JPH06106061A - Hydrogenation catalyst for deep desulfurization of gas oil - Google Patents

Hydrogenation catalyst for deep desulfurization of gas oil

Info

Publication number
JPH06106061A
JPH06106061A JP4282292A JP28229292A JPH06106061A JP H06106061 A JPH06106061 A JP H06106061A JP 4282292 A JP4282292 A JP 4282292A JP 28229292 A JP28229292 A JP 28229292A JP H06106061 A JPH06106061 A JP H06106061A
Authority
JP
Japan
Prior art keywords
catalyst
alumina
titania
carrier
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4282292A
Other languages
Japanese (ja)
Inventor
Hiroaki Nishijima
裕明 西島
Shinichi Nakada
真一 中田
Toru Takatsuka
透 高塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiyoda Corp
Chiyoda Chemical Engineering and Construction Co Ltd
Original Assignee
Chiyoda Corp
Chiyoda Chemical Engineering and Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiyoda Corp, Chiyoda Chemical Engineering and Construction Co Ltd filed Critical Chiyoda Corp
Priority to JP4282292A priority Critical patent/JPH06106061A/en
Publication of JPH06106061A publication Critical patent/JPH06106061A/en
Pending legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

PURPOSE:To provide the catalyst which maintains high activity and enables stably and continuously the deep hydrogenation desulfurization treatment of light oil. CONSTITUTION:About 5 to 20wt.% Mo is deposited on the basis of the catalyst weight as the hydrogenation catalyst metal on an alumina/titania carrier prepd. by vapor deposition of titania on gamma-alumina by a chemical vapor deposition method using a titanium compd. Further, respectively about 2 to 6wt.% Co and/or Ni is deposited thereon.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、軽油の含有硫黄を極度
に低減させるための水素化触媒に関し、更に詳しくは、
アルミナ担体上にチタニア及び触媒金属を共存させてな
る軽油の深度脱硫用水素化触媒に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrogenation catalyst for extremely reducing the sulfur content of gas oil, and more specifically,
The present invention relates to a hydrogenation catalyst for deep desulfurization of light oil, which comprises titania and a catalyst metal coexisting on an alumina carrier.

【0002】[0002]

【従来の技術】近年、環境汚染問題が地球規模で見直さ
れており、自動車排ガス、特に、軽油を用いるディーゼ
ルエンジン排ガスに対する規制を、強化の方向で実施す
ることが既に予定されている。従来、軽油は、通常、硫
黄含有量が0.5重量%程度に脱硫されていたのに対
し、最近では、0.05重量%まで硫黄含有量を減少さ
せるいわゆる深度脱硫の要求が高まっている。
2. Description of the Related Art In recent years, the problem of environmental pollution has been reviewed on a global scale, and it has already been planned to strengthen regulations on automobile exhaust gas, particularly diesel engine exhaust gas using light oil. Conventionally, light oil was normally desulfurized to have a sulfur content of about 0.5% by weight, but recently, there has been an increasing demand for so-called deep desulfurization to reduce the sulfur content to 0.05% by weight. .

【0003】重油、軽油等の炭化水素の水素化脱硫触媒
の多くは、アルミナ担体上にモリブデン(Mo)、タン
グステン(W)、コバルト(Co)、ニッケル(Ni)
等を担持させているものであり、従来から各種の触媒が
用いられると共に、更に高活性触媒として多くの提案も
なされている。例えば、特開平3−275143号公報
には、アルミナ担体にシリカ及びチタニアを配合させ、
酸性点を形成した担体により水素化高活性を得ることが
提案されている。また、日本工業新聞社発行「PPM」
1992年9月号には、アルミナ担体上にチタニアをC
VD法で蒸着させ、更に、水素化金属としてMoを担持
させた触媒が提案されている。
Most of the hydrodesulfurization catalysts for hydrocarbons such as heavy oil and light oil are molybdenum (Mo), tungsten (W), cobalt (Co), nickel (Ni) on an alumina carrier.
Etc. are supported, and various catalysts have been conventionally used, and many proposals have been made as highly active catalysts. For example, JP-A-3-275143 discloses that an alumina carrier is mixed with silica and titania,
It has been proposed to obtain high hydrogenation activity with a carrier having acidic points. Also, "PPM" published by Nihon Kogyo Shimbun
In the September 1992 issue, titania was deposited on an alumina carrier as C.
A catalyst in which vapor deposition is performed by the VD method and Mo is supported as a metal hydride has been proposed.

