角平均算出部と、入射
補角別の海底散乱強度値を登録した海底散乱強度登録部
と、前記入力部で入力された情報と、前記伝搬損失平均
算出部で算出された伝搬損失の平均値と、前記入射補角
平均算出部で算出された入射補角の平均値に対応して前
記海底散乱強度登録部に登録された海底散乱強度値とに
基づいて、前記各格子単位にシグナルエクセス値を算出
するシグナルエクセス算出部と、該シグナルエクセス算
出部で算出された各格子のシグナルエクセス値に基づ
き、格子深度毎に海底残響支配領域における探知距離を
算出する探知距離算出部と、該探知距離算出部で算出さ
れた各格子深度毎の探知距離を表示する表示部とを備え
ている。
In order to achieve the above object, the present invention provides a prediction calculation processor for predicting and calculating a detection distance of a sonar device for detecting an underwater target. An input section for inputting a calculation range,
A propagation loss / incidence supplementary angle calculation unit for calculating a propagation loss and an incident supplementary angle at each sampling point at a constant distance interval along a sound ray set at a constant depression angle from the transmitter of the sonar device; A propagation loss average calculator that inputs the propagation loss calculated by the incident angle calculator, and calculates an average value of the propagation loss for each grid unit obtained when the designated sea area is divided in the horizontal direction and the depth direction; Inputting the supplementary angle calculated by the propagation loss / incident supplementary angle calculation unit, calculating an average value of the supplementary angle for each lattice unit, and calculating the average value of the supplementary angle; The seafloor scattering intensity registration unit that registered the intensity value, the information input at the input unit, the average value of the propagation loss calculated by the propagation loss average calculation unit, and the average value calculated by the incident supplementary angle average calculation unit The seabed scattering intensity increase corresponding to the average Based on the seafloor scattered intensity value registered in the section, a signal excess calculating section that calculates a signal excess value for each of the grid units, based on the signal excess value of each grid calculated by the signal excess calculating section, The apparatus includes a detection distance calculation unit that calculates a detection distance in the seafloor reverberation dominant region for each depth, and a display unit that displays the detection distance for each grid depth calculated by the detection distance calculation unit.

【0013】また、前記探知距離算出部は、前記シグナ
ルエクセス算出部で算出された各格子のシグナルエクセ
ス値に基づいて探知可能範囲を求め、深度,水平距離を
各々軸として前記求めた探知可能範囲を描いたグラフを
前記表示部に表示する構成を有している。
Further, the detection distance calculating section obtains a detectable range based on the signal excess value of each grid calculated by the signal excess calculating section, and the detected detectable range is obtained by using the depth and the horizontal distance as axes. Is displayed on the display unit.

【0014】[0014]

