JP2936753B2 - Method for producing hydrotreating catalyst - Google Patents

Method for producing hydrotreating catalyst

Info

Publication number
JP2936753B2
JP2936753B2 JP3891491A JP3891491A JP2936753B2 JP 2936753 B2 JP2936753 B2 JP 2936753B2 JP 3891491 A JP3891491 A JP 3891491A JP 3891491 A JP3891491 A JP 3891491A JP 2936753 B2 JP2936753 B2 JP 2936753B2
Authority
JP
Japan
Prior art keywords
acid
catalyst
amount
metal
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3891491A
Other languages
Japanese (ja)
Other versions
JPH04260442A (en
Inventor
井 勇 樹 金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP3891491A priority Critical patent/JP2936753B2/en
Publication of JPH04260442A publication Critical patent/JPH04260442A/en
Application granted granted Critical
Publication of JP2936753B2 publication Critical patent/JP2936753B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は炭化水素油用水素化処理
用触媒の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a hydrotreating catalyst for a hydrocarbon oil.

【0002】[0002]

【従来の技術】炭化水素油の水添、脱硫、脱窒素、分解
等を行なう水素化処理に使用される触媒としてアルミ
ナ、チタニア、シリカ、活性炭等の多孔性触媒担体に周
表第6金属と第8金属とを活性金属として担持
した触媒が使用されている。一般に第6金属としては
MoやWが用いられ、第8金属としてNiやCoが用
いられているが、これらの活性金属は触媒担体上に酸化
物態で担持されており活性は低い。そのため、適当な予
備硫化処理を施し硫化物態として触媒として使用してい
る。
BACKGROUND ART hydrocarbon oils hydrogenation, desulfurization, denitrogenation, alumina as a catalyst to be used, such as the hydrogenation process for decomposition, titania, silica, periodic table Group 6 to the porous catalyst support such as activated carbon A catalyst supporting a metal and a Group VIII metal as active metals is used. Generally as the Group 6 metals Mo and W are used, although Ni or Co is used as the Group VIII metals, these active metals activity is low are supported by the oxide state on the catalyst support. For this reason, an appropriate pre-sulfurization treatment is performed to use the catalyst as a sulfide.

【0003】ところで、水素化処理触媒では触媒の活性
サイトが活性金属硫化物の表面に形成される。よって、
金属硫化物の表面積が大きくなるほど活性サイトの数が
増加し、結果として高活性な触媒が得られることが知ら
れている。硫化物の表面積を大きくするために金属硫化
物を微細化し、高分散化することが試みられ各種の方法
が開示されている。例えば特開昭 59−102442
号公報や 59−69147号公報では、クエン酸やリ
ンゴ酸等のカルボン酸と活性金属との混合溶液をアルミ
ナ等の触媒担体に含浸させた後、乾燥し、焼成する方法
を開示している。これらの製造方法は活性金属とカルボ
ン酸とで錯イオンを形成し、これを担持させることによ
り活性金属の凝集の防止を目的とするものであるが、い
ずれの方法も最終段階で含浸させたものを焙焼している
ため必ずしも十分な結果が得られていない。
[0003] In the hydrotreating catalyst, active sites of the catalyst are formed on the surface of the active metal sulfide. Therefore,
It is known that the number of active sites increases as the surface area of the metal sulfide increases, resulting in a highly active catalyst. In order to increase the surface area of the sulfide, attempts have been made to make the metal sulfide finer and highly disperse, and various methods have been disclosed. For example, JP-A-59-102442
JP-A-59-69147 and JP-A-59-69147 disclose a method of impregnating a catalyst carrier such as alumina with a mixed solution of a carboxylic acid such as citric acid or malic acid and an active metal, followed by drying and firing. These production methods form a complex ion between the active metal and the carboxylic acid, and are intended to prevent the aggregation of the active metal by supporting the complex ion.Both methods involve impregnation at the final stage. Is not necessarily obtained because of roasting.