【0004】[0004]

【発明が解決しようとする課題】発明者らは、上記現況
に鑑み環境汚染防止の立場から、軽油の深度水素化脱硫
のための高活性、且つ、高寿命の触媒を見出すべく研究
開発を進め、上記提案のチタニア蒸着アルミナ担体触媒
ついて確認した結果、優れた活性を有するものの工業上
適用するには、活性と安定性に問題があることを知見し
た。本発明は、上記知見に基づき、チタニア蒸着アルミ
ナ担体触媒をより工業上実用性の高い軽油の深度水素化
脱硫触媒として得ることを目的とする。即ち、上記提案
のチタニア蒸着アルミナ担体触媒に比し、軽油を、高活
性を維持し安定して連続的に深度水素化脱硫処理可能と
する触媒の提供を目的とする。
In view of the present situation, the inventors have conducted research and development to find a highly active and long-life catalyst for deep hydrodesulfurization of light oil. As a result of confirming the above-proposed titania-deposited alumina carrier catalyst, it was found that although it has excellent activity, it has problems in activity and stability for industrial application. An object of the present invention is to obtain a titania-deposited alumina carrier catalyst as a deep hydrodesulfurization catalyst for gas oil, which is more industrially practical, based on the above findings. That is, an object of the present invention is to provide a catalyst capable of continuously performing deep hydrodesulfurization treatment of light oil stably while maintaining high activity, as compared with the above-proposed titania-deposited alumina carrier catalyst.

【0005】[0005]

【課題を解決するための手段】本発明によれば、チタン
化合物を用い化学蒸着法にてγ−アルミナにチタニアを
蒸着して調製されるアルミナ/チタニア担体に、水素化
触媒金属としてMoが担持されると共に、更に、Co及
び/またはNiが担持されてなることを特徴とする軽油
の深度脱硫用水素化触媒が提供される。
According to the present invention, Mo is supported as a hydrogenation catalyst metal on an alumina / titania carrier prepared by vapor-depositing titania on γ-alumina by a chemical vapor deposition method using a titanium compound. In addition, a hydrogenation catalyst for deep desulfurization of light oil is provided, which further comprises Co and / or Ni supported thereon.

【0006】[0006]

【作用】本発明は上記のように構成され、比表面積の大
きなアルミナ担体表面上に水素化金属の分散性に優れ、
活性能を向上させるチタニアを析出させて担体とし、且
つ、触媒金属として、Moと共に、Co及び/またはN
iが担持されることにより、軽油の水素化脱硫反応にお
ける触媒活性が長期間にわたり向上し、維持される。
The present invention is configured as described above and has excellent dispersibility of metal hydride on the surface of an alumina carrier having a large specific surface area,
Titania, which improves the activity, is deposited as a support, and as a catalyst metal, together with Mo, Co and / or N
By supporting i, the catalytic activity in the hydrodesulfurization reaction of light oil is improved and maintained for a long period of time.

【0007】本発明のアルミナ/チタニア担体における
アルミナは、通常の炭化水素の水素化脱硫で用いられる
γ−アルミナを用いることができる。本発明で用いるγ
−アルミナの比表面積は、230〜450m2 /g、好
ましくは250m2 /g以上であって、通常、250〜
350m2 /gのものが用いられる。アルミナの比表面
積が200m2 /g未満では、長期間安定して軽油の水
素化脱硫活性を高く維持することができない。また、4
00m2 /gを超えた場合は触媒としての強度が低下す
るため、好ましくない。
As the alumina in the alumina / titania carrier of the present invention, γ-alumina used in ordinary hydrodesulfurization of hydrocarbons can be used. Γ used in the present invention
- specific surface area of the alumina, 230~450m 2 / g, there is preferably 250 meters 2 / g or more, usually 250
The one having 350 m 2 / g is used. If the specific surface area of the alumina is less than 200 m 2 / g, the hydrodesulfurization activity of gas oil cannot be stably maintained high for a long period of time. Also, 4
When it exceeds 00 m 2 / g, the strength as a catalyst decreases, which is not preferable.