【作用】本発明の予察計算処理器においては、入力部
が、ソーナー諸元情報,環境条件,計算範囲を入力し、
伝搬損失・入射補角算出部がこの入力された情報に従っ
て、ソーナー装置の送波器から一定間隔の俯角毎に設定
した音線に沿って一定距離間隔のサンプリング点毎に伝
搬損失および入射補角を算出し、次いで、伝搬損失平均
算出部が伝搬損失・入射補角算出部で算出された伝搬損
失を入力して指定海域を水平方向と深度方向に分割した
ときに得られる各格子単位に、伝搬損失の平均値を算出
し、更に入射補角平均算出部が伝搬損失・入射補角算出
部で算出された入射補角を入力し、各格子単位に入射補
角の平均値を算出する。そして、シグナルエクセス算出
部が、入力部で入力された情報と、伝搬損失平均算出部
で算出された伝搬損失の平均値と、入射補角平均算出部
で算出された入射補角の平均値に対応して海底散乱強度
登録部に登録された海底散乱強度値とに基づいて、各格
子単位にシグナルエクセス値を算出し、探知距離算出部
がシグナルエクセス算出部で算出された各格子のシグナ
ルエクセス値に基づき、格子深度毎に海底残響支配領域
における探知距離を算出して表示部に表示する。また、
探知距離算出部は、シグナルエクセス算出部で算出され
た各格子のシグナルエクセス値に基づいて探知可能範囲
を求め、深度,水平距離を各々軸として、その探知可能
範囲を描いたグラフを表示部に表示する。
In the predictive calculation processor of the present invention, the input unit inputs sonar specification information, environmental conditions, and a calculation range,
According to the input information, the propagation loss / incident supplementary angle calculator calculates the propagation loss and incident supplementary angle for each sampling point at a fixed distance interval from the transmitter of the sonar device along a sound ray set for each fixed angle of depression. Then, the propagation loss average calculation unit inputs the propagation loss calculated by the propagation loss / incident complement angle calculation unit and divides the designated sea area into the horizontal direction and the depth direction. The average value of the propagation loss is calculated. Further, the incident angle supplementary angle calculator inputs the incident angle supplementary angle calculated by the propagation loss / incident angle supplementary calculator, and calculates the average value of the incident angle complement for each lattice unit. Then, the signal excess calculation unit calculates the information input by the input unit, the average value of the propagation loss calculated by the propagation loss average calculation unit, and the average value of the incident complement angle calculated by the incident complement angle average calculation unit. Based on the seafloor scattering intensity value registered in the seafloor scattering intensity registration unit, a signal excess value is calculated for each grid unit, and the detection distance calculation unit calculates the signal excess value of each grid calculated by the signal excess calculation unit. Based on the value, the detection distance in the seafloor reverberation dominated region is calculated for each grid depth and displayed on the display unit. Also,
The detection distance calculation unit obtains a detectable range based on the signal excess value of each grid calculated by the signal excess calculation unit, and displays a graph depicting the detectable range on the display unit with depth and horizontal distance as axes. indicate.

【0015】[0015]

【実施例】次に本発明の実施例について図面を参照して
詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, embodiments of the present invention will be described in detail with reference to the drawings.

【0016】図1を参照すると、本発明の予察計算処理
器の一実施例は、予察対象となるソーナー装置の送波レ
ベル,周波数,音源深度,ビーム幅等のソーナー諸元情
報,水深に対する水温分布等の環境条件,水平距離およ
び水深についての計算範囲を外部から入力する入力部1
と、予察対象となるソーナー装置の送波器から一定間隔
の俯角毎に設定した音線に沿って一定距離間隔のサンプ
リング点毎に伝搬損失および入射補角を算出する伝搬損
失・入射補角算出部2と、指定海域を水平方向と深度方
向に格子状に分割したときに得られる各格子単位に伝搬
損失の平均値を算出する伝搬損失平均算出部3と、同じ
く全ての格子毎に入射補角の平均値を算出する入射補角
平均算出部4と、入射補角および海底質別の海底散乱強
度値を登録した海底散乱強度登録部6と、各格子単位に
海底残響支配領域のシグナルエクセス(信号余剰レベ
ル)値を算出するシグナルエクセス算出部5と、格子深
度毎に海底残響支配領域の探知距離を算出すると共に水
平距離,深度を各々軸として海底残響支配領域における
探知可能範囲をグラフ化した図形を作成する探知距離算
出部7と、算出された探知距離および作成されたグラフ
を表示する表示部8と、処理途中の結果を保持するテー
ブルT1〜T5とを備えている。
Referring to FIG. 1, an embodiment of a prediction calculation processor according to the present invention is a sonar device to be predicted, information on sonar specifications such as transmission level, frequency, sound source depth, beam width, etc., and water temperature with respect to water depth. Input unit 1 for externally inputting the environmental conditions such as distribution, the horizontal distance and the calculation range for water depth
Propagation loss and incident angle calculation to calculate the propagation loss and incident angle at each sampling point at a constant distance along the sound ray set at a fixed angle of depression from the transmitter of the sonar device to be predicted Unit 2, a propagation loss average calculation unit 3 for calculating an average value of propagation loss for each grid unit obtained when the designated sea area is divided into a grid in the horizontal direction and the depth direction, and an incident compensation unit for every grid. Incidence supplementary angle average calculating unit 4 for calculating the average value of the angle, seabed scattering intensity registration unit 6 for registering the incidental supplementary angle and the seafloor scattering intensity value for each seafloor quality, and signal access of the seafloor reverberation dominant region for each lattice unit A signal excess calculating unit 5 for calculating a (signal surplus level) value; a detection distance of the seafloor reverberation dominant region for each grid depth; A detection distance calculating unit 7 for creating a phased graphic, a display unit 8 for displaying the calculated detection range and the created graph, and a table T1~T5 to hold the result of being processed.