【0004】また、EP 0181035(A2)号公
報はニトリロ三酢酸、エチレンジアミン四酢酸、ジエチ
レントリアミンの様な含窒素有機化合物を錯化剤として
使用し、これら錯化剤と活性金属との混合液をアルミナ
担体やシリカ担体に含浸させた後、200℃以下で乾燥
させ、焙焼しない方法を開示している。この方法により
製造された触媒の活性は従来品より高い値を示すもの
の、近時提出された答申の排ガス規制強化に伴う軽油中
の硫黄分の0.05%以下への低減を可能とするものと
はなっていない。加えて、この方法は、錯化剤として含
窒素有機化合物を用いているため予備硫化処理の際にシ
アン化水素等の有害ガスを発生する恐れが強いという問
題点が指摘されている。
[0004] EP 0 810 35 A2 uses a nitrogen-containing organic compound such as nitrilotriacetic acid, ethylenediaminetetraacetic acid or diethylenetriamine as a complexing agent, and uses a mixed solution of these complexing agent and active metal as an alumina. It discloses a method in which a carrier or a silica carrier is impregnated, dried at 200 ° C. or lower, and is not roasted. Although the activity of the catalyst produced by this method shows a higher value than the conventional product, it enables the sulfur content in light oil to be reduced to 0.05% or less due to the tightening of exhaust gas regulations recently reported. It is not. In addition, since this method uses a nitrogen-containing organic compound as a complexing agent, it has been pointed out that there is a strong possibility that a harmful gas such as hydrogen cyanide is generated during the pre-sulfidation treatment.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は、軽油
中の硫黄分の0.05%以下への低減を可能とし、予備
硫化処理の際にシアン化水素等の有害ガスを発生する恐
れの無い高活性な水素化処理触媒の製造方法の提供にあ
る。
SUMMARY OF THE INVENTION It is an object of the present invention to reduce the sulfur content of light oil to 0.05% or less, and there is no danger of generating harmful gases such as hydrogen cyanide during pre-sulfidation. An object of the present invention is to provide a method for producing a highly active hydrotreating catalyst.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
の本発明の方法は、無機酸化物あるいはその水和物のい
ずれか一方、又は双方を主成分とする触媒用担体物質に
周期表第6の金属と第8の金属と、リン酸又はカ
ルボン酸のいずれか一方又は双方と、周期表第6
第8の金属との総モル量に対して0.3〜5.0倍モ
ル量となる量のポリアルコールとを含有する水溶液を添
加し、混練し、成型し、次いで200℃以下で乾燥させ
るものであり、好ましくは触媒担体に周期表第6
属としてモリブデンまたはタングステンのいずれか一方
又は双方を用い、第8金属としてニッケルまたはコバ
ルトのいずれか一方又は双方を用いるものである。
The method of the present invention to solve the above problems SUMMARY OF THE INVENTION may, either one of an inorganic oxide or a hydrate thereof, or the periodic table in the catalyst carrier material mainly composed of both group 6 metal and the group 8 metal, 0.3, relative to the total molar amount of the one or both of the phosphoric acid or carboxylic acid, group 6 of the periodic table and a group 8 metal adding an aqueous solution containing a quantity of polyalcohol to be 5.0 times the molar amount, and kneaded, molded, and then are those dried at 200 ° C. or less, preferably group 6 metal of the periodic table in the catalyst support One or both of molybdenum and tungsten are used as the metal, and one or both of nickel and cobalt are used as the Group VIII metal.

【0007】本発明において、カルボン酸としては、ク
エン酸、酒石酸、グリコール酸、マロン酸、グルコン
酸、グリセリン酸、リンゴ酸、酢酸、コハク酸、グリオ
キサールのうちの少なくともいずれか1種を用いること
が好ましく、また、ポリアルコールとしては、エチレン
グリコール、ジエチレングリコール、トリエチレングリ
コール、グリセリン、2,2−ジエチル−1,3−プロ
ピレングリコール、ブタンジオール、平均分子量400
以下のポリエチレンアルコールのうちの少なくともいず
れか1種を用いることが好ましい。
In the present invention, at least one of citric acid, tartaric acid, glycolic acid, malonic acid, gluconic acid, glyceric acid, malic acid, acetic acid, succinic acid, and glyoxal is used as the carboxylic acid. Preferred examples of the polyalcohol include ethylene glycol, diethylene glycol, triethylene glycol, glycerin, 2,2-diethyl-1,3-propylene glycol, butanediol, and an average molecular weight of 400.
It is preferable to use at least one of the following polyethylene alcohols.