【0008】本発明におけるアルミナ/チタニア担体の
形成は、例えば、上記アルミナ上に四塩化チタン、チタ
ニウムテトラエトキシド等のチタン化合物を用いて化学
蒸着法(CVD法)にて、チタニア粒子を層状に析出さ
せて行うことができる。上記アルミナ表面上に化学蒸着
により析出されるチタニアは、アルミナ表面のアルミナ
水酸基との相互作用により析出、保持される。このチタ
ニアは、例えば、X線光電子分光法や赤外分光法等の分
析手段により、アルミナ表面に蒸着析出していることが
確認することができる。また、上記のようにして形成さ
れるアルミナ/チタニア担体は、チタニア保持量により
上記のアルミナの比表面積より減少する。本発明におい
ては、チタニア保持後の比表面積が約200〜400m
2 /gとなるように、チタニアを析出させるのが好まし
い。チタニア保持量は、通常、触媒重量基準で約2〜2
5重量%が好ましい。2重量%未満であるとチタニア保
持の金属分散性の向上等が十分でなく、また、25重量
%を超える場合はチタニア層が過剰となり、表面積の低
下を招き好ましくない。
The formation of the alumina / titania carrier in the present invention is carried out, for example, by using a titanium compound such as titanium tetrachloride or titanium tetraethoxide on the above alumina to form titania particles into a layer by a chemical vapor deposition method (CVD method). It can be carried out by precipitation. The titania deposited on the surface of alumina by chemical vapor deposition is deposited and retained by the interaction with the alumina hydroxyl group on the surface of alumina. It can be confirmed that the titania is deposited on the surface of the alumina by vapor deposition by an analyzing means such as X-ray photoelectron spectroscopy or infrared spectroscopy. Further, the alumina / titania carrier formed as described above has a specific surface area smaller than that of the above alumina due to the amount of titania retained. In the present invention, the specific surface area after holding the titania is about 200 to 400 m.
It is preferable to precipitate the titania so that the amount becomes 2 / g. The titania retention is usually about 2 to 2 on a catalyst weight basis.
5% by weight is preferred. If it is less than 2% by weight, the metal dispersibility of retaining titania is not sufficiently improved, and if it exceeds 25% by weight, the titania layer becomes excessive and the surface area is reduced, which is not preferable.

【0009】本発明の触媒において、水素化触媒金属と
して、Moを触媒重量基準で約5〜20重量%、Co及
び/またはNiをそれぞれ触媒重量基準で約2〜6重量
%含有させるのが好ましい。本発明の触媒においては、
触媒金属としてMoの他に、Co及びNiのいずれか、
または、双方を含有させることにより、Moの一成分の
みが担持された触媒に比し、軽油の水素化脱硫処理にお
いて脱硫活性が向上し、触媒活性の低下が抑制され、触
媒寿命が長くなり、軽油の深度脱硫の好適となる。Mo
の含有量が、5重量%未満であると触媒活性が十分でな
く、また20重量%を超えるとMoの分散状態が低下
し、活性の向上が認められない。また、Co及び/また
はNiの含有量が2重量%未満であると、長期間にわた
る触媒活性の向上が十分発揮されず、6重量%を超える
と活性の向上が認められない。
In the catalyst of the present invention, it is preferable that Mo is contained in the hydrogenation catalyst metal in an amount of about 5 to 20% by weight, and Co and / or Ni is contained in an amount of about 2 to 6% by weight, respectively. . In the catalyst of the present invention,
In addition to Mo as a catalyst metal, either Co or Ni,
Or, by containing both, as compared to the catalyst supported only one component of Mo, the desulfurization activity is improved in the hydrodesulfurization treatment of light oil, the decrease in the catalytic activity is suppressed, the catalyst life is extended, Suitable for deep desulfurization of light oil. Mo
If the content is less than 5% by weight, the catalytic activity is not sufficient, and if it exceeds 20% by weight, the dispersed state of Mo is deteriorated and the activity is not improved. Further, when the content of Co and / or Ni is less than 2% by weight, the catalyst activity is not sufficiently improved for a long period of time, and when it exceeds 6% by weight, the activity is not improved.

