JPH06107295A - Cooling device of internal combustion engine for driving aircraft - Google Patents

Cooling device of internal combustion engine for driving aircraft

Info

Publication number
JPH06107295A
JPH06107295A JP26001492A JP26001492A JPH06107295A JP H06107295 A JPH06107295 A JP H06107295A JP 26001492 A JP26001492 A JP 26001492A JP 26001492 A JP26001492 A JP 26001492A JP H06107295 A JPH06107295 A JP H06107295A
Authority
JP
Japan
Prior art keywords
air
aircraft
internal combustion
combustion engine
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26001492A
Other languages
Japanese (ja)
Inventor
Masahiro Inoue
雅博 井上
Toshitake Suzuki
利武 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP26001492A priority Critical patent/JPH06107295A/en
Publication of JPH06107295A publication Critical patent/JPH06107295A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust Silencers (AREA)

Abstract

PURPOSE:To increase air quantity which flows into an air passage and reduce air resistance. CONSTITUTION:The radiator 10 of a water cooling type internal combustion engine 2 is disposed in an air passage 9 provided with an air in-flow port 7 and an air out-flow port 8. In the air passage 9 on the downstream side of the radiator 10, the discharge port 12 of a discharge pipe 5 in the engine 2 is disposed so that discharged gas from the discharge port 12 may be discharged toward the air out-flow port 8.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は航空機駆動用内燃機関の
冷却装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cooling device for an internal combustion engine for driving an aircraft.

【0002】[0002]

【従来の技術】図4には従来の航空機1の前部の断面図
を示す。図4を参照すると、2は水冷式内燃機関、6は
内燃機関2によって駆動されるプロペラを夫々示す。航
空機1の下部には、航空機1の前方に向かって空気流入
口7を有すると共に後方に向かって空気流出口8を有す
る空気通路9が形成される。この空気通路9には内燃機
関2冷却用のラジエータ10が配置される。空気流出口
8には開閉弁30が設けられている。
2. Description of the Related Art FIG. 4 is a sectional view of a front portion of a conventional aircraft 1. Referring to FIG. 4, 2 is a water-cooled internal combustion engine, and 6 is a propeller driven by the internal combustion engine 2. An air passage 9 having an air inlet 7 toward the front of the aircraft 1 and an air outlet 8 toward the rear of the aircraft 1 is formed in the lower portion of the aircraft 1. A radiator 10 for cooling the internal combustion engine 2 is arranged in the air passage 9. The air outlet 8 is provided with an opening / closing valve 30.

【0003】航空機1が前方に向かって進んでいるとき
には、空気は空気流入口7から空気通路9内に流入して
空気流出口8から流出する。空気流入口7から流入する
空気量は、開閉弁30の開度が増大する程増大せしめら
れる。従って、内燃機関の発生熱量が多量であるときに
は多量の空気を空気通路9内に流入せしめてラジエータ
10を冷却せしめる必要があるために、開閉弁30の開
度は増大せしめられる。
When the aircraft 1 is moving forward, air flows into the air passage 9 from the air inlet 7 and flows out from the air outlet 8. The amount of air flowing in from the air inlet 7 is increased as the opening degree of the opening / closing valve 30 is increased. Therefore, when the amount of heat generated by the internal combustion engine is large, a large amount of air needs to flow into the air passage 9 to cool the radiator 10, so that the opening degree of the opening / closing valve 30 can be increased.

【0004】[0004]

【発明が解決しようとする課題】ラジエータ10を通過
した空気は減速される。開閉弁30の開度が小さいとき
には開閉弁30で絞られてラジエータ10を通過した空
気の流速が増大せしめられるために、空気流出口8から
流出する空気の流速は、航空機1の周りの空気の航空機
1に対する相対速度V0 に対してそれ程遅くない。この
ため、開閉弁30の開度が小さいときには空気抵抗はさ
ほど大きくない。
The air passing through the radiator 10 is decelerated. When the opening degree of the on-off valve 30 is small, the flow rate of the air that has been throttled by the on-off valve 30 and passed through the radiator 10 is increased. It is not so slow for the relative speed V 0 with respect to the aircraft 1. Therefore, when the opening degree of the opening / closing valve 30 is small, the air resistance is not so large.