【0017】このように構成された本実施例の予察計算
処理器は以下のように動作する。
The predictive calculation processor of the present embodiment thus constructed operates as follows.

【0018】先ず、入力部1は図示しないキーボード等
から、予察対象となるソーナー装置の送波レベル,周波
数,音源深度,ビーム幅等のソーナー諸元情報,水深に
対する水温分布等の環境条件,水平距離および水深につ
いての計算範囲を入力する。
First, the input unit 1 is operated from a keyboard or the like (not shown) from a sonar device to be predicted, sonar specification information such as transmission level, frequency, sound source depth, beam width, etc., environmental conditions such as water temperature distribution with respect to water depth, and horizontal level. Enter the calculation range for distance and water depth.

【0019】次に伝搬損失・入射補角算出部2は、入力
部1で入力された水平距離および水深についての計算範
囲に相当する指定海域を例えば水平方向に64分割,深
度方向に32分割して、合計32×64個の格子Ki,j
(i=1〜64,j=1〜32)を想定し、各格子単位
に以下の処理を行う。
Next, the propagation loss / incidence supplement angle calculation unit 2 divides the designated sea area corresponding to the calculation range of the horizontal distance and the water depth input by the input unit 1 into, for example, 64 in the horizontal direction and 32 in the depth direction. And a total of 32 × 64 grids Ki, j
(I = 1 to 64, j = 1 to 32), the following processing is performed for each lattice unit.

【0020】予測対象となるソーナー装置の送波器から
一定間隔の俯角毎に設定した音線に沿って一定距離間隔
のサンプリング点毎に伝搬損失および音線と水平面が為
す角である入射補角を算出する。
Propagation loss and incident angle, which is the angle formed between the sound ray and the horizontal plane, at each sampling point at a fixed distance from the transmitter of the sonar device to be predicted along a sound ray set at a fixed depression angle at a fixed interval. Is calculated.

【0021】例えば、図2に示す格子Ki,j の場合、音
線1に沿う一定距離間隔のサンプリング点としてP1〜
P3が含まれるので、各サンプリング点P1〜P3にお
ける伝搬損失および入射補角θ1n-1,θ1n, θ1n+1を算
出し、同様に他の音線2,…,mに沿う一定距離間隔の
サンプリング点のうち格子Ki,j に含まれる各サンプリ
ング点における伝搬損失および入射補角を算出する。そ
して、これら算出した全ての伝搬損失を格子Ki,j にか
かる伝搬損失としてテーブルT1に格納し、同様に算出
した全ての入射補角を格子Ki,j にかかる入射補角とし
てテーブルT2に格納する。
For example, in the case of the grid Ki, j shown in FIG.
Since P3 is included, the propagation loss and the incident supplementary angles θ1n-1, θ1n, θ1n + 1 at the respective sampling points P1 to P3 are calculated, and sampling is performed at a fixed distance along other sound rays 2,. The propagation loss and incident supplement angle at each sampling point included in the lattice Ki, j among the points are calculated. Then, all the calculated propagation losses are stored in the table T1 as the propagation losses on the grating Ki, j, and all similarly calculated incident angles are stored in the table T2 as the incident angles on the grating Ki, j. .

【0022】次に伝搬損失平均算出部3および入射補角
平均算出部4が動作する。
Next, the propagation loss average calculator 3 and the incident angle supplementary angle calculator 4 operate.