【0010】本発明において、アルミナ/チタニア担体
への上記の触媒金属を担持する方法は、従来公知の担持
方法を適宜選択して適用することができ、特に制限され
るものでない。通常、各触媒金属成分の水溶性化合物の
水溶液を用いて、上記担体に含浸担持させることができ
る。上記触媒金属を担持させたアルミナ/チタニア担体
は、従来の水素化触媒と同様にして、乾燥、焼成処理、
予備硫化等の処理をして触媒を形成することができる。
In the present invention, the method of supporting the above-mentioned catalytic metal on the alumina / titania carrier can be selected by applying a conventionally known supporting method, and is not particularly limited. Usually, an aqueous solution of a water-soluble compound of each catalytic metal component can be used to impregnate and support the above carrier. The alumina / titania carrier carrying the above catalytic metal is dried and calcined in the same manner as a conventional hydrogenation catalyst.
The catalyst can be formed by treatment such as presulfiding.

【0011】本発明の軽油の深度水素化脱硫処理は、通
常の水素化脱硫処理とほぼ同様であって、反応温度25
0〜400℃、反応圧力20〜100kg/m2 G、水
素/油比50〜300Nm3 /kl、液空間速度0.2
〜5.0/時で処理することができる。例えば、上記し
た本発明の触媒を充填した触媒床を有する充填塔におい
て、軽油と水素とを上記範囲の条件下にて接触処理して
行うことができる。本発明の触媒を用いて水素化脱硫処
理される軽油は、一般に、比重0.83〜0.89(d
15/4℃)であって、約200〜400℃の範囲に全
留分の70容量%以上が含まれる軽油留分である。この
軽油留分中には、通常、約1.00〜2.00重量%の
硫黄分が含有され、本発明の深度水素化脱硫処理によ
り、含有硫黄分は約0.05重量%以下に除去されるこ
とができる。
The deep hydrodesulfurization treatment of the gas oil of the present invention is almost the same as the ordinary hydrodesulfurization treatment, and the reaction temperature is 25
0 to 400 ° C., reaction pressure 20 to 100 kg / m 2 G, hydrogen / oil ratio 50 to 300 Nm 3 / kl, liquid space velocity 0.2
It can be processed at ~ 5.0 / hour. For example, in a packed column having a catalyst bed packed with the above-mentioned catalyst of the present invention, light oil and hydrogen can be contact-treated under the conditions of the above range. Gas oils that are hydrodesulfurized using the catalyst of the present invention generally have a specific gravity of 0.83 to 0.89 (d
15/4 ° C.), which is a gas oil fraction containing 70% by volume or more of the total fraction in the range of about 200 to 400 ° C. This light oil fraction usually contains about 1.00 to 2.00% by weight of sulfur, and the deep hydrodesulfurization treatment of the present invention removes the contained sulfur to about 0.05% by weight or less. Can be done.

【0012】[0012]

【実施例】本発明について実施例に基づき、更に詳細に
説明する。但し、本発明は、下記の実施例に制限される
ものでない。 実施例1〜5 (アルミナ/チタニア担体の調製法)500℃で焼成後
の比表面積が約330m2 /gのγ−アルミナ表面上
に、CVD法にてチタニアを表1に示した各所定量を析
出させ、表面に選択的にチタニアを保持したアルミナ/
チタニア担体を形成した。CVD法は、上記のγ−アル
ミナ100ccを充填し、200℃に保持したCVD処
理容器内に、窒素ガスをキャリアガスに用い0℃に保温
された四塩化チタンを送入して行った。チタニアの析出
量は、四塩化炭素の蒸着とそれに続く水蒸気での加水分
解を繰返すことにより、所定量に調節した。その後、5
00℃、酸素雰囲気下にて焼成した。得られた各アルミ
ナ/チタニア担体について、簡易BET表面積測定装置
(柴田化学(株)製)を用いて、比表面積を測定した。
それらの結果を表1に示した。
EXAMPLES The present invention will be described in more detail based on examples. However, the present invention is not limited to the following examples. Examples 1 to 5 (Preparation Method of Alumina / Titania Carrier) On a γ-alumina surface having a specific surface area of about 330 m 2 / g after firing at 500 ° C., a predetermined amount of titania shown in Table 1 was prepared by the CVD method. Alumina that has been deposited to selectively retain titania on the surface /
A titania carrier was formed. The CVD method was carried out by feeding titanium tetrachloride, which was kept at 0 ° C., using nitrogen gas as a carrier gas into a CVD processing container which was filled with 100 cc of γ-alumina and kept at 200 ° C. The amount of titania deposited was adjusted to a predetermined amount by repeating vapor deposition of carbon tetrachloride and subsequent hydrolysis with steam. Then 5
It was fired at 00 ° C. in an oxygen atmosphere. The specific surface area of each of the obtained alumina / titania carriers was measured using a simple BET surface area measuring device (manufactured by Shibata Chemical Co., Ltd.).
The results are shown in Table 1.