【0005】ところが、空気通路9内に多量の空気を流
入せしめる必要がある場合に開閉弁30の開度を増大せ
しめると、空気流出口8は絞られず、このため、空気流
出口8からは周りの空気流の流速に比較して流速の遅い
空気が流出せしめられる。このため、空気流出口8近傍
に渦等を発生し、空気抵抗が増大するという問題を生ず
る。
However, when a large amount of air needs to flow into the air passage 9 and the opening degree of the opening / closing valve 30 is increased, the air outlet 8 is not throttled, and therefore, the air outlet 8 is closed. The air having a slower flow velocity than the air flow velocity of is discharged. Therefore, a vortex or the like is generated in the vicinity of the air outlet 8 and the air resistance increases.

【0006】すなわち、従来の装置では空気通路9内へ
の流入空気量の増大と空気抵抗の低減とを両立できない
という問題があった。
That is, the conventional device has a problem that it is not possible to simultaneously increase the amount of air flowing into the air passage 9 and reduce the air resistance.

【0007】[0007]

【課題を解決するための手段】上記問題点を解決するた
め本発明によれば、航空機の前方に向かって空気流入口
を有する共に航空機の後方に向かって空気流出口を有す
る空気通路に航空機駆動用内燃機関の冷却部を配置し、
この冷却部下流の空気通路内に内燃機関の排気通路の排
出口をこの排出口から排出される排気ガスが空気流出口
に向かって排出されるように配置している。
In order to solve the above problems, according to the present invention, an aircraft is driven in an air passage having an air inlet toward the front of the aircraft and an air outlet toward the rear of the aircraft. The cooling unit of the internal combustion engine for
The exhaust port of the exhaust passage of the internal combustion engine is arranged in the air passage downstream of the cooling unit so that the exhaust gas discharged from the exhaust port is discharged toward the air outlet.

【0008】[0008]

【作用】航空機が前方に向かって進むと、空気が空気流
入口から空気通路内に流入して空気流出口から流出す
る。排気通路の排出口から排出される排気ガスの流速は
冷却部を通過した空気の流速より速いために、この空気
は排気ガスの流れによって加速されて流速が増大する。
このため、空気流入口から空気通路内に流入する空気量
を増大せしめることができ冷却部を十分に冷却すること
ができる。
When the aircraft moves forward, air flows into the air passage from the air inlet and flows out from the air outlet. Since the flow velocity of the exhaust gas discharged from the exhaust port of the exhaust passage is higher than the flow velocity of the air that has passed through the cooling unit, this air is accelerated by the flow of the exhaust gas and the flow velocity increases.
Therefore, the amount of air flowing into the air passage from the air inlet can be increased, and the cooling unit can be sufficiently cooled.

【0009】また、空気流出口から流出される空気の流
速は増速されて航空機の周りの空気の流速に近付けられ
るために、空気流出口近傍に渦等をほとんど発生するこ
とがなく空気抵抗を低減せしめることができる。
Further, since the flow velocity of the air flowing out from the air outlet is increased so as to approach the velocity of the air around the aircraft, almost no vortex is generated near the air outlet and the air resistance is reduced. It can be reduced.

【0010】[0010]

【実施例】図2には航空機1の全体図を示す。図2を参
照すると、航空機1の前部に航空機駆動用内燃機関2が
配置されている。図1には航空機1の前部の断面図を示
す。図1を参照すると、2は水冷式内燃機関、3は排気
マニホルド、4はターボチャージャ、5は排気管、6は
内燃機関2によって駆動されるプロペラを夫々示す。
DETAILED DESCRIPTION FIG. 2 shows an overall view of an aircraft 1. Referring to FIG. 2, an aircraft driving internal combustion engine 2 is arranged at the front of the aircraft 1. FIG. 1 shows a sectional view of the front part of the aircraft 1. Referring to FIG. 1, 2 is a water-cooled internal combustion engine, 3 is an exhaust manifold, 4 is a turbocharger, 5 is an exhaust pipe, and 6 is a propeller driven by the internal combustion engine 2.