【0023】伝搬損失平均算出部3は、テーブルT1に
格納された各格子にかかる伝搬損失を入力し、各格子毎
に伝搬損失の平均値を算出し、これをテーブルT3に格
納する。
The propagation loss average calculator 3 inputs the propagation loss for each grid stored in the table T1, calculates the average value of the propagation loss for each grid, and stores this in the table T3.

【0024】他方、入射補角平均算出部4は、テーブル
T2に格納された各格子にかかる入射補角を入力し、各
格子毎に入射補角の平均値を算出し、これをテーブルT
4に格納する。
On the other hand, the incident angle supplementary angle calculator 4 inputs the incident angle supplementary for each lattice stored in the table T2, calculates the average value of the incident angle supplementary for each lattice, and calculates this value in the table T2.
4 is stored.

【0025】次にシグナルエクセス算出部5が動作し、
音線が通過する格子(すなわち、テーブルT3,T4に
伝搬損失および入射補角の平均値が格納されている格
子)全てについて、海底残響支配領域のシグナルエクセ
ス値を算出する。
Next, the signal excess calculator 5 operates,
For all the grids through which the sound ray passes (that is, the grids in which the average values of the propagation loss and the incident supplementary angle are stored in the tables T3 and T4), the signal excess value of the undersea reverberation dominant region is calculated.

【0026】ここで、海底残響支配領域のシグナルエク
セス値は、入力部1で入力されたソーナー諸元情報と、
テーブルT3に格納されている伝搬損失平均値と、テー
ブルT4に格納されている入射補角平均値に対応して海
底散乱強度登録部6に登録された海底散乱強度データと
を用いて算出する。なお、入射補角平均値そのものに対
応する海底散乱強度データが海底散乱強度登録部6に登
録されていない場合は、その入射補角平均値に近い海底
散乱強度データを補間計算して該当する海底散乱強度デ
ータを求める。
Here, the signal excess value of the seafloor reverberation dominant region is obtained by the sonar specification information input at the input unit 1 and
The calculation is performed using the propagation loss average value stored in the table T3 and the seabed scattering intensity data registered in the seabed scattering intensity registration unit 6 corresponding to the incident supplementary angle average value stored in the table T4. If the seabed scattering intensity data corresponding to the incident angle supplementary angle itself is not registered in the seabed scattering intensity registration unit 6, the seabed scattering intensity data close to the incident angle supplementary angle average is interpolated and calculated. Obtain scattering intensity data.

【0027】そして、シグナルエクセス算出部5は、算
出した結果を各格子単位にテーブルT5に図3に示すよ
うに格納する。即ち、シグナルエクセス値が正の格子に
ついては+を、負の格子については−を格納する。な
お、音線が存在しない格子にはNを格納する。
Then, the signal excess calculating section 5 stores the calculated result in the table T5 for each grid as shown in FIG. That is, + is stored for a lattice having a positive signal excess value, and-is stored for a lattice having a negative signal excess value. Note that N is stored in the lattice where no sound ray exists.

【0028】次に、探知距離算出部7がテーブルT5の
内容に従って探知距離を算出する。この探知距離の算出
は、シグナルエクセス値が正(+)となる領域が目標探
知可能な領域となる特性から、シグナルエクセス値が正
の格子について、各格子深度毎に探知距離(直距離)を
算出する。即ち、本実施例では深度方向に32個の格子
が存在するので、先ずK1,1 〜K64,1の格子のうちシグ
ナルエクセス値が正になっている水平方向の距離が最も
長い格子を求め、この格子の水平距離とソーナー位置
(音源深度)とに基づき、三平方の定理から探知距離
(直距離)を求める。次に、K1,2 〜K64,2の格子等、
残りの各格子深度の探知距離を同様に算出する。従っ
て、全部で32通りの格子深度について探知距離が求め
られる。
Next, the detection distance calculation section 7 calculates the detection distance according to the contents of the table T5. This detection distance is calculated by calculating the detection distance (direct distance) for each grid depth for a grid with a positive signal excess value, since the area where the signal excess value is positive (+) is the target detectable area. calculate. That is, in the present embodiment, since there are 32 grids in the depth direction, first, among the grids of K1,1 to K64,1, the grid having the longest horizontal distance in which the signal excess value is positive is obtained. Based on the horizontal distance of the grid and the sonar position (sound source depth), the detection distance (direct distance) is obtained from the three-square theorem. Next, a grid of K1,2 to K64,2, etc.
The detection distance for each of the remaining grid depths is calculated in the same manner. Therefore, the detection distance is obtained for a total of 32 grid depths.