【0008】[0008]

【作用】本発明では、アルミナ、シリカ、チタニア、ジ
ルコニア等の酸化物及び/又は水和物を媒用担体として
用いることができる。また、活性金属の担持量は水素化
処理用触媒として一般的に採用されている値、すなわち
第6金属は酸化物として5〜30%とし、第8金属
は酸化物として1〜8%とすることが好ましい。
In the present invention, oxides and / or hydrates of alumina, silica, titania, zirconia and the like can be used as a carrier for the medium. The amount of the active metal supported is a value generally used as a hydrotreating catalyst, that is, the Group 6 metal is 5 to 30% as an oxide, and the Group 8 metal is 1 to 8% as an oxide. It is preferable that

【0009】これらの金属の担持に際しては、例えば酸
化モリブデンと炭酸コバルトとを水に懸濁させ、次いで
煮沸することにより溶解し含浸させるが、この様な含浸
用水用液中には往々にして未溶解物が残りやすい。この
ような未溶解物は酸を該水溶液に添加することにより完
全に溶解させることができる。よって、用いる酸の添加
量は当該酸の酸性度に依存し、強酸性物質ほど少量です
む。
In carrying these metals, for example, molybdenum oxide and cobalt carbonate are suspended in water and then dissolved and impregnated by boiling. However, such an impregnating water solution often contains unreacted water. Dissolved material easily remains. Such undissolved substances can be completely dissolved by adding an acid to the aqueous solution. Therefore, the amount of the acid used depends on the acidity of the acid, and a smaller amount is required for a strongly acidic substance.

【0010】上記理由からすれば、用いる酸を硝酸、硫
酸、塩酸等の鉱酸でも良いことになるが、これらの鉱酸
は触媒の活性化時に腐食性ガスを発生するために本発明
の目的にはそぐわない。
For the above reasons, the acid used may be a mineral acid such as nitric acid, sulfuric acid, hydrochloric acid or the like. However, since these mineral acids generate corrosive gas upon activation of the catalyst, the purpose of the present invention is Not fit.

【0011】本発明において、リン酸やクエン酸、酒石
酸、グリコール酸、マロン酸、グルコン酸、グリセリン
酸、リンゴ酸、酢酸、コハク酸、グリオキサール等のカ
ルボン酸を用いるのは、上記目的が達成されるからであ
る。
In the present invention, the use of carboxylic acids such as phosphoric acid, citric acid, tartaric acid, glycolic acid, malonic acid, gluconic acid, glyceric acid, malic acid, acetic acid, succinic acid and glyoxal achieves the above object. This is because that.

【0012】本発明で、リン酸を用いる場合にはP25
として触媒中に1〜8%程度となる用に添加量を調節す
ることが好ましく、カルボン酸を用いる場合には、添加
量が少ないと活性金属を完全に溶解できない場合が有
り、過剰に添加すると活性化時に過剰のカルボン酸が分
解せず、そのまま排出され、装置の腐食を招く場合が有
る。そのため、カルボン酸の添加量は、モル数で活性金
属の総モル数に対して0.05〜1.0倍量とすること
が好ましい。
In the present invention, when phosphoric acid is used, P 2 O 5
It is preferable to adjust the addition amount so that it becomes about 1 to 8% in the catalyst. When a carboxylic acid is used, if the addition amount is small, the active metal may not be completely dissolved. During activation, the excess carboxylic acid is not decomposed but is discharged as it is, which may lead to corrosion of the device. Therefore, the amount of the carboxylic acid to be added is preferably 0.05 to 1.0 times the total number of moles of the active metal in moles.

【0013】本発明の水素化処理触媒では活性金属がポ
リアルコールと錯化合物を形成し、触媒担体に安定化し
て担持されていると思われる。ポリアルコールを錯化剤
として選択するとなぜ前記含窒素有機化合物を錯化剤と
して用いたものより高活性になるのかは明確ではない。
本発明者は予備硫化時に含窒素有機化合物の分解により
生成されたアンモニアやアミン等の塩基性化合物が触媒
より完全に除去されず、活性点がこれら塩基性化合物に
より被毒されるためと推定し、且つ本発明の方法により
製造された触媒の活性金属表面積の値が極めて大きいこ
とから形成される錯化合物の安定性や分解挙動が活性金
属の予備硫化時の凝集を防止しているものと推定してい
る。
In the hydrotreating catalyst of the present invention, it is considered that the active metal forms a complex compound with the polyalcohol and is stably supported on the catalyst carrier. It is not clear why the selection of polyalcohol as a complexing agent results in a higher activity than that using the nitrogen-containing organic compound as a complexing agent.
The present inventor presumes that basic compounds such as ammonia and amines generated by decomposition of the nitrogen-containing organic compound at the time of preliminary sulfurization are not completely removed from the catalyst, and the active sites are poisoned by these basic compounds. Further, since the value of the active metal surface area of the catalyst produced by the method of the present invention is extremely large, it is presumed that the stability and decomposition behavior of the complex compound formed prevent aggregation of the active metal during presulfurization. doing.