【0011】航空機1の下部には、航空機1の前方に向
かって空気流入口7を有すると共に航空機1の後方に向
かって空気流出口8を有する空気通路9が形成される。
空気通路9は航空機1の前方から後方に向かってまっす
ぐに延びる。空気通路9の途中には、内燃機関の冷却部
であるラジエータ10が配置される。空気流出口8近傍
の空気通路9の断面積は縮小され絞り部11とされてい
る。ラジエータ10と絞り部11との間の空気通路9内
には排気管5の排出口12が、排出口12から排出され
る排気ガスが空気流出口8に向かって排出されるように
配置される。
An air passage 9 having an air inlet 7 toward the front of the aircraft 1 and an air outlet 8 toward the rear of the aircraft 1 is formed in the lower portion of the aircraft 1.
The air passage 9 extends straight from the front of the aircraft 1 toward the rear. A radiator 10, which is a cooling unit of the internal combustion engine, is arranged in the middle of the air passage 9. The cross-sectional area of the air passage 9 in the vicinity of the air outlet 8 is reduced to form a throttle portion 11. In the air passage 9 between the radiator 10 and the throttle portion 11, the exhaust port 12 of the exhaust pipe 5 is arranged so that the exhaust gas exhausted from the exhaust port 12 is exhausted toward the air outlet 8. .

【0012】次に本実施例の動作について説明する。航
空機1が前方に向かって(図1において右から左に向か
って)進んでいるときには、空気は空気流入口7から空
気通路9内に流入して空気流出口8から流出する。航空
機1の周りの空気の航空機1に対する相対速度をV0
すると、速度V0 で空気流入口7から流入した空気はラ
ジエータ10を出ると減速してV1 となる。V1 は例え
ば12m/s以下である。排気管5の排出口12から排
気ガスが空気通路9内の空気の流れと同じ方向に流出せ
しめられる。この排気ガスの流速V2 はV1 より大き
く、例えば20m/s以上である。従って、ラジエータ
10を通過した空気は排気ガスの流れによって加速され
流速が増大する。このため空気流入口7から流入する空
気量を増大せしめることができラジエータ10を十分に
冷却せしめることができる。
Next, the operation of this embodiment will be described. When the aircraft 1 is moving forward (from right to left in FIG. 1), air flows into the air passage 9 from the air inlet 7 and flows out from the air outlet 8. When the relative speed aircraft 1 in the air around the aircraft 1 and V 0, the air flowing from the air inlet 7 at a speed V 0 becomes V 1 is decelerated and exits the radiator 10. V 1 is, for example, 12 m / s or less. Exhaust gas is discharged from the exhaust port 12 of the exhaust pipe 5 in the same direction as the air flow in the air passage 9. The flow velocity V 2 of this exhaust gas is larger than V 1, and is, for example, 20 m / s or more. Therefore, the air that has passed through the radiator 10 is accelerated by the flow of the exhaust gas and the flow velocity increases. Therefore, the amount of air flowing in from the air inlet 7 can be increased, and the radiator 10 can be sufficiently cooled.

【0013】排気ガスによって増速せしめられた空気は
絞り部11においてさらに増速せしめられ、空気流出口
から流出する速度V3 はV0 近くまで増速される。この
ため、空気流出口8近傍に渦等をほとんど発生すること
がなく空気抵抗を低減せしめることができる。また、従
来の装置のように開閉弁を有していないために、開閉弁
による空気抵抗も低減せしめることができる。
The air accelerated by the exhaust gas is further accelerated in the throttle portion 11, and the velocity V 3 flowing out from the air outlet is increased to near V 0 . Therefore, the air resistance can be reduced with almost no generation of vortices in the vicinity of the air outlet 8. Further, since the on-off valve is not provided unlike the conventional device, the air resistance due to the on-off valve can be reduced.

【0014】また、排気管5が冷却されるために排気圧
を低減せしめることができ、これによってエンジン出力
の損失を低減せしめることができる。次に第2の実施例
について説明する。図3には第2の実施例の空気通路部
を示す。第2の実施例は第1の実施例に対し、空気通路
9の空気流入口7に開閉弁20が設けられている点が異
なる。開閉弁20は支点21の周りに回動可能であり、
開閉弁20を開閉制御することにより空気流入口7の開
口面積を制御せしめることができる。空気流入口7の開
口面積を増大せしめると、空気通路内に流入する空気量
を増大せしめることができるが、航空機の空気抵抗は増
大する。一方、空気流入口7の開口面積を減少せしめる
と、空気通路9内に流入する空気量は減少するが、航空
機の空気抵抗は減少する。
Further, since the exhaust pipe 5 is cooled, the exhaust pressure can be reduced, and thus the loss of engine output can be reduced. Next, a second embodiment will be described. FIG. 3 shows the air passage portion of the second embodiment. The second embodiment differs from the first embodiment in that an opening / closing valve 20 is provided at the air inlet 7 of the air passage 9. The on-off valve 20 is rotatable around a fulcrum 21,
By controlling the opening / closing of the opening / closing valve 20, the opening area of the air inlet 7 can be controlled. If the opening area of the air inlet 7 is increased, the amount of air flowing into the air passage can be increased, but the air resistance of the aircraft is increased. On the other hand, if the opening area of the air inlet 7 is reduced, the amount of air flowing into the air passage 9 is reduced, but the air resistance of the aircraft is reduced.