【0029】探知距離算出部7は、この求めた各格子深
度毎の探知距離を例えば図4に示すような形式で表示部
8に表示する。
The detection distance calculation section 7 displays the obtained detection distance for each grid depth on the display section 8 in a format as shown in FIG. 4, for example.

【0030】また、探知距離算出部7は、テーブルT5
中のシグナルエクセス値が正となる格子の境界を折線で
接続することにより探知可能範囲を定め、この求めた探
知可能範囲を、縦軸に深度を、横軸に水平距離を目盛っ
た例えば図5に示すようなグラフで表示部8に表示す
る。この図5の折線グラフ50の内側が探知可能範囲で
あり、図4のような表示だけでは判明しない最小の探知
距離も読み取ることが可能である。
Further, the detection distance calculating section 7 has a table T5
The detectable range is determined by connecting the boundaries of the grid where the signal excess value is positive with a broken line, the detected detectable range, the vertical axis indicates depth, and the horizontal axis indicates the horizontal distance. 5 is displayed on the display unit 8 in a graph as shown in FIG. The inside of the line graph 50 in FIG. 5 is the detectable range, and it is possible to read the minimum detection distance that cannot be determined only by the display as shown in FIG.

【0031】[0031]

【発明の効果】以上説明したように、本発明の予察計算
処理器は、特定の深度の格子だけでなく全ての格子毎に
入射補角を算出すると共に同様に全ての格子のシグナル
エクセス値を算出し、この全格子のシグナルエクセス値
から各格子深度毎の探知距離を求めるようにしたので、
1回の計算で全格子深度毎の探知距離を求めることがで
きる。
As described above, the prediction calculation processor of the present invention calculates the incident supplementary angle not only for a grid of a specific depth but also for all grids, and similarly calculates the signal excess values of all grids. Since it was calculated and the detection distance for each grid depth was calculated from the signal excess value of this grid,
The detection distance for every grid depth can be obtained by one calculation.

【0032】また、海底残響支配領域における探知可能
範囲を、深度と水平距離とを軸としてグラフ化して表示
するので、探知可能範囲を容易に把握することができ
る。
Further, since the detectable range in the seafloor reverberation dominant region is displayed as a graph with the depth and the horizontal distance as axes, the detectable range can be easily grasped.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の予察計算処理器の一実施例の構成図で
ある。
FIG. 1 is a configuration diagram of an embodiment of a prediction calculation processor according to the present invention.

【図2】伝搬損失・入射補角算出部の動作説明図であ
る。
FIG. 2 is an explanatory diagram of an operation of a propagation loss / incident supplementary angle calculation unit.

【図3】算出された各格子のシグナルエクセス値の格納
例を示す図である。
FIG. 3 is a diagram illustrating a storage example of a calculated signal excess value of each grid.

【図4】本発明の探知距離表示例を示す図である。FIG. 4 is a diagram showing a detection distance display example of the present invention.

【図5】本発明の探知可能範囲表示グラフの例を示す図
である。
FIG. 5 is a diagram showing an example of a detectable range display graph of the present invention.

【図6】従来の予察計算処理器の構成図である。FIG. 6 is a configuration diagram of a conventional prediction calculation processor.

【図7】従来の探知距離表示例を示す図である。FIG. 7 is a diagram showing a conventional detection distance display example.