【0014】ポリアルコールの添加量をモル数で活性金
属の総モル量の0.3〜5.0倍量とするのは、0.3
倍未満では活性金属を十分錯化できず、5.0倍を越え
ると予備硫化時に錯化剤が完全に分解除去されず、炭素
分が活性金属上に析出し硫化を妨害して活性を低下させ
ることになるからである。
The amount of the polyalcohol to be added in a molar number of 0.3 to 5.0 times the total molar amount of the active metal is 0.3 to 5.0 times.
If it is less than 2 times, the active metal cannot be sufficiently complexed. If it exceeds 5.0 times, the complexing agent will not be completely decomposed and removed at the time of pre-sulfurization, and carbon will precipitate on the active metal and interfere with sulfidation, reducing the activity. It is because it will be done.

【0015】また、本発明の触媒の乾燥温度を 200 ℃
以下とするのは、錯化剤であるポリアルコールの分解や
揮発を防止するためである。
Further, the drying temperature of the catalyst of the present invention is set to 200 ° C.
The following is to prevent the decomposition and volatilization of polyalcohol as a complexing agent.

【0016】[0016]

【実施例】以下実施例を用いて説明する。Embodiments will be described below with reference to embodiments.

【0017】[実施例1]アルミナ水和物1000g
(含水率60%)に三酸化モリブデン124g、炭酸コ
バルト39.4g、85%リン酸27g、クエン酸3
6.6g、ジエチレングリコール308.3gと水とか
ら調製した活性金属水溶液600mlを添加し、80℃
で加熱混練し、さらに、押出し成型機をもちいて直径
1.6mmのシリンダー状の成型物を得、これを100
℃で16時間乾燥し、触媒Aを得た。触媒AのMoO3
の含量は22%、CoOの含量は4%、P25の含量は
3%であった。また、ジエチレングリコールの添加量は
MoとCoとの総モル量の2.5倍であり、クエン酸の
添加量はMoとCoとの総モル量の0.15倍であっ
た。次いで、触媒Aを用い、下記性状のクエート常圧軽
油と流通式反応装置を用いて下記条件に従い水素化脱硫
反応試験を行った。
Example 1 1000 g of alumina hydrate
(Moisture content: 60%) molybdenum trioxide (124 g), cobalt carbonate (39.4 g), 85% phosphoric acid (27 g), citric acid (3)
6.6 g, 600 ml of an active metal aqueous solution prepared from 308.3 g of diethylene glycol and water were added, and
The mixture was heated and kneaded at, and a cylindrical molded product having a diameter of 1.6 mm was obtained using an extruder.
It dried at 16 degreeC for 16 hours, and obtained catalyst A. MoO 3 of catalyst A
Was 22%, the content of CoO was 4%, and the content of P 2 O 5 was 3%. The amount of diethylene glycol added was 2.5 times the total molar amount of Mo and Co, and the amount of citric acid was 0.15 times the total molar amount of Mo and Co. Next, a hydrodesulfurization reaction test was carried out using Catalyst A under the following conditions using quat normal pressure gas oil having the following properties and a flow reactor.

【0018】(クウェート常圧軽油の性状) 比重(15/4℃) 0.844 硫黄(%) 1.55 蒸留性状(初留点 ℃) 231 (50 Vol % ℃) 313 (終点 ℃) 390(Properties of Kuwait atmospheric gas oil) Specific gravity (15/4 ° C) 0.844 Sulfur (%) 1.55 Distillation properties (initial boiling point ° C) 231 (50 Vol% ° C) 313 (End point ° C) 390

【0019】(試験条件) 触媒量(ml) 15 原料油液空間速度(Hr-1) 2 反応水素圧力(Kg/cm2G) 30 反応温度(℃) 330 水素/油流量比(Nl/l) 300 通油時間(hr) 88(Test conditions) Catalyst amount (ml) 15 Raw material oil liquid space velocity (Hr -1 ) 2 Reaction hydrogen pressure (Kg / cm 2 G) 30 Reaction temperature (° C) 330 Hydrogen / oil flow rate ratio (Nl / l) ) 300 Oiling time (hr) 88

【0020】得られた水素化脱硫活性は反応速度定数の
相対値で示すこととし、速度定数は脱反応速度が原料
の常圧軽油の硫黄濃度の1.75乗に比例するとして算
出した。基準とし触媒Kの反応速度定数を100とし
た。
The resulting hydrodesulfurization activity and be represented by a relative value of the reaction rate constant, the rate constant was calculated as the desulfurization reaction rate is proportional to the 1.75 power of the sulfur concentration of atmospheric gas oil feedstock. The reaction rate constant of the catalyst K was set to 100 as a reference.

【0021】[実施例2]ジエチレングリコールの添加
量を124gとし、活性金属水溶液の量を400mlと
した以外は実施例1と同様にして触媒Bを得、実施例1
と同様に触媒活性を求めた。触媒BのMoO3の含量は
22%、CoOの含量は4%、P25の含量は3%であ
った。また、ジエチレングリコールの添加量はMoとC
oとの総モル量の1.0倍であり、クエン酸の添加量は
MoとCoとの総モル量の0.15倍であった。
Example 2 Catalyst B was obtained in the same manner as in Example 1 except that the amount of diethylene glycol added was 124 g and the amount of the active metal aqueous solution was 400 ml.
The catalytic activity was determined in the same manner as described above. Catalyst B had a MoO 3 content of 22%, a CoO content of 4%, and a P 2 O 5 content of 3%. The amount of diethylene glycol added was Mo and C.
It was 1.0 times the total molar amount of o and the amount of citric acid added was 0.15 times the total molar amount of Mo and Co.

【0022】[実施例3]ポリアルコールをエチレング
リコールとし、その添加量を186gとし、活性金属水
溶液の量を400mlとした以外は実施例1と同様にし
て触媒Cを得、実施例1と同様に触媒活性を求めた。触
媒CのMoO3の含量は22%、CoOの含量は4%、
25の含量は3%であった。また、エチレングリコー
ルの添加量はMoとCoとの総モル量の2.5倍であ
り、クエン酸の添加量はMoとCoとの総モル量の0.
15倍であった。
Example 3 A catalyst C was obtained in the same manner as in Example 1 except that ethylene glycol was used as the polyalcohol, the addition amount was 186 g, and the amount of the active metal aqueous solution was 400 ml. The catalyst activity was determined. Catalyst C had a MoO 3 content of 22%, a CoO content of 4%,
The P 2 O 5 content was 3%. The amount of ethylene glycol added was 2.5 times the total molar amount of Mo and Co, and the amount of citric acid added was 0.1 times the total molar amount of Mo and Co.
It was 15 times.

【0023】[実施例4]アルミナ水和物1000g
(含水率60%)に三酸化モリブデン124g、炭酸コ
バルト39.4g、85%リン酸27g、グリセリン1
08.6gと水とから調製した活性金属水溶液400m
lを添加し、80℃で加熱混練し、さらに、押出し成型
機をもちいて直径1.6mmのシリンダー状の成型物を
得、これを100℃で16時間乾燥し、触媒Dを得た。
触媒DのMoO3の含量は22%、CoOの含量は4
%、P25の含量は3%であった。また、グリセリンの
添加量はMoとCoとの総モル量の1.0倍であった。
Example 4 1000 g of alumina hydrate
(Moisture content 60%) 124 g of molybdenum trioxide, 39.4 g of cobalt carbonate, 27 g of 85% phosphoric acid, glycerin 1
400 m of an active metal aqueous solution prepared from 08.6 g and water
The mixture was heated and kneaded at 80 ° C., and further, a cylindrical molded product having a diameter of 1.6 mm was obtained using an extruder. The molded product was dried at 100 ° C. for 16 hours to obtain a catalyst D.
Catalyst D has a MoO 3 content of 22% and a CoO content of 4
% And P 2 O 5 content was 3%. The amount of glycerin added was 1.0 times the total molar amount of Mo and Co.

【0024】[実施例5]アルミナ水和物1000g
(含水率60%)に三酸化モリブデン124g、炭酸ニ
ッケル39.4g、85%リン酸27g、酒石酸34.
9g、グリセリン181.4gと水とから調製した活性
金属水溶液500mlを添加し、80℃で加熱混練し、
さらに、押出し成型機をもちいて直径1.6mmのシリ
ンダー状の成型物を得、これを100℃で16時間乾燥
し、触媒Eを得、実施例1と同様に触媒活性を求めた。
触媒EのMoO3の含量は22%、NiOの含量は4
%、P2 5の含量は3%であった。また、グリセリンの
添加量はMoとNiとの総モル量の1.67倍であり、
酒石酸の添加量はMoとNiとの総モル量の0.2倍で
あった。
Example 5 1000 g of alumina hydrate
(Moisture content 60%), molybdenum trioxide 124 g,
39.4 g of nickel, 27 g of 85% phosphoric acid, 34.tartaric acid.
Activity prepared from 9 g, 181.4 g of glycerin and water
Add 500 ml of an aqueous metal solution, heat knead at 80 ° C,
Furthermore, using an extruder, a 1.6 mm diameter
And then dried at 100 ° C for 16 hours
Then, a catalyst E was obtained, and the catalytic activity was determined in the same manner as in Example 1.
MoO of catalyst EThreeContent is 22% and NiO content is 4%.
%, PTwoO The content of 5 was 3%. Also, glycerin
The amount added is 1.67 times the total molar amount of Mo and Ni,
The amount of tartaric acid added is 0.2 times the total molar amount of Mo and Ni.
there were.

【0025】[実施例6]アルミナ水和物1000g
(含水率60%)に三酸化モリブデン124g、炭酸ニ
ッケル39.4g、酒石酸34.9g、トリエチレング
リコール187.6gと水とから調製した活性金属水溶
液450mlを添加し、80℃で加熱混練し、さらに、
押出し成型機をもちいて直径1.6mmのシリンダー状
の成型物を得、これを100℃で16時間乾燥し、触媒
Fを得、実施例1と同様に触媒活性を求めた。触媒Fの
MoO3の含量は22%、NiOの含量は4%であっ
た。また、トリエチレングリコールの添加量はMoとN
iとの総モル量の1.0倍であり、酒石酸の添加量はM
oとNiとの総モル量の0.2倍であった。
Example 6 1000 g of alumina hydrate
(Moisture content: 60%) was added to molybdenum trioxide (124 g), nickel carbonate (39.4 g), tartaric acid (34.9 g), an active metal aqueous solution (450 ml) prepared from triethylene glycol (187.6 g) and water, and the mixture was heated and kneaded at 80 ° C. further,
Using an extruder, a cylindrical molded product having a diameter of 1.6 mm was obtained, and dried at 100 ° C. for 16 hours to obtain a catalyst F. The catalyst activity was determined in the same manner as in Example 1. Catalyst F had a MoO 3 content of 22% and a NiO content of 4%. The amount of triethylene glycol added was Mo and N.
1.0 times the total molar amount with i, and the amount of tartaric acid added is M
It was 0.2 times the total molar amount of o and Ni.

【0026】[実施例7]アルミナ水和物1000g
(含水率60%)に三酸化モリブデン124g、炭酸ニ
ッケル39.4g、酢酸27g、1,4−ブタンジオー
ル180.3gと水とから調製した活性金属水溶液50
0mlを添加し、80℃で加熱混練し、さらに、押出し
成型機をもちいて直径1.6mmのシリンダー状の成型
物を得、これを100℃で16時間乾燥し、触媒Gを
得、実施例1と同様に触媒活性を求めた。触媒GのMo
3の含量は22%、NiOの含量は4%であった。ま
た、1,4−ブタンジオールの添加量はMoとNiとの
総モル量の1.67倍であり、酢酸の添加量はMoとN
iとの総モル量の0.4倍であった。
Example 7 1000 g of alumina hydrate
(Moisture content 60%) and an active metal aqueous solution 50 prepared from