【0015】本実施例では、前述のように排気管5の排
出口12からの排気ガスの流出によって空気通路9内に
流入する空気量を増大せしめることができるために、開
閉弁20によって空気流入口の開口面積を減少せしめて
も比較的多量の空気を空気通路9内に流入せしめること
ができる。このため、ラジエータ10を冷却するのに十
分な量の空気が空気通路9内に流入している場合には、
開閉弁20を閉弁方向に回動せしめることができ、これ
によって航空機の空気抵抗をさらに減少せしめることが
できる。
In this embodiment, since the amount of air flowing into the air passage 9 can be increased by the outflow of exhaust gas from the exhaust port 12 of the exhaust pipe 5 as described above, the air flow by the open / close valve 20 is increased. Even if the opening area of the inlet is reduced, a relatively large amount of air can be made to flow into the air passage 9. Therefore, when a sufficient amount of air for cooling the radiator 10 is flowing into the air passage 9,
The on-off valve 20 can be rotated in the valve closing direction, which can further reduce the air resistance of the aircraft.

【0016】なお、本実施例では空気通路9内にラジエ
ータを配置してこのラジエータを冷却するようにしてい
るが、例えばオイルクーラのインタクーラを冷却するよ
うにしてもよい。また、本実施例では水冷式内燃機関に
ついて説明したが、本発明は空冷式内燃関にも適用する
ことができ、この場合には、空気流入口から流入した空
気をエンジンルーム内に導き、機関本体を直接冷却する
ようにしてもよい。
In this embodiment, the radiator is arranged in the air passage 9 to cool the radiator, but the intercooler of the oil cooler may be cooled, for example. Further, although the water-cooled internal combustion engine has been described in the present embodiment, the present invention can also be applied to an air-cooled internal combustion engine. In this case, the air flowing from the air inlet is guided into the engine room, The body may be cooled directly.

【0017】[0017]

【発明の効果】空気通路内に流入する空気量を増大せし
めると共に空気抵抗を低減せしめることができる。
The amount of air flowing into the air passage can be increased and the air resistance can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例を採用した航空機の前部
の断面図である。
FIG. 1 is a sectional view of a front portion of an aircraft adopting a first embodiment of the present invention.

【図2】航空機の全体図である。FIG. 2 is an overall view of an aircraft.

【図3】本発明の第2の実施例の空気通路部を示す図で
ある。
FIG. 3 is a diagram showing an air passage portion according to a second embodiment of the present invention.

【図4】従来装置を採用した航空機の前部の断面図であ
る。
FIG. 4 is a cross-sectional view of a front portion of an aircraft that employs a conventional device.

【符号の説明】[Explanation of symbols]

1…航空機 2…内燃機関 5…排気管 7…空気流入口 8…空気流出口 9…空気通路 10…ラジエータ 12…排出口 1 ... Aircraft 2 ... Internal combustion engine 5 ... Exhaust pipe 7 ... Air inlet 8 ... Air outlet 9 ... Air passage 10 ... Radiator 12 ... Exhaust outlet

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 航空機の前方に向かって空気流入口を有
すると共に航空機の後方に向かって空気流出口を有する
空気通路に航空機駆動用内燃機関の冷却部を配置し、該
冷却部下流の前記空気通路内に前記内燃機関の排気通路
の排出口を該排出口から排出される排気ガスが前記空気
流出口に向かって排出されるように配置した航空機駆動
用内燃機関の冷却装置。
1. A cooling unit of an internal combustion engine for driving an aircraft is arranged in an air passage having an air inlet toward the front of the aircraft and an air outlet toward the rear of the aircraft, and the air is provided downstream of the cooling unit. A cooling device for an internal combustion engine for driving an aircraft, wherein an exhaust port of an exhaust passage of the internal combustion engine is arranged in the passage so that exhaust gas discharged from the exhaust port is discharged toward the air outlet.
JP26001492A 1992-09-29 1992-09-29 Cooling device of internal combustion engine for driving aircraft Pending JPH06107295A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26001492A JPH06107295A (en) 1992-09-29 1992-09-29 Cooling device of internal combustion engine for driving aircraft