【符号の説明】[Explanation of symbols]

1…入力部 2…伝搬損失・入射補角算出部 3…伝搬損失平均算出部 4…入射補角平均算出部 5…シグナルエクセス算出部 6…海底散乱強度登録部 7…探知距離算出部 8…表示部 T1〜T5…テーブル DESCRIPTION OF SYMBOLS 1 ... Input part 2 ... Propagation loss and incidence supplement angle calculation part 3 ... Propagation loss average calculation part 4 ... Incident supplement angle average calculation part 5 ... Signal excess calculation part 6 ... Ocean floor scattering intensity registration part 7 ... Detecting distance calculation part 8 ... Display unit T1 to T5 ... Table

フロントページの続き (72)発明者 藤原 保 東京都港区西新橋三丁目20番4号 日本 電気エンジニアリング株式会社内 (56)参考文献 特開 平2−102413(JP,A) (58)調査した分野(Int.Cl.6,DB名) G01C 13/00 G01S 15/08Continuation of the front page (72) Inventor Tamotsu Fujiwara 3-20-4 Nishi-Shimbashi, Minato-ku, Tokyo Japan Electric Engineering Co., Ltd. (56) References JP-A-2-102413 (JP, A) (58) Investigated Field (Int.Cl. 6 , DB name) G01C 13/00 G01S 15/08

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 水中目標の探知を行うソーナー装置の探
知距離を予測計算する予察計算処理器において、 ソーナー諸元情報,環境条件,計算範囲を入力する入力
部と、 ソーナー装置の送波器から一定間隔の俯角毎に設定した
音線に沿って一定距離間隔のサンプリング点毎に伝搬損
失および入射補角を算出する伝搬損失・入射補角算出部
と、 該伝搬損失・入射補角算出部で算出された伝搬損失を入
力し、指定海域を水平方向と深度方向に分割したときに
得られる各格子単位に、伝搬損失の平均値を算出する伝
搬損失平均算出部と、 前記伝搬損失・入射補角算出部で算出された入射補角を
入力し、前記各格子単位に入射補角の平均値を算出する
入射補角平均算出部と、 入射補角別の海底散乱強度値を登録した海底散乱強度登
録部と、 前記入力部で入力された情報と、前記伝搬損失平均算出
部で算出された伝搬損失の平均値と、前記入射補角平均
算出部で算出された入射補角の平均値に対応して前記海
底散乱強度登録部に登録された海底散乱強度値とに基づ
いて、前記各格子単位にシグナルエクセス値を算出する
シグナルエクセス算出部と、 該シグナルエクセス算出部で算出された各格子のシグナ
ルエクセス値に基づき、格子深度毎に海底残響支配領域
における探知距離を算出する探知距離算出部と、 該探知距離算出部で算出された各格子深度毎の探知距離
を表示する表示部とを具備したことを特徴とする予察計
算処理器。
1. A prediction calculation processor for predicting and calculating a detection distance of a sonar device for detecting an underwater target, comprising: an input unit for inputting sonar specification information, environmental conditions, and a calculation range; and a transmitter for the sonar device. A propagation loss / incidence supplementary angle calculation unit for calculating a propagation loss and an incident supplementary angle at each sampling point at a fixed distance interval along a sound ray set at each fixed depression angle; The calculated path loss is input, and a path loss average calculator for calculating an average value of the path loss for each lattice unit obtained when the designated sea area is divided in the horizontal direction and the depth direction; and An incident supplementary angle calculating unit that inputs the incident supplementary angle calculated by the angle calculating unit, and calculates an average value of the incident supplementary angle for each lattice unit; A strength registration unit, and the input unit , The seabed scattering intensity registration corresponding to the average value of the propagation loss calculated by the propagation loss average calculator and the average value of the incident complement angle calculated by the incident complement angle average calculator. A signal excess calculating unit that calculates a signal excess value for each grid unit based on the seafloor scattering intensity value registered in the unit, and a signal excess value of each grid calculated by the signal excess calculating unit. A prediction distance comprising: a detection distance calculation unit that calculates a detection distance in the seafloor reverberation dominated region for each depth; and a display unit that displays the detection distance for each grid depth calculated by the detection distance calculation unit. Calculation processor.
【請求項2】 前記探知距離算出部は、前記シグナルエ
クセス算出部で算出された各格子のシグナルエクセス値
に基づいて探知可能範囲を求め、深度,水平距離を各々
軸として前記求めた探知可能範囲を描いたグラフを前記
表示部に表示する構成を有する請求項1記載の予察計算
処理器。
2. The detection distance calculating section obtains a detectable range based on a signal excess value of each grid calculated by the signal excess calculating section, and the obtained detectable range is obtained by using depth and horizontal distance as axes. 2. The prediction calculation processor according to claim 1, wherein the prediction calculation processor has a configuration in which a graph depicting the above is displayed on the display unit.
JP28523192A 1992-09-30 1992-09-30 Forecast calculation processor Expired - Lifetime JP2845689B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28523192A JP2845689B2 (en) 1992-09-30 1992-09-30 Forecast calculation processor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28523192A JP2845689B2 (en) 1992-09-30 1992-09-30 Forecast calculation processor

Publications (2)

Publication Number Publication Date
JPH06109472A JPH06109472A (en) 1994-04-19
JP2845689B2 true JP2845689B2 (en) 1999-01-13

Family

ID=17688813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28523192A Expired - Lifetime JP2845689B2 (en) 1992-09-30 1992-09-30 Forecast calculation processor

Country Status (1)

Country Link
JP (1) JP2845689B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3573090B2 (en) * 2000-12-05 2004-10-06 日本電気株式会社 Underwater target position detecting device and method
JP6090830B2 (en) * 2012-10-05 2017-03-08 Necソリューションイノベータ株式会社 Display device, display method, and program

Also Published As

Publication number Publication date
JPH06109472A (en) 1994-04-19

Similar Documents

Publication Publication Date Title
Chapman et al. Benchmarking geoacoustic inversion methods for range-dependent waveguides
Fillinger et al. Acoustic ship signature measurements by cross-correlation method
JPS5855477B2 (en) sonar device
Camargo Rodríguez et al. Seismo-acoustic ray model benchmarking against experimental tank data
RU2461845C1 (en) Hydroacoustic system for imaging underwater space
Heaney et al. Measurements of three-dimensional propagation in a continental shelf environment
JP2845689B2 (en) Forecast calculation processor
Padois et al. On the use of geometric and harmonic means with the generalized cross-correlation in the time domain to improve noise source maps
Cox et al. A subarray approach to matched‐field processing
Barros et al. A computational Bayesian approach for localizing an acoustic scatterer in a stratified ocean environment
Lynch et al. Overview of shallow water 2006 JASA EL special issue papers
Singh et al. Non-line-of-sight sound source localization using matched-field processing
L'Her et al. Canonical correlation analysis as a statistical method to relate underwater acoustic propagation and ocean fluctuations
US7187619B2 (en) Method and apparatus for high-frequency passive sonar performance prediction
Lecoulant et al. Three-dimensional modeling of T-wave generation and propagation from a South Mid-Atlantic Ridge earthquake
US5559755A (en) Range finding device and method
JP2014020865A (en) Signal processor, underwater searching device, signal processing method, and program
Ochimizu et al. Development of scanning laser sensor for underwater 3D imaging with the coaxial optics
JPH0524067Y2 (en)
JPH08189963A (en) Apparatus for processing signal of active sonobuoy
Rogers et al. Ambient noise forecasting with a large acoustic array in a complex shallow water environment
JPS622184A (en) Doppler underwater speed measuring instrument
Haines et al. Prediction system for acoustic returns from ocean bathymetry
JPH02138890A (en) Underwater detector
Heard Rapid calculation of propagation path information by application of the method of images

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071030

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081030

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20081030

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20081030

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091030

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091030

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101030

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111030

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121030

Year of fee payment: 14

EXPY Cancellation because of completion of term