【0013】上記のようにして、得られた各アルミナ/
チタニア担体に、触媒基準で酸化モリブデン(MoO
3 )が12重量%となるように、パラモリブデン酸アン
モニウム水溶液を含浸させた(触媒A)。また、別途各
アルミナ/チタニア担体に、触媒基準でMoO3 が12
重量%、酸化コバルト(CoO)が4重量%となるよう
に、パラモリブデン酸アンモニウム及び硝酸コバルトを
含有するアンモニア性水溶液を含浸させた(触媒B)。
更に、実施例2、4及び5における各担体に、触媒基準
でMoO3 が12重量%、酸化ニッケル(NiO)が4
重量%となるように、パラモリブデン酸アンモニウム及
び硝酸ニッケルを含有する水溶液を含浸させた(触媒
C)。上記のようにして各金属成分を含浸させた各アル
ミナ/チタニア担体は、更に、200℃で6時間乾燥
後、次いで500℃で3時間、酸素雰囲気下で焼成して
各金属成分を担持したそれぞれの各水素化触媒A、B及
びCを得た。
[0013] Each alumina / obtained as described above
On a titania carrier, molybdenum oxide (MoO
3 ) was impregnated with 12% by weight of ammonium paramolybdate aqueous solution (catalyst A). In addition, MoO 3 is added to each alumina / titania carrier separately on a catalyst basis.
An ammoniacal aqueous solution containing ammonium paramolybdate and cobalt nitrate was impregnated so that the weight% and the cobalt oxide (CoO) were 4% by weight (Catalyst B).
Further, each carrier in Examples 2, 4 and 5 contained 12% by weight of MoO 3 and 4% of nickel oxide (NiO) based on the catalyst.
An aqueous solution containing ammonium paramolybdate and nickel nitrate was impregnated so as to have a weight% (Catalyst C). Each alumina / titania carrier impregnated with each metal component as described above was further dried at 200 ° C. for 6 hours and then calcined at 500 ° C. for 3 hours in an oxygen atmosphere to carry each metal component. The respective hydrogenation catalysts A, B and C were obtained.

【0014】[0014]

【表1】 * 含浸法により含有させた。[Table 1] * It was included by the impregnation method.

【0015】上記で得られた各触媒を用い、比重0.8
606(d15/4℃)、粘度7.289(Cp)で、
硫黄含有量が1.48重量%であり、表2に示した蒸留
性状を有する軽油を、各触媒を30cc充填した触媒床
を備えた反応器で、反応温度300℃、圧力30kg/
cm2 G、液空間速度1.5/時、水素/油比250N
3 /klの反応条件下で水素化脱硫処理した。反応開
始後の50時間後の処理油の硫黄含有量を測定した。測
定した各硫黄含有量について、後記する比較例1におけ
るチタニアを析出することなくγ−アルミナのみを担体
とし、触媒金属としてMo成分のみを担持して調製した
水素化触媒(触媒A)における脱硫速度定数を1.0と
し、相対活性として表1に示した。
Using each of the catalysts obtained above, a specific gravity of 0.8
606 (d15 / 4 ° C.), viscosity 7.289 (Cp),
A reactor equipped with a catalyst bed in which 30 cc of each catalyst was filled with light oil having a sulfur content of 1.48% by weight and having the distillation property shown in Table 2, was used at a reaction temperature of 300 ° C. and a pressure of 30 kg /
cm 2 G, liquid space velocity 1.5 / hour, hydrogen / oil ratio 250N
It was hydrodesulfurized under the reaction conditions of m 3 / kl. The sulfur content of the treated oil was measured 50 hours after the start of the reaction. For each measured sulfur content, the desulfurization rate in a hydrogenation catalyst (catalyst A) prepared by supporting only γ-alumina as a carrier without depositing titania in Comparative Example 1 described later and supporting only a Mo component as a catalyst metal. The constant was set to 1.0 and the relative activity is shown in Table 1.

【0016】[0016]

【表2】 [Table 2]

【0017】比較例1 実施例1に用いたγ−アルミナを担体として、実施例2
と同様にして、触媒金属の各Mo、Mo及びCo、Mo
及びNi成分を担持させて各触媒A、B及びCを調製し
た。得られた各触媒を用い、実施例1と同様に軽油を水
素化脱硫処理し、50時間後の処理流出油の硫黄含有量
を測定した。硫黄含有量の測定結果に基づき、触媒Aの
脱硫速度定数を算出し、その値を1とし、残りの触媒B
及びCの相対活性を表1に示した。
Comparative Example 1 Using the γ-alumina used in Example 1 as a carrier, Example 2
In the same manner as described above, each of the catalytic metals Mo, Mo and Co, Mo
And Ni components were carried to prepare respective catalysts A, B and C. Using each of the obtained catalysts, light oil was hydrodesulfurized in the same manner as in Example 1, and the sulfur content of the treated outflow oil after 50 hours was measured. Based on the measurement result of the sulfur content, the desulfurization rate constant of the catalyst A was calculated, and the value was set to 1, and the remaining catalyst B
The relative activities of C and C are shown in Table 1.

【0018】比較例2 実施例1に用いたγ−アルミナに四塩化チタンを担体基
準で15重量%となるように含浸担持させた後、更に、
実施例1と同様にして触媒金属Mo及びCo成分を含浸
担持して、水素化触媒Bを得た。得られた水素化触媒B
を用い、実施例1と同様にの処理流出油の硫黄含有量を
測定し、実施例1と同様にして相対活性として、その結
果を表1に示した。
Comparative Example 2 Titanium tetrachloride was impregnated and supported on γ-alumina used in Example 1 so as to be 15% by weight based on the carrier, and then,
In the same manner as in Example 1, catalytic metal Mo and Co components were impregnated and supported to obtain a hydrogenation catalyst B. Obtained hydrogenation catalyst B
Was used to measure the sulfur content of the treated spilled oil in the same manner as in Example 1, and the relative activity was determined in the same manner as in Example 1 and the results are shown in Table 1.

【0019】上記の実施例及び比較例により明らかなよ
うに、本発明のチタニアを表面に選択的に析出させた大
比表面積を有するアルミナ/チタニア担体を用い、触媒
金属としてMo成分と、CoまたはNi成分の2成分を
担持させた触媒は、水素化脱硫における相対活性が、M
o成分のみ担持の触媒に比して約15〜20%向上し、
長期間にわたり高水素化能を維持可能であることが分か
る。一方、チタニアを析出しないアルミナ担体では、2
成分担持触媒の相対活性が多少向上するものの、本発明
の触媒程の著しいものでなく、また、チタニアを含浸担
持させたアルミナ担体を用いた触媒では、却って低下す
ることが分かる。
As is clear from the above Examples and Comparative Examples, the alumina / titania carrier of the present invention having a large specific surface area, on which titania is selectively deposited, is used. The catalyst supporting two components of Ni component has a relative activity in hydrodesulfurization of M
Approximately 15 to 20% higher than the catalyst that supports only o component,
It can be seen that the high hydrogenation capacity can be maintained for a long period of time. On the other hand, with an alumina carrier that does not precipitate titania, 2
It can be seen that although the relative activity of the component-supported catalyst is slightly improved, it is not as remarkable as that of the catalyst of the present invention, and that the catalyst using the alumina carrier impregnated and supported with titania is rather decreased.

【0020】[0020]

【発明の効果】本発明の軽油の深度水素化脱硫用触媒
は、水素化能の向上が著しく、長期間安定した脱硫活性
を有するため、近年、特に、環境問題等によりその含有
硫黄分を極少量にすることが要請されているディーゼル
エンジンに用いられる軽油を連続的に高脱硫率で水素化
脱硫処理することができ、実用性に富み工業的実施に好
適である。
INDUSTRIAL APPLICABILITY The catalyst for deep hydrodesulfurization of gas oil of the present invention has a remarkable improvement in hydrogenation ability and has a stable desulfurization activity for a long period of time. Light oil used for diesel engines, which is required to be kept in a small amount, can be continuously hydrodesulfurized at a high desulfurization rate, and is highly practical and suitable for industrial implementation.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 チタン化合物を用い化学蒸着法にてγ−
アルミナにチタニアを蒸着して調製されるアルミナ/チ
タニア担体に、水素化触媒金属としてMoが担持される
と共に、更に、Co及び/またはNiが担持されてなる
ことを特徴とする軽油の深度脱硫用水素化触媒。
1. A chemical vapor deposition method using a titanium compound for γ-
For deep desulfurization of light oil, characterized in that, as a hydrogenation catalytic metal, Mo is supported on an alumina / titania carrier prepared by depositing titania on alumina, and further Co and / or Ni is further supported. Hydrogenation catalyst.
JP4282292A 1992-09-29 1992-09-29 Hydrogenation catalyst for deep desulfurization of gas oil Pending JPH06106061A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4282292A JPH06106061A (en) 1992-09-29 1992-09-29 Hydrogenation catalyst for deep desulfurization of gas oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4282292A JPH06106061A (en) 1992-09-29 1992-09-29 Hydrogenation catalyst for deep desulfurization of gas oil

Publications (1)

Publication Number Publication Date
JPH06106061A true JPH06106061A (en) 1994-04-19

Family

ID=17650529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4282292A Pending JPH06106061A (en) 1992-09-29 1992-09-29 Hydrogenation catalyst for deep desulfurization of gas oil

Country Status (1)

Country Link
JP (1) JPH06106061A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001030494A1 (en) * 1999-10-27 2001-05-03 Idemitsu Kosan Co., Ltd. Hydrotreating catalyst for hydrocarbon oil, carrier for the same and method for hydrotreating of hydrocarbon oil
JP2002085975A (en) * 2000-09-14 2002-03-26 Idemitsu Kosan Co Ltd Hydrogenation catalyst for hydrocarbon oil and method of hydrogenating hydrocarbon oil
WO2011122387A1 (en) 2010-03-30 2011-10-06 千代田化工建設株式会社 Hydrotreating catalyst for hydrocarbon oil and method for producing same, and hydrocarbon oil hydrotreating method using same
WO2014013784A1 (en) 2012-07-19 2014-01-23 千代田化工建設株式会社 Method for reactivating used hydrogenation treatment titania catalyst, and regenerated hydrogenation treatment titania catalyst
US8821715B2 (en) 2011-05-24 2014-09-02 Saudi Arabian Oil Company Electrochemical promotion of catalysis in hydrodesulfurization processes
US9718046B2 (en) 2011-05-24 2017-08-01 Saudi Arabian Oil Company Bimetallic titania-based electrocatalysts deposited on ionic conductors for hydrodesulfurization reactions
JP2022531799A (en) * 2019-05-06 2022-07-11 中国石油化工股▲ふん▼有限公司 Dehydrogenation catalyst for organic hydrogen storage raw materials and its carrier, hydrogen storage alloy, and method for supplying high-purity hydrogen gas.

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001030494A1 (en) * 1999-10-27 2001-05-03 Idemitsu Kosan Co., Ltd. Hydrotreating catalyst for hydrocarbon oil, carrier for the same and method for hydrotreating of hydrocarbon oil
US7598203B2 (en) 1999-10-27 2009-10-06 Idemitsu Kosan Co., Ltd. Hydrogenation catalyst for hydrocarbon oil, carrier for it, and method of hydrogenation of hydrocarbon oil
JP2002085975A (en) * 2000-09-14 2002-03-26 Idemitsu Kosan Co Ltd Hydrogenation catalyst for hydrocarbon oil and method of hydrogenating hydrocarbon oil
WO2011122387A1 (en) 2010-03-30 2011-10-06 千代田化工建設株式会社 Hydrotreating catalyst for hydrocarbon oil and method for producing same, and hydrocarbon oil hydrotreating method using same
US9463452B2 (en) 2010-03-30 2016-10-11 Chiyoda Corporation Hydrotreating catalyst for hydrocarbon oil and method for producing same, and hydrocarbon oil hydrotreating method using same
US9776180B2 (en) 2010-03-30 2017-10-03 Chiyoda Corporation Hydrotreating catalyst for hydrocarbon oil and method for producing same, and hydrocarbon oil hydrotreating method using same
US8821715B2 (en) 2011-05-24 2014-09-02 Saudi Arabian Oil Company Electrochemical promotion of catalysis in hydrodesulfurization processes
US9718046B2 (en) 2011-05-24 2017-08-01 Saudi Arabian Oil Company Bimetallic titania-based electrocatalysts deposited on ionic conductors for hydrodesulfurization reactions
WO2014013784A1 (en) 2012-07-19 2014-01-23 千代田化工建設株式会社 Method for reactivating used hydrogenation treatment titania catalyst, and regenerated hydrogenation treatment titania catalyst
US10071370B2 (en) 2012-07-19 2018-09-11 Chiyoda Corporation Method for reactivating used hydrogenation treatment titania catalyst, and regenerated hydrogenation treatment titania catalyst
JP2022531799A (en) * 2019-05-06 2022-07-11 中国石油化工股▲ふん▼有限公司 Dehydrogenation catalyst for organic hydrogen storage raw materials and its carrier, hydrogen storage alloy, and method for supplying high-purity hydrogen gas.

Similar Documents

Publication Publication Date Title
CN107456961B (en) Improved resid hydrotreating catalyst containing titanium dioxide
JP2832033B2 (en) Method for catalytic hydroprocessing of hydrocarbon oils containing nitrogen or sulfur
AU689894B2 (en) High activity catalysts
CA2509847C (en) Catalyst for hydrotreating gas oil, process for producing the same, and process for hydrotreating gas oil
JP3244692B2 (en) Method for producing catalyst for hydrotreating hydrocarbon oil
JP2987602B2 (en) Aromatic hydrocarbon saturation method for diesel boiling range hydrocarbons
US5246569A (en) Process for the hydrodesulfurization of light hydrocarbon feeds
CA1264726A (en) Catalyst for hydroconversion of heavy oils
US4455390A (en) Catalyst and method for impregnating at a pH less than one
NL192725C (en) Catalyst composition for hydrotreating a hydrocarbon oil and methods of preparing the catalyst composition.
US5275994A (en) Process for preparing a catalyst for removal of hydroprocessing impurities
US4568450A (en) Hydrocarbon conversion process
JPH06106061A (en) Hydrogenation catalyst for deep desulfurization of gas oil
CA1248513A (en) Residual hydrocarbon demetalation and desulfurization
US4880524A (en) Process for hydrotreating hydrocarbon feeds
US5169822A (en) Catalysts for removal of impurities by the hydroprocessing of hydrocarbons
US4820679A (en) Hydrotreating catalysts prepared from hydrogels
JPS62197150A (en) Catalyst for hydro-desulfurization/hydrodenitrification of heavy hydrocarbon oil
JP2936753B2 (en) Method for producing hydrotreating catalyst
JPH04166232A (en) Production of catalyst for hydrogenation treatment
US4743359A (en) Reforming and related processes
CN108404945B (en) Desulfurization catalyst with regular structure, preparation method thereof and sulfur-containing hydrocarbon desulfurization method
CN108404952B (en) Desulfurization catalyst with regular structure, preparation method thereof and sulfur-containing hydrocarbon desulfurization method
EP1172140A1 (en) Catalyst for hydrofining treatment, method for hydrofining treatment and method for preparing catalyst
JP2002045698A (en) Process for hydrogenation treatment of hydrocarbon