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26001492A JPH06107295A (en) 1992-09-29 1992-09-29 Cooling device of internal combustion engine for driving aircraft

Publications (1)

Publication Number Publication Date
JPH06107295A true JPH06107295A (en) 1994-04-19

Family

ID=17342114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26001492A Pending JPH06107295A (en) 1992-09-29 1992-09-29 Cooling device of internal combustion engine for driving aircraft

Country Status (1)

Country Link
JP (1) JPH06107295A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100852423B1 (en) * 2006-11-09 2008-08-14 (주) 썬에어로시스 An engine cooling system which utilize engine exhaust gas for cooling air flow
WO2015138289A1 (en) * 2014-03-10 2015-09-17 Google Inc. Radiator and duct configuration on an airborne wind turbine for maximum effectiveness
WO2015138252A1 (en) * 2014-03-10 2015-09-17 Google Inc. Radiator configuration for a flying wind turbine that passively controls airflow
WO2017024394A1 (en) * 2015-08-07 2017-02-16 Pratt & Whitney Canada Corp. Engine assembly with combined engine and cooling exhaust
US10240522B2 (en) 2015-08-07 2019-03-26 Pratt & Whitney Canada Corp. Auxiliary power unit with combined cooling of generator
US10267191B2 (en) 2015-08-07 2019-04-23 Pratt & Whitney Canada Corp. Turboprop engine assembly with combined engine and cooling exhaust
KR20230089923A (en) * 2021-12-14 2023-06-21 한국항공우주연구원 Flight vehicle

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100852423B1 (en) * 2006-11-09 2008-08-14 (주) 썬에어로시스 An engine cooling system which utilize engine exhaust gas for cooling air flow
WO2015138289A1 (en) * 2014-03-10 2015-09-17 Google Inc. Radiator and duct configuration on an airborne wind turbine for maximum effectiveness
WO2015138252A1 (en) * 2014-03-10 2015-09-17 Google Inc. Radiator configuration for a flying wind turbine that passively controls airflow
WO2017024394A1 (en) * 2015-08-07 2017-02-16 Pratt & Whitney Canada Corp. Engine assembly with combined engine and cooling exhaust
US10240522B2 (en) 2015-08-07 2019-03-26 Pratt & Whitney Canada Corp. Auxiliary power unit with combined cooling of generator
US10253726B2 (en) 2015-08-07 2019-04-09 Pratt & Whitney Canada Corp. Engine assembly with combined engine and cooling exhaust
US10267191B2 (en) 2015-08-07 2019-04-23 Pratt & Whitney Canada Corp. Turboprop engine assembly with combined engine and cooling exhaust
US10927791B2 (en) 2015-08-07 2021-02-23 Pratt & Whitney Canada Corp. Engine assembly with combined engine and cooling exhaust
US10927734B2 (en) 2015-08-07 2021-02-23 Pratt & Whitney Canada Corp. Turboprop engine assembly with combined engine and cooling exhaust
KR20230089923A (en) * 2021-12-14 2023-06-21 한국항공우주연구원 Flight vehicle

Similar Documents

Publication Publication Date Title
US20030000211A1 (en) Method for driving an internal-combustion engine and an internal-combustion engine
JP3923665B2 (en) EGR device for supercharged engine
JPH06107295A (en) Cooling device of internal combustion engine for driving aircraft
JPH08218873A (en) Cooling device for internal combustion engine
JPH0730705B2 (en) Low speed torque generator for internal combustion engine
US4335699A (en) Exhaust gas recirculation system
JPH09195860A (en) Erg gas supply device for diesel engine
JPS6125916A (en) Intake-air device in engine
JP2003301763A (en) Idling speed control device of engine
JPH0137146Y2 (en)
JPH02157420A (en) Exhaust device of internal combustion engine
JP3648809B2 (en) Engine exhaust purification system
JP3719842B2 (en) EGR device
JPH0988568A (en) Exhaust device for internal combustion engine
KR0127915B1 (en) Engine cooling system
JP3647250B2 (en) EGR device
JP2515573Y2 (en) Engine intake introduction device
JPH0320501Y2 (en)
JPS6321329A (en) Exhauster for engine
KR20050070395A (en) Intake air control system using vortex tube
JPH1162722A (en) Cool egr device for turbo supercharge type engine
JPH0748983Y2 (en) Engine intake system
JP2832041B2 (en) Engine intake system
JPH0941963A (en) Cooling system of two-cycle engine
JP3151736B2 (en) Engine exhaust system