JPH06107493A - Formation of gold crystal - Google Patents

Formation of gold crystal

Info

Publication number
JPH06107493A
JPH06107493A JP4281116A JP28111692A JPH06107493A JP H06107493 A JPH06107493 A JP H06107493A JP 4281116 A JP4281116 A JP 4281116A JP 28111692 A JP28111692 A JP 28111692A JP H06107493 A JPH06107493 A JP H06107493A
Authority
JP
Japan
Prior art keywords
gold
solution
producing
crystal according
dissolved
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4281116A
Other languages
Japanese (ja)
Other versions
JP3231099B2 (en
Inventor
Toshihiko Takeda
俊彦 武田
Takeshi Eguchi
健 江口
Tsutomu Ikeda
勉 池田
Yuji Kasanuki
有二 笠貫
Harunori Kawada
春紀 河田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP28111692A priority Critical patent/JP3231099B2/en
Publication of JPH06107493A publication Critical patent/JPH06107493A/en
Application granted granted Critical
Publication of JP3231099B2 publication Critical patent/JP3231099B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B7/00Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions

Abstract

PURPOSE:To provide a method for forming gold crystal suitable for production of a gold electrode optimal in the application to molecular electronic device with respect to the problems of conventional technic related to metallic electrode formed by the conventional method such as vacuum deposition method or sputtering method. CONSTITUTION:Gold crystal is deposited on a substrate by using high viscous solution in which gold is dissolved and reducing the solubility of gold in the solution or by proceding a process to reduce the solubility of gold in the solution and a proces to deposit gold crystal on the substrate in the gel.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、分子電子デバイスへの
応用に最適な金電極に使用される金結晶の作成方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a gold crystal used in a gold electrode most suitable for application to a molecular electronic device.

【0002】[0002]

【従来の技術】最近、有機材料の持つ秩序構造が電子機
能の発現や向上に関連して注目され、有機分子を電子デ
バイス等に応用しようとする、分子電子デバイスへの関
心が高まっている。分子電子デバイスを構築するための
課題は、機能性有機分子の配向制御技術であり、このた
め最近では、有機分子の自己組織性を利用する研究も活
発化してきている。又、有機単分子膜の構築技術である
ラングミュアー・プロジェクト膜(以下、「LB」膜と
記す)についての研究も進行し、金属等の導電性材料で
両側から狭んだサンドイッチ構造の素子(その構造から
一般に、MIM構造もしくはMIM素子と呼ばれる)の
電気伝導において、全く新しいスイッチング現象を見出
している。一方、上記の様な分子電子デバイスと、従来
の製法により作製される外部電気素子との間で、どのよ
うに情報を授受して行くかも大きな課題である。これま
での分子電子デバイスの研究では、電極を真空蒸着法や
スパッタ法を用いて形成してきた。
2. Description of the Related Art Recently, the ordered structure of organic materials has attracted attention in connection with the development and improvement of electronic functions, and interest in molecular electronic devices for applying organic molecules to electronic devices has increased. A challenge for constructing a molecular electronic device is a technique for controlling the orientation of functional organic molecules. Therefore, recently, studies utilizing self-organization of organic molecules have been activated. In addition, research on the Langmuir Project film (hereinafter referred to as “LB” film), which is a technology for constructing an organic monomolecular film, has also progressed, and a sandwich structure element (which is narrowed from both sides with a conductive material such as metal) ( From that structure, a completely new switching phenomenon has been found in the electric conduction of the MIM structure or MIM element). On the other hand, how to exchange information between the molecular electronic device as described above and an external electric element manufactured by a conventional manufacturing method is also a big problem. In the past research on molecular electronic devices, electrodes have been formed using a vacuum deposition method or a sputtering method.

【0003】[0003]

【発明が解決しようとする問題点】しかしながら、これ
らの従来方法で形成した金属薄膜は多結晶膜となる為、
薄膜表面の凹凸の高低差が5nm以下の平滑性を得るこ
とは困難であるという問題があった。この様な電極を用
いて分子電子デバイス、例えば、LB膜を絶縁層として
MIM素子を構成した場合、LB膜の膜厚が不均一とな
り易かった。この為、素子ごとの特性にバラツキが生
じ、素子、又は特に絶縁膜の膜厚が薄い場合に、強電界
がかかった部分から、絶縁破壊等による素子破損が起こ
り易いという問題があった。本発明の目的は、真空蒸着
法やスパッタ法といった従来方法により作製した金属電
極の有する上記した従来技術の問題点に鑑み、分子電子
デバイスへの応用に最適な金電極の製造方法に適した金
結晶の作成方法を提供することである。
However, since the metal thin film formed by these conventional methods becomes a polycrystalline film,
There is a problem that it is difficult to obtain smoothness in which the height difference of the irregularities on the surface of the thin film is 5 nm or less. When a molecular electronic device, for example, an MIM element using an LB film as an insulating layer is formed using such an electrode, the film thickness of the LB film is likely to be non-uniform. Therefore, there is a problem in that the characteristics of each element vary, and when the element, or particularly the thickness of the insulating film, is thin, element damage due to dielectric breakdown or the like is likely to occur from a portion to which a strong electric field is applied. In view of the above-mentioned problems of the conventional metal electrode prepared by a conventional method such as a vacuum deposition method or a sputtering method, an object of the present invention is to provide a gold electrode suitable for a method for producing a gold electrode most suitable for application to a molecular electronic device. It is to provide a method for producing a crystal.

【0004】[0004]

【課題を解決するための手段】上記の目的は、下記の本
発明によって達成される。即ち、本発明は、金を溶解さ
せた高粘性溶液を用い、該溶液中における金の溶解度を
減少させ該溶液中の基板上に金結晶を折出させることを
特徴とする金結晶の作成方法であり、本発明の第二の発
明は、金を溶解させた溶液を用い、該溶液中における金
の溶解度を減少させる工程と、基板上に金結晶を折出さ
せる工程をゲル中で進行させることを特徴とする金結晶
の作成方法である。
The above objects can be achieved by the present invention described below. That is, the present invention is a method for producing a gold crystal, which comprises using a highly viscous solution in which gold is dissolved, and decreasing the solubility of gold in the solution so that the gold crystal is extruded on a substrate in the solution. In the second invention of the present invention, a step of reducing the solubility of gold in the solution using a solution in which gold is dissolved and a step of protruding gold crystals on a substrate are carried out in a gel. This is a method for producing a gold crystal.

【0005】[0005]

【作用】上記の従来技術の問題点を解決すべく、本発明
者らは金結晶の作成方法について鋭意研究の結果、金結
晶の液相成長を高粘性溶液中で行うことにより、大型の
平板状の金単結晶を作成することが出来ることを知見し
て本発明に至った。又、金結晶の液相成長をゲル中で行
うことにより、大型の平板状の金単結晶を作成すること
が出来ることを知見して本発明に至った。尚、ゲル中で
の金結晶の成長に関しては、P.KratochvilとB.Sprusil
により報告されている(J.Cryst.Growth、3,4,360(196
8))。
In order to solve the above-mentioned problems of the prior art, the inventors of the present invention have earnestly studied about a method for producing a gold crystal, and as a result, the liquid phase growth of the gold crystal was performed in a highly viscous solution to obtain a large flat plate. The present invention has been accomplished by finding that it is possible to prepare a gold single crystal having a shape of a circle. Further, the inventors of the present invention have found that a large flat plate-shaped gold single crystal can be prepared by performing liquid phase growth of a gold crystal in a gel, and thus the present invention has been accomplished. Regarding the growth of gold crystals in the gel, P. Kratochvil and B. Sprusil
(J.Cryst.Growth, 3,4,360 (196
8)).

【0006】[0006]

【実施例】以下、実施例を挙げて本発明を更に詳細に説
明する。 (第一の発明)実施例1 図1を用いて本実施例を説明する。先ず、蒸留水400
ccにヨウ化カリウム32g、ヨウ素4.8gを溶解さ
せて調製した溶液に、金粉1.5gを溶解させる(この
溶液を原液とした)。この原液を、原液:蒸留水=1:
2の比率となる様に蒸留水で希釈し、この液を希釈溶液
とした。更に、この希釈溶液中に、ショ糖を希釈溶液1
cc当たり2.5gの割合で溶解して、結晶成長用の高
粘性溶液とした。尚、この高粘性溶液中における金は、
[AuI4- の錯体状態で溶解している。次に、図1
に示す様な反応容器1内に、上記の様にして得られた高
粘性溶液2の中にSi基板3を入れ、高粘性溶液の液温
が85℃の恒温に保たれる様に、加熱装置4を用い温度
制御した(この間にヨウ素が発揮した)。しばらくする
と、Si基板3上に金結晶が成長した。この様にして得
られた金結晶を光学顕微鏡で観察したところ、三角形又
は六角形の平板状をしていた。電子顕微鏡で該結晶を観
察すると、平板のアスペクト比が10以上であった。
又、X線回折の測定結果により、得られた金結晶は単結
晶であり、該平板の面方位が(111)であることが確
認できた。更に、金結晶の平板表面を走査型トンネル顕
微鏡で観察したところ、結晶表面の凹凸は1μm×1μ
m角で5Åであり、極めて平滑であった。以上の様にし
て、Si基板上に大きさが1mm程度の大型平板状の金
単結晶を得ることができた。
EXAMPLES The present invention will be described in more detail with reference to examples. (First Invention) First Embodiment This embodiment will be described with reference to FIG. First, distilled water 400
1.5 g of gold dust is dissolved in a solution prepared by dissolving 32 g of potassium iodide and 4.8 g of iodine in cc (this solution was used as a stock solution). This undiluted solution, undiluted solution: distilled water = 1:
It was diluted with distilled water so that the ratio became 2, and this solution was used as a diluted solution. Furthermore, sucrose was diluted with this diluted solution 1
It was dissolved at a ratio of 2.5 g per cc to obtain a highly viscous solution for crystal growth. The gold in this highly viscous solution is
It is dissolved in a complex state of [AuI 4 ] - . Next, FIG.
In a reaction vessel 1 as shown in Fig. 3, the Si substrate 3 is placed in the highly viscous solution 2 obtained as described above and heated so that the liquid temperature of the highly viscous solution is kept constant at 85 ° C. The temperature was controlled using the apparatus 4 (during which iodine was exhibited). After a while, a gold crystal grew on the Si substrate 3. When the gold crystal thus obtained was observed with an optical microscope, it had a triangular or hexagonal flat plate shape. When the crystal was observed with an electron microscope, the flat plate had an aspect ratio of 10 or more.
Further, it was confirmed from the result of X-ray diffraction measurement that the obtained gold crystal was a single crystal and the plane orientation of the flat plate was (111). Furthermore, when observing the flat surface of the gold crystal with a scanning tunneling microscope, the unevenness of the crystal surface was 1 μm × 1 μm.
It was 5 Å at m-square and was extremely smooth. As described above, a large flat plate-shaped gold single crystal having a size of about 1 mm could be obtained on the Si substrate.

【0007】実施例2 実施例1と同じ希釈溶液を作成した後、水ガラスを該希
釈溶液中に、水ガラス:希釈溶液=1:3の比率で溶解
させて、結晶成長用の高粘性溶液とした。この条件以外
は実施例1と同じ条件で同様の操作を行い、Si基板3
上に金結晶を成長させた。その結果、実施例1と同様な
平滑性と大きさとを有する大型平板状の金結晶が得られ
た。
Example 2 After preparing the same diluted solution as in Example 1, water glass was dissolved in the diluted solution at a ratio of water glass: diluted solution = 1: 3 to prepare a highly viscous solution for crystal growth. And Except for this condition, the same operation was performed under the same conditions as in Example 1, and the Si substrate 3
Gold crystals were grown on top. As a result, a large flat plate-shaped gold crystal having the same smoothness and size as in Example 1 was obtained.

【0008】実施例3 実施例1と同じ希釈溶液を作成した後、ポリビニルアル
コールを該希釈溶液中に、ポリビニルアルコール:希釈
溶液=1:3の比率で溶解させて、結晶成長用の高粘性
溶液とした。この条件以外は実施例1と同じ条件で同様
の操作を行い、Si基板3上に金結晶を成長させた。そ
の結果、実施例1と同様な平滑性と大きさとを有する大
型平板状の金結晶が得られた。
Example 3 After preparing the same diluted solution as in Example 1, polyvinyl alcohol was dissolved in the diluted solution at a ratio of polyvinyl alcohol: diluted solution = 1: 3 to obtain a highly viscous solution for crystal growth. And Except for this condition, the same operation as in Example 1 was performed to grow a gold crystal on the Si substrate 3. As a result, a large flat plate-shaped gold crystal having the same smoothness and size as in Example 1 was obtained.

【0009】実施例4 実施例1と同じ希釈溶液を作成した後、グリセリンを該
希釈溶液中に、グリセリン:希釈溶液=1:8の比率で
溶解させて結晶成長用の高粘性溶液とした。この条件以
外は実施例1と同じ条件で同様の操作を行い、Si基板
3上に金結晶を成長させた。その結果、実施例1と同様
な平滑性と大きさとを有する大型平板状の金結晶が得ら
れた。
Example 4 After preparing the same diluted solution as in Example 1, glycerin was dissolved in the diluted solution at a ratio of glycerin: diluted solution = 1: 8 to obtain a highly viscous solution for crystal growth. Except for this condition, the same operation as in Example 1 was performed to grow a gold crystal on the Si substrate 3. As a result, a large flat plate-shaped gold crystal having the same smoothness and size as in Example 1 was obtained.

【0010】実施例5 実施例1と同じ希釈溶液を作成した後、エチレングリコ
ールを該希釈溶液中に、エチレングリコール:希釈溶液
=1:8の比率で溶解させて、結晶成長用の高粘性溶液
とした。この条件以外は実施例1と同じ条件で同様の操
作を行い、Si基板3上に金結晶を成長させた。その結
果、実施例1と同様な平滑性と大きさとを有する大型平
板状の金結晶が得られた。
Example 5 After preparing the same diluted solution as in Example 1, ethylene glycol was dissolved in the diluted solution at a ratio of ethylene glycol: diluted solution = 1: 8 to prepare a highly viscous solution for crystal growth. And Except for this condition, the same operation as in Example 1 was performed to grow a gold crystal on the Si substrate 3. As a result, a large flat plate-shaped gold crystal having the same smoothness and size as in Example 1 was obtained.

【0011】実施例6 先ず、塩化金酸(HAuCl4・4H2 O)の約6×1
-3mol/l水溶液を作成した(該溶液についても希
釈溶液と呼ぶことにする)。尚、この溶液中で金は、
[AuCl4- の錯体状態で溶解している。この希釈
用液中に実施例1と同じ割合でショ糖を溶解させた後、
亜硫酸ナトリウムも溶解させて、結晶成長用の高粘性溶
液とした。この条件以外は実施例1と同じ条件で同様の
操作を行い、Si基板3上に金結晶を成長させた。その
結果、実施例1と同様な平滑性と大きさとを有する大型
平板状の金結晶が得られた。
Example 6 First, about 6 × 1 of chloroauric acid (HAuCl 4 .4H 2 O)
A 0 -3 mol / l aqueous solution was prepared (this solution will also be referred to as a dilute solution). In this solution, gold is
It is dissolved in a complex state of [AuCl 4 ] - . After dissolving sucrose in this dilution liquid in the same proportion as in Example 1,
Sodium sulfite was also dissolved to give a highly viscous solution for crystal growth. Except for this condition, the same operation as in Example 1 was performed to grow a gold crystal on the Si substrate 3. As a result, a large flat plate-shaped gold crystal having the same smoothness and size as in Example 1 was obtained.

【0012】実施例7 実施例6と同じ希釈溶液を作成した後、該希釈溶液中
に、ショ糖を希釈溶液1cc当たり5g溶解させ、更に
ヨウ化カリウムも溶解させて、結晶成長用の高粘性溶液
とした。この条件以外は実施例1と同じ条件で同様の操
作を行い、Si基板3上に金結晶を成長させた。その結
果、実施例1と同様な平滑性と大きさとを有する大型平
板状の金結晶が得られた。
Example 7 After preparing the same diluted solution as in Example 6, 5 g of sucrose per 1 cc of the diluted solution was dissolved in the diluted solution, and potassium iodide was further dissolved therein to obtain a high viscosity for crystal growth. It was a solution. Except for this condition, the same operation as in Example 1 was performed to grow a gold crystal on the Si substrate 3. As a result, a large flat plate-shaped gold crystal having the same smoothness and size as in Example 1 was obtained.

【0013】実施例8 塩化金(AuCl3)の約6×10-3mol/l水溶液
に、ショ糖を該水溶液1cc当たり2.5g溶解させた
後、塩酸とシュウ酸も溶解させて結晶成長用の高粘性溶
液とした。この条件以外は実施例1と同じ条件で同様の
操作を行い、Si基板3上に金結晶を成長させた。その
結果、実施例1と同様な平滑性と大きさとを有する大型
平板状の金結晶が得られた。
Example 8 Sucrose was dissolved in an aqueous solution of about 6 × 10 -3 mol / l of gold chloride (AuCl 3 ) in an amount of 2.5 g per 1 cc of the aqueous solution, and then hydrochloric acid and oxalic acid were also dissolved to grow crystals. For use as a highly viscous solution. Except for this condition, the same operation as in Example 1 was performed to grow a gold crystal on the Si substrate 3. As a result, a large flat plate-shaped gold crystal having the same smoothness and size as in Example 1 was obtained.

【0014】実施例9 実施例1と同じ希釈溶液を作成した後、該希釈溶液中
に、希釈溶液1cc当たりショ糖を3g溶解させ、更に
亜硫酸ナトリウムも溶解させて、結晶成長用の高粘性溶
液とした。この条件以外は実施例1と同じ条件で同様の
操作を行い、Si基板3上に金結晶を成長させた。その
結果、実施例1と同様な平滑性と大きさとを有する大型
平板状の金結晶が得られた。
Example 9 After preparing the same diluted solution as in Example 1, 3 g of sucrose per 1 cc of the diluted solution was dissolved in the diluted solution, and further sodium sulfite was also dissolved in the diluted solution to obtain a highly viscous solution for crystal growth. And Except for this condition, the same operation as in Example 1 was performed to grow a gold crystal on the Si substrate 3. As a result, a large flat plate-shaped gold crystal having the same smoothness and size as in Example 1 was obtained.

【0015】実施例10 実施例1と同じ希釈溶液を作成した後、該希釈溶液1c
c当たりショ糖を3g溶解させ、更にシュウ酸も溶解さ
せて結晶成長用の高粘性溶液とした。この条件以外は実
施例1と同じ条件で同様の操作を行い、Si基板3上に
金結晶を成長させた。その結果、実施例1と同様な平滑
性と大きさとを有する大型平板状の金結晶が得られた。
Example 10 After preparing the same diluted solution as in Example 1, the diluted solution 1c was prepared.
3 g of sucrose was dissolved per c, and oxalic acid was also dissolved to prepare a highly viscous solution for crystal growth. Except for this condition, the same operation as in Example 1 was performed to grow a gold crystal on the Si substrate 3. As a result, a large flat plate-shaped gold crystal having the same smoothness and size as in Example 1 was obtained.

【0016】実施例11 本実施例では金結晶の選択成長を試みた。その為に、図
2に示した様なシード付き基板をフォトリソ法により作
成した。5はSi基板であり、6はSiの熱酸化膜であ
る。7は、シードとしての金或いは白金であり、熱酸化
膜6上に島状に形成されている。尚、8はシード7と酸
化膜6との密着性を向上させる為に用いたCrである。
シードの大きさは、1.5μm×1.5μm角であり、
500μm間隔で形成されている。この基板を用いて、
実施例1と同じ条件で同様の操作を行い、Si基板3上
のシードの形成されていた位置に金結晶を成長させた。
その結果、実施例1と同様な平滑性と大きさとを有する
大型平板状の金結晶が得られた。
Example 11 In this example, selective growth of gold crystals was tried. Therefore, a seeded substrate as shown in FIG. 2 was prepared by photolithography. Reference numeral 5 is a Si substrate, and 6 is a thermal oxide film of Si. 7 is gold or platinum as a seed, and is formed in an island shape on the thermal oxide film 6. Reference numeral 8 is Cr used to improve the adhesion between the seed 7 and the oxide film 6.
The size of the seed is 1.5 μm × 1.5 μm square,
It is formed at intervals of 500 μm. With this substrate,
The same operation was performed under the same conditions as in Example 1 to grow a gold crystal on the position where the seed was formed on the Si substrate 3.
As a result, a large flat plate-shaped gold crystal having the same smoothness and size as in Example 1 was obtained.

【0017】使用例1 次に、分子電子デバイスの具体的な応用例について述べ
る。実施例1に記載した方法により作製した、大きさが
約1mmの金電極を用いてMIM構造素子を作製した。
具体的には、先ず、下記の(1)式に示すポリアミド酸
を、N,N´−ジメチルアセトアミド−ベンゼン混合溶
媒(1:1V/V)に溶解させた(単量体換算濃度1×
10-3M)。その後、別途調製したN,N´−ジメチル
オクタデシルアミンの同溶媒による1×10-3M溶液
と、1:2(V/V)に混合して、下記の(2)式に示
すポリアミド酸オクタデシルアミン塩溶液を調製した。
Use Example 1 Next, a specific application example of the molecular electronic device will be described. A MIM structure element was manufactured using the gold electrode having a size of about 1 mm, which was manufactured by the method described in Example 1.
Specifically, first, the polyamic acid represented by the following formula (1) was dissolved in an N, N′-dimethylacetamide-benzene mixed solvent (1: 1 V / V) (concentration of monomer conversion 1 ×).
10 -3 M). Then, a 1 × 10 −3 M solution of separately prepared N, N′-dimethyloctadecylamine in the same solvent was mixed at a ratio of 1: 2 (V / V) to give octadecyl polyamic acid represented by the following formula (2). An amine salt solution was prepared.

【0018】[0018]

【化1】 [Chemical 1]

【0019】[0019]

【化2】 [Chemical 2]

【0020】上記の様にして調製した溶液を、水温20
℃の純水からなる水相上に展開し、水面上に単分子膜を
形成した。溶媒を蒸発除去後、表面圧を25mN/mに
迄高めた。次に、表面圧を一定に保ちながら、実施例1
で作製した基板電極を水面を横切る方向に、速度5mm
/minで静かに浸漬した後、続いて5mm/minで
静かに引き上げて2層のY型単分子累積膜を形成した。
この様な操作を適当回数操り返して、12、18及び2
4層の3種類のポリアミド酸オクタドデシルアミン塩の
単分子累積膜を形成した。次に、この基板を減圧下(〜
1mmHg)、200℃で30分間加熱焼成して、ポリ
アミド酸オクタデシルアミン塩をイミド化し、下記の
(3)式のポリイミド単分子累積膜を金電極上に得た。
The solution prepared as described above is treated at a water temperature of 20
A monomolecular film was formed on the water surface by spreading on a water phase consisting of pure water at ℃. After removing the solvent by evaporation, the surface pressure was increased to 25 mN / m. Next, Example 1 was carried out while keeping the surface pressure constant.
5mm speed across the water surface of the substrate electrode prepared in
After gently immersing the film at 5 min / min, the film was gently pulled up at 5 mm / min to form a two-layer Y-type monomolecular cumulative film.
Repeat this operation a suitable number of times to make 12, 18, and 2
A four-layer, monomolecular cumulative film of three types of polyamic acid octadodecylamine salts was formed. Next, the substrate is depressurized (~
1 mmHg) at 200 ° C. for 30 minutes, the polyamic acid octadecylamine salt was imidized to obtain a polyimide monomolecular cumulative film of the following formula (3) on the gold electrode.

【0021】[0021]

【化3】 [Chemical 3]

【0022】次に、アルミ電極を該ポリイミド単分子累
積膜上に形成して、該累積膜を前記金電極とで狭んだ。
この様にして、通電領域が500μm□の大きさを持つ
MIN構造素子を作製し、その特性を評価した。その結
果、メモリ性を有するスイッチング特性が観測され、3
桁程度のON/OFF比が得られた。更に、交流電圧を
印加して連続的にON/OFF両状態間の遷移を長時間
行わせたが、各MIM構造素子でON/OFF遷移の安
定なスイッチング特性が発現された。又、局所的な電界
集中に由来すると思われる素子破損も起こりにくくな
り、寿命の向上が見られた。本発明により作製された有
機MIM構造素子では、上記の様に非常に安定な電気特
性が観測された。
Next, an aluminum electrode was formed on the polyimide monomolecular cumulative film, and the cumulative film was narrowed together with the gold electrode.
In this way, a MIN structure element having an energization region of 500 μm □ was produced and its characteristics were evaluated. As a result, a switching characteristic having a memory property was observed, and 3
An ON / OFF ratio of the order of magnitude was obtained. Furthermore, an AC voltage was applied to continuously make a transition between both ON / OFF states for a long time, and a stable switching characteristic of ON / OFF transition was exhibited in each MIM structure element. In addition, element damage, which is considered to be caused by local electric field concentration, is less likely to occur, and the life is improved. In the organic MIM structure element manufactured by the present invention, very stable electric characteristics were observed as described above.

【0023】(第二の発明)実施例12 図3を用いて本実施例を説明する。先ず、反応容器11
の中に水ガラスを入れた後、該水ガラスに亜硫酸ナトリ
ウムを溶解させる。次に、該水ガラスに塩酸を加え水ガ
ラスをゲル化させる(図3(a)図示)。この様にして
得られた水ガラスのゲル12の中に、Si基板13を入
れる(図3(b)図示)。更に、金を溶解した溶液14
を反応容器11に入れ、ゲル12と溶液14とを接触さ
せる(図3(c)図示)。この際に用いる溶液14は以
下の様にして作成した。先ず、蒸留水400ccにヨウ
化カリウム32g、ヨウ素4.8gとを溶解させて調製
した溶液に、金粉1.5gを溶解させる(この溶液を原
液とした)。この原液を、原液:蒸留水=1:2の比率
で希釈し、これを溶液14とした。この溶液中では、金
は[Aul4]- の錯体状態で溶解している。溶液14と
ゲル12を接触させた後、反応容器11を室温でしばら
く放置すると、図3(c)図示に示した様に、ゲル12
と溶液14との界面15近傍、及びゲル12の内部にあ
るSi基板13の表面上に金結晶16が成長した。基板
表面上以外にも金結晶17が成長した。結晶の成長後、
ゲル12中より基板13を取り出し、表面上に成長した
金結晶16を光学顕微鏡で観察したところ、結晶は三角
形又は六角形を有した平板状をしていた。又、電子顕微
鏡で該結晶を観察すると平板のアスペクト比が10以上
であった。又、X線回折によると該結晶は単結晶であ
り、該平板の面方位が(111)であることが確認でき
た。更に、金結晶の平板表面を走査型トンネル顕微鏡で
観察したところ、凹凸は1μm×1μmの範囲内で5Å
であった。以上の様に、Si基板13上に、大きさが1
mm程度の大型平板状の金単結晶を得ることができた。
(Second Invention) Embodiment 12 This embodiment will be described with reference to FIG. First, the reaction container 11
After putting water glass in the solution, sodium sulfite is dissolved in the water glass. Next, hydrochloric acid is added to the water glass to gel the water glass (FIG. 3A). The Si substrate 13 is put into the water glass gel 12 thus obtained (FIG. 3B). Furthermore, a solution 14 in which gold is dissolved
Is placed in the reaction vessel 11, and the gel 12 and the solution 14 are brought into contact with each other (shown in FIG. 3C). The solution 14 used at this time was prepared as follows. First, 1.5 g of gold powder is dissolved in a solution prepared by dissolving 32 g of potassium iodide and 4.8 g of iodine in 400 cc of distilled water (this solution was used as a stock solution). This stock solution was diluted with a ratio of stock solution: distilled water = 1: 2 to obtain a solution 14. This solution, gold [Aul 4] - is dissolved in the complex state. After the solution 14 and the gel 12 are brought into contact with each other, the reaction container 11 is allowed to stand at room temperature for a while, and as shown in FIG.
A gold crystal 16 grew on the surface 15 of the Si substrate 13 in the vicinity of the interface 15 with the solution 14 and inside the gel 12. Gold crystals 17 were grown on other than the substrate surface. After crystal growth,
When the substrate 13 was taken out of the gel 12 and the gold crystal 16 grown on the surface was observed with an optical microscope, the crystal was in the form of a flat plate having a triangle or a hexagon. When the crystal was observed with an electron microscope, the flat plate had an aspect ratio of 10 or more. It was confirmed by X-ray diffraction that the crystal was a single crystal and the plane orientation of the flat plate was (111). Furthermore, when observing the flat surface of the gold crystal with a scanning tunneling microscope, it was found that the unevenness was 5Å
Met. As described above, the size is 1 on the Si substrate 13.
It was possible to obtain a large flat gold single crystal having a size of about mm.

【0024】実施例13 本実施例ではゲルとして寒天を用いたこと以外は実施例
12と同じ条件で同様の操作を行い、Si基板上に金結
晶を成長させた。その結果、実施例12と同様な平滑性
と大きさとを有する平板状の金結晶が得られた。
Example 13 In this example, a gold crystal was grown on a Si substrate by performing the same operation as in Example 12 except that agar was used as the gel. As a result, a flat gold crystal having the same smoothness and size as in Example 12 was obtained.

【0025】実施例14 本実施例では、金溶解溶液14として塩化金酸(HAu
Cl4・4H2 O)水溶液を用いた。溶液の濃度は、約
6×10-3mol/lである。又、この溶液中で金は
[AuCl4]- の錯体状態で溶解している。この条件以
外は実施例12と同じ条件で同様の操作を行い、Si基
板上に金結晶を成長させた。その結果、実施例12と同
様な平滑性と大きさとを有する平板状の金結晶が得られ
た。
Example 14 In this example, chloroauric acid (HAu) was used as the gold dissolving solution 14.
Cl 4 .4H 2 O) aqueous solution was used. The concentration of the solution is about 6 × 10 −3 mol / l. Moreover, the gold in this solution [AuCl 4] - is dissolved in the complex state. Except this condition, the same operation was performed under the same conditions as in Example 12 to grow a gold crystal on the Si substrate. As a result, a flat gold crystal having the same smoothness and size as in Example 12 was obtained.

【0026】実施例15 本実施例では、水ガラスの中にヨウ化カリウムを溶解さ
せた後、塩酸を加え、該水ガラスをゲル化した。この条
件以外は実施例14と同じ条件で同様の操作を行い、S
i基板上に金結晶を成長させた。その結果、実施例12
と同様な平滑性と大きさとを有する平板状の金結晶が得
られた。
Example 15 In this example, after potassium iodide was dissolved in water glass, hydrochloric acid was added to gel the water glass. Except for this condition, the same operation as in Example 14 was performed, and S
Gold crystals were grown on the i substrate. As a result, Example 12
A flat gold crystal having a smoothness and a size similar to that of was obtained.

【0027】実施例16 本実施例を図4を用いて説明する。本実施例では、水ガ
ラスを反応容器11内で塩酸によりゲル化させた後、S
i基板13を図4(a)で示した様にゲル18中に入れ
る。更に、実施例12と同じ組成、濃度の金溶解溶液1
4を反応器内11に入れ、ゲル18と接触させる。この
反応容器11を、液温が80℃に設定された恒温漕(例
えば、オイルバス)に入れてしばらく放置して、ヨウ素
を発揮させた。その結果、実施例12と同様な平滑性と
大きさとを有する平板状の金結晶が得られた。
Embodiment 16 This embodiment will be described with reference to FIG. In this embodiment, after water glass is gelled with hydrochloric acid in the reaction vessel 11, S
The i-substrate 13 is put into the gel 18 as shown in FIG. Furthermore, a gold dissolving solution 1 having the same composition and concentration as in Example 12
4 is placed in the reactor 11 and brought into contact with the gel 18. The reaction container 11 was placed in a constant temperature bath (for example, an oil bath) in which the liquid temperature was set to 80 ° C. and left for a while to exhibit iodine. As a result, a flat gold crystal having the same smoothness and size as in Example 12 was obtained.

【0028】実施例17 図5を用いて本実施例を説明する。本実施例では反応容
器11内の水ガラスにAuCl3 を溶解した後、この水
ガラスに塩酸を加え、水ガラスをゲル化させる(図5
(a)図示)。この水ガラスのゲル20の中に、Si基
板13を入れる。次に、図5(c)に示す様に、シュウ
酸((COOH)2)水溶液21を反応容器11に入れ、
ゲル20と接触させる。この後、反応容器11を室温で
しばらく放置しておいた。その結果、実施例12と同様
な平滑性と大きさとを有する平板状の金結晶が得られ
た。
Embodiment 17 This embodiment will be described with reference to FIG. In this example, after AuCl 3 was dissolved in the water glass in the reaction vessel 11, hydrochloric acid was added to the water glass to gel the water glass (FIG. 5).
(A) Illustration). The Si substrate 13 is put in the gel 20 of water glass. Next, as shown in FIG. 5C, an oxalic acid ((COOH) 2 ) aqueous solution 21 is placed in the reaction vessel 11,
Contact with gel 20. Then, the reaction container 11 was left to stand at room temperature for a while. As a result, a flat gold crystal having the same smoothness and size as in Example 12 was obtained.

【0029】実施例18 本実施例では金結晶の選択成長を試みた。そのために図
6に示した様なシード付き基板をフォトリソ法により作
成した。22はSi基板であり、23はSiの熱酸化膜
である。25がシードとしての金或いは白金であり、熱
酸化膜23上に島状に形成されている。尚、24はシー
ド25と酸化膜23との密着性を向上させるために用い
たCrである。シードの大きさは1.5μm×1.5μ
m角であり、500μm間隔で形成されている。この基
板を用いる以外は実施例12と同じ条件で同様の操作を
行い、基板上に金結晶を成長させた。その結果、実施例
12と同様な平滑性と大きさとを有する平板状の金結晶
が得られた。
Example 18 In this example, selective growth of gold crystals was tried. Therefore, a seeded substrate as shown in FIG. 6 was prepared by photolithography. Reference numeral 22 is a Si substrate, and 23 is a thermal oxide film of Si. 25 is gold or platinum as a seed, and is formed in an island shape on the thermal oxide film 23. Incidentally, 24 is Cr used to improve the adhesion between the seed 25 and the oxide film 23. Seed size is 1.5μm × 1.5μ
It is an m-square and is formed at intervals of 500 μm. The same operation was performed under the same conditions as in Example 12 except that this substrate was used to grow a gold crystal on the substrate. As a result, a flat gold crystal having the same smoothness and size as in Example 12 was obtained.

【0030】使用例2 次に、分子電子デバイスの具体的な応用例について述べ
る。実施例12に記載した方法により作製した、大きさ
が約1mmの金電極を用いてMIM構造素子を作製し
た。具体的には、先ず、下記の(1)式に示すポリアミ
ド酸を、N,N´−ジメチルアセトアミド−ベンゼン混
合溶媒(1:1V/V)に溶解させた(単量体換算濃度
1×10-3M)。その後、別途調製したN,N´−ジメ
チルオクタデシルアミンの同溶媒による1×10-3M溶
液と、1:2(V/V)に混合して、下記の(2)式に
示すポリアミド酸オクタデシルアミン塩溶液を調製し
た。
Use Example 2 Next, a specific application example of the molecular electronic device will be described. A MIM structure element was manufactured using the gold electrode having a size of about 1 mm, which was manufactured by the method described in Example 12. Specifically, first, the polyamic acid represented by the following formula (1) was dissolved in a mixed solvent of N, N'-dimethylacetamide-benzene (1: 1 V / V) (concentration converted to monomer: 1 x 10). -3 M). Then, a 1 × 10 −3 M solution of separately prepared N, N′-dimethyloctadecylamine in the same solvent was mixed at a ratio of 1: 2 (V / V) to give octadecyl polyamic acid represented by the following formula (2). An amine salt solution was prepared.

【0031】[0031]

【化4】 [Chemical 4]

【0032】[0032]

【化5】 [Chemical 5]

【0033】上記の様にして調製した溶液を、水温20
℃の純水からなる水相上に展開し、水面上に単分子膜を
形成した。溶媒を蒸発除去後、表面圧を25mN/mに
迄高めた。次に、表面圧を一定に保ちながら、実施例1
で作製した基板電極を水面を横切る方向に、速度5mm
/minで静かに浸漬した後、続いて5mm/minで
静かに引き上げて2層のY型単分子累積膜を形成した。
この様な操作を適当回数操り返して、12、18及び2
4層の3種類のポリアミド酸オクタドデシルアミン塩の
単分子累積膜を形成した。次に、この基板を減圧下(〜
1mmHg)、200℃で30分間加熱焼成して、ポリ
アミド酸オクタデシルアミン塩をイミド化し、下記の
(3)式のポリイミド単分子累積膜を金電極上に得た。
The solution prepared as described above was added at a water temperature of 20
A monomolecular film was formed on the water surface by spreading on a water phase consisting of pure water at ℃. After removing the solvent by evaporation, the surface pressure was increased to 25 mN / m. Next, Example 1 was carried out while keeping the surface pressure constant.
5mm speed across the water surface of the substrate electrode prepared in
After gently immersing the film at 5 min / min, the film was gently pulled up at 5 mm / min to form a two-layer Y-type monomolecular cumulative film.
Repeat this operation a suitable number of times to make 12, 18, and 2
A four-layer, monomolecular cumulative film of three types of polyamic acid octadodecylamine salts was formed. Next, the substrate is depressurized (~
1 mmHg) at 200 ° C. for 30 minutes, the polyamic acid octadecylamine salt was imidized to obtain a polyimide monomolecular cumulative film of the following formula (3) on the gold electrode.

【0034】[0034]

【化6】 [Chemical 6]

【0035】次に、アルミ電極を該ポリイミド単分子累
積膜上に形成して、該累積膜を前記金電極とで狭んだ。
この様にして、通電領域が500μm□の大きさを持つ
MIN構造素子を作製し、その特性を評価した。その結
果、メモリ性を有するスイッチング特性が観測され、3
桁程度のON/OFF比が得られた。更に、交流電圧を
印加して連続的にON/OFF両状態間の遷移を長時間
行わせたが、各MIM構造素子でON/OFF遷移の安
定なスイッチング特性が発現された。又、局所的な電界
集中に由来すると思われる素子破損も起こりにくくな
り、寿命の向上が見られた。本発明により作製された有
機MIM構造素子では、上記の様に非常に安定な電気特
性が観測された。
Next, an aluminum electrode was formed on the polyimide monomolecular cumulative film, and the cumulative film was narrowed together with the gold electrode.
In this way, a MIN structure element having an energization region of 500 μm □ was produced and its characteristics were evaluated. As a result, a switching characteristic having a memory property was observed, and 3
An ON / OFF ratio of the order of magnitude was obtained. Furthermore, an AC voltage was applied to continuously make a transition between both ON / OFF states for a long time, and a stable switching characteristic of ON / OFF transition was exhibited in each MIM structure element. In addition, element damage, which is considered to be caused by local electric field concentration, is less likely to occur, and the life is improved. In the organic MIM structure element manufactured by the present invention, very stable electric characteristics were observed as described above.

【0036】[0036]

【発明の効果】以上説明した様に、本発明によれば以下
の効果を有する。 (1)常温、常圧に近い環境下で、大きな金単結晶を大
がかりな装置を使用しないで成長させることが出来る。 (2)表面凹凸が1μm×1μm角の領域で5Åの、平
滑な金電極の作成が可能となる。 (3)LB膜を絶縁層としたMIM構造素子の電気特性
の安定性を向上させることが出来た。
As described above, the present invention has the following effects. (1) A large gold single crystal can be grown in an environment near room temperature and pressure without using a large-scale device. (2) It is possible to form a smooth gold electrode having a surface roughness of 1 μm × 1 μm square and 5 Å. (3) The stability of the electrical characteristics of the MIM structure element using the LB film as an insulating layer could be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、実施例1で用いた結晶作成方法の概略
断面図である。
FIG. 1 is a schematic cross-sectional view of a crystal producing method used in Example 1.

【図2】図2は、実施例11の金結晶の選択成長に用い
た基板の断面図である。
FIG. 2 is a cross-sectional view of a substrate used for selective growth of a gold crystal of Example 11.

【図3】図3は、実施例12で用いた結晶作成方法の概
略断面図である。
FIG. 3 is a schematic cross-sectional view of the crystal forming method used in Example 12.

【図4】図4は、実施例16で用いた結晶作成方法の概
略断面図である。
FIG. 4 is a schematic cross-sectional view of the crystal forming method used in Example 16.

【図5】図5は、実施例17で用いた結晶作成方法の概
略断面図である。
FIG. 5 is a schematic cross-sectional view of the crystal forming method used in Example 17.

【図6】図6は、実施例18の金結晶の選択成長に用い
た基板の断面図である。
FIG. 6 is a cross-sectional view of a substrate used for selective growth of gold crystals in Example 18.

【図7】図7は、基板のゲル中での固定法の一例であ
る。
FIG. 7 is an example of a method of immobilizing a substrate in gel.

【符合の説明】[Explanation of sign]

1、11:反応容器 2:高粘性溶液 3、13:基板 4:加熱装置 5、22:Si 6、23:Si熱酸化膜 7、25:シードとしての金或いは白金 8、24:Cr 12、18、20、26:ゲル 14、24:ゲルと接触させる溶液 15:界面近傍 16、17:金結晶 19:恒温槽 1, 11: Reaction container 2: Highly viscous solution 3, 13: Substrate 4: Heating device 5, 22: Si 6, 23: Si thermal oxide film 7, 25: Gold or platinum as a seed 8, 24: Cr 12, 18, 20, 26: Gel 14, 24: Solution to contact with gel 15: Near interface 16, 17: Gold crystal 19: Constant temperature bath

───────────────────────────────────────────────────── フロントページの続き (72)発明者 笠貫 有二 東京都大田区下丸子3丁目30番2号 キヤ ノン株式会社内 (72)発明者 河田 春紀 東京都大田区下丸子3丁目30番2号 キヤ ノン株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yuji Kasanuki 3-30-2 Shimomaruko, Ota-ku, Tokyo Canon Inc. (72) Haruki Kawata 3-30-2 Shimomaruko, Ota-ku, Tokyo Kya Non non corporation

Claims (31)

【特許請求の範囲】[Claims] 【請求項1】 金を溶解させた高粘性溶液を用い、該溶
液中における金の溶解度を減少させ該溶液中の基板上に
金結晶を折出させることを特徴とする金結晶の作成方
法。
1. A method for producing a gold crystal, which comprises using a highly viscous solution in which gold is dissolved, and decreasing the solubility of gold in the solution so that the gold crystal is extruded on a substrate in the solution.
【請求項2】 金結晶が平板状である請求項1に記載の
金結晶の作成方法。
2. The method for producing a gold crystal according to claim 1, wherein the gold crystal has a flat plate shape.
【請求項3】 高粘性溶液の粘度が水よりも高いもので
ある請求項1に記載の金結晶の作成方法。
3. The method for producing a gold crystal according to claim 1, wherein the highly viscous solution has a higher viscosity than water.
【請求項4】 金を溶解させた高粘性溶液がショ糖を含
んでいる請求項3に記載の金結晶の作成方法。
4. The method for producing a gold crystal according to claim 3, wherein the highly viscous solution in which gold is dissolved contains sucrose.
【請求項5】 金を溶解させた高粘性溶液が水ガラスを
含んでいる請求項3に記載の金結晶の作成方法。
5. The method for producing a gold crystal according to claim 3, wherein the highly viscous solution in which gold is dissolved contains water glass.
【請求項6】 金を溶解させた高粘性溶液がポリビニル
アルコールを含んでいる請求項3に記載の金結晶の作成
方法。
6. The method for producing a gold crystal according to claim 3, wherein the highly viscous solution in which gold is dissolved contains polyvinyl alcohol.
【請求項7】 金を溶解させた高粘性溶液がグリセリン
を含んでいる請求項3に記載の金結晶の作成方法。
7. The method for producing a gold crystal according to claim 3, wherein the highly viscous solution in which gold is dissolved contains glycerin.
【請求項8】 金を溶解させた高粘性溶液がエチレング
リコールを含んでいる請求項3に記載の金結晶の作成方
法。
8. The method for producing a gold crystal according to claim 3, wherein the highly viscous solution in which gold is dissolved contains ethylene glycol.
【請求項9】 金を溶解させた高粘性溶液がAuCl3
を用いて作成されている請求項1に記載の金結晶の作成
方法。
9. A highly viscous solution in which gold is dissolved is AuCl 3
The method for producing a gold crystal according to claim 1, which is produced by using.
【請求項10】 高粘性溶液中の金が錯体の状態で該溶
液に溶解している請求項1に記載の金結晶の作成方法。
10. The method for producing a gold crystal according to claim 1, wherein gold in the highly viscous solution is dissolved in the solution in the form of a complex.
【請求項11】 錯体が少なくとも[AuI4 ]- を有
するものである請求項10に記載の金結晶の作成方法。
11. The method for producing a gold crystal according to claim 10, wherein the complex has at least [AuI 4 ] - .
【請求項12】 金の溶解度の減少を、金を溶解させた
高粘性溶液からのヨウ素の揮発により行う請求項11に
記載の金結晶の作成方法。
12. The method for producing a gold crystal according to claim 11, wherein the solubility of gold is reduced by volatilizing iodine from a highly viscous solution in which gold is dissolved.
【請求項13】 錯体が少なくとも[AuCl4]- を有
するものである請求項10に記載の金結晶の作成方法。
13. The method for producing a gold crystal according to claim 10, wherein the complex has at least [AuCl 4 ] - .
【請求項14】 [AuCl4]- 含有溶液の金の溶解度
の減少を、該溶液とヨウ化カリウムとを反応させること
により行う請求項13に記載の金結晶の作成方法。
14. [AuCl 4] - a decrease in the solubility of the gold-containing solution, a method of creating gold crystal according to claim 13 carried out by reacting a solution of potassium iodide.
【請求項15】 金の溶解度の減少を、金を溶解させた
高粘性溶液と還元剤との反応により行う請求項1に記載
の金結晶の作成方法。
15. The method for producing a gold crystal according to claim 1, wherein the solubility of gold is reduced by reacting a highly viscous solution in which gold is dissolved with a reducing agent.
【請求項16】 還元剤が亜硫酸ナトリウムである請求
項15に記載の金結晶の作成方法。
16. The method for producing a gold crystal according to claim 15, wherein the reducing agent is sodium sulfite.
【請求項17】 還元剤がシュウ酸である請求項15に
記載の金結晶の作成方法。
17. The method for producing a gold crystal according to claim 15, wherein the reducing agent is oxalic acid.
【請求項18】 基板上に金又は白金のシードが形成さ
れている請求項1に記載の金結晶の作成方法。
18. The method for producing a gold crystal according to claim 1, wherein a gold or platinum seed is formed on the substrate.
【請求項19】 金を溶解させた溶液を用い、該溶液中
における金の溶解度を減少させる工程と、基板上に金結
晶を折出させる工程をゲル中で進行させることを特徴と
する金結晶の作成方法。
19. A gold crystal comprising using a solution in which gold is dissolved, and performing a step of reducing the solubility of gold in the solution and a step of projecting a gold crystal on a substrate in a gel. How to create.
【請求項20】 金結晶が平板状である請求項19に記
載の金結晶の作成方法。
20. The method for producing a gold crystal according to claim 19, wherein the gold crystal has a flat plate shape.
【請求項21】 ゲルが水ガラスで作製されている請求
項19に記載の金結晶の作成方法。
21. The method for producing a gold crystal according to claim 19, wherein the gel is made of water glass.
【請求項22】 ゲルが寒天である請求項19に記載の
金結晶の作成方法。
22. The method for producing a gold crystal according to claim 19, wherein the gel is agar.
【請求項23】 金を溶解させた溶液がAuCl3 を用
いて作成されている請求項19に記載の金結晶の作成方
法。
23. The method for producing a gold crystal according to claim 19, wherein the solution in which gold is dissolved is prepared using AuCl 3 .
【請求項24】 溶液中の金が少なくとも[AuI4]-
の錯体状態で溶解している請求項19に記載の金結晶の
作成方法。
24. The gold in the solution is at least [AuI 4 ] -
The method for producing a gold crystal according to claim 19, wherein the gold crystal is dissolved in the complex state.
【請求項25】 金の溶解度の減少を、金を溶解させた
溶液からのヨウ素の揮発により行う請求項20に記載の
金結晶の作成方法。
25. The method for producing a gold crystal according to claim 20, wherein the solubility of gold is reduced by volatilizing iodine from a solution in which gold is dissolved.
【請求項26】 溶液中の金が少なくとも[AuCl4]
- の錯体状態で溶解している請求項19に記載の金結晶
の作成方法。
26. The gold in the solution is at least [AuCl 4 ].
The method for producing a gold crystal according to claim 19, wherein the gold crystal is dissolved in the complex state of-.
【請求項27】 [AuCl4]- 含有溶液の金の溶解度
の減少を、該溶液とヨウ化カリウムとを反応させること
により行う請求項26に記載の金結晶の作成方法。
27. [AuCl 4] - a decrease in the solubility of the gold-containing solution, a method of creating gold crystal according to claim 26 carried out by reacting a solution of potassium iodide.
【請求項28】 金の溶解度の減少を、金を溶解させた
溶液と還元剤との反応により行う請求項19に記載の金
結晶の作成方法。
28. The method for producing a gold crystal according to claim 19, wherein the solubility of gold is reduced by reacting a solution in which gold is dissolved with a reducing agent.
【請求項29】 還元剤が亜硫酸ナトリウムである請求
項28に記載の金結晶の作成方法。
29. The method for producing a gold crystal according to claim 28, wherein the reducing agent is sodium sulfite.
【請求項30】 還元剤がシュウ酸である請求項28に
記載の金結晶の作成方法。
30. The method for producing a gold crystal according to claim 28, wherein the reducing agent is oxalic acid.
【請求項31】 基板上に金又は白金のシードが形成さ
れている請求項19に記載の金結晶の作成方法。
31. The method for producing a gold crystal according to claim 19, wherein a seed of gold or platinum is formed on the substrate.
JP28111692A 1992-09-28 1992-09-28 How to make gold crystals Expired - Fee Related JP3231099B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28111692A JP3231099B2 (en) 1992-09-28 1992-09-28 How to make gold crystals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28111692A JP3231099B2 (en) 1992-09-28 1992-09-28 How to make gold crystals

Publications (2)

Publication Number Publication Date
JPH06107493A true JPH06107493A (en) 1994-04-19
JP3231099B2 JP3231099B2 (en) 2001-11-19

Family

ID=17634581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28111692A Expired - Fee Related JP3231099B2 (en) 1992-09-28 1992-09-28 How to make gold crystals

Country Status (1)

Country Link
JP (1) JP3231099B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005154892A (en) * 2003-10-27 2005-06-16 Mitsubishi Chemicals Corp Solution for dissolving noble metal, and method for dissolving/recovering noble metal with the use of the solution
CN101992294A (en) * 2009-08-19 2011-03-30 三星电机株式会社 Method for preparing metal nanoparticles using matal seed and metal nanoparticles comprising metal seed

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005154892A (en) * 2003-10-27 2005-06-16 Mitsubishi Chemicals Corp Solution for dissolving noble metal, and method for dissolving/recovering noble metal with the use of the solution
JP4524593B2 (en) * 2003-10-27 2010-08-18 三菱化学株式会社 Noble metal solution and method for dissolving and recovering noble metal using this solution
CN101992294A (en) * 2009-08-19 2011-03-30 三星电机株式会社 Method for preparing metal nanoparticles using matal seed and metal nanoparticles comprising metal seed

Also Published As

Publication number Publication date
JP3231099B2 (en) 2001-11-19

Similar Documents

Publication Publication Date Title
Wang et al. Microtwinning in template-synthesized single-crystal metal nanowires
Qiu et al. Fabrication of TiO2 nanotube film by well-aligned ZnO nanorod array film and sol–gel process
Şişman et al. Electrochemical growth and characterization of size-quantized CdTe thin films grown by underpotential deposition
JPH06187675A (en) Information processor and information processing method using the same
JP3437195B2 (en) MIM type electric element, method of manufacturing the same, and image display device and drawing device using the same
CN110364429B (en) Metal nanowire film, preparation method thereof and thin film transistor array
KR102172464B1 (en) Preparing method of nano-thin film
Şişman et al. Atom-by-atom growth of CdS thin films by an electrochemical co-deposition method: Effects of pH on the growth mechanism and structure
US4201453A (en) Liquid crystal cell having an insulating layer of a silicon oxide base
JPH06107493A (en) Formation of gold crystal
GB2121315A (en) Polymer films
Lukkari et al. Nucleation and growth of poly (3-methylthiophene) on indium-tin oxide glass by scanning tunneling microscopy
CN112820825A (en) Preparation method of artificial synapse device based on lead-free perovskite
JP2009076253A (en) Metal oxide film and its forming method
KR100804003B1 (en) Process for preparing indium tin oxide film
Choi et al. Electrochemical preparation of cadmium selenide nanoparticles by the use of molecular templates
JPH04211173A (en) M - i - m' device and manufacture
JPH067589B2 (en) MSM or MIS type element using phthalocyanine derivative thin film as semiconductor layer and method for manufacturing the same
WO2023087453A1 (en) Direct x-ray image detector and method for manufacturing same
JP4423835B2 (en) Method for manufacturing dielectric oxide film
CN1200445C (en) Manufacturing method of plasma display screen up and down base plate component element
JP2987787B2 (en) Switching element
US4773742A (en) Display method with fatly acid ester host molecule
JP2005272737A (en) Method for producing metal oxide thin film precursor and utilization of the same
JP2778092B2 (en) Sol-gel film forming liquid and film forming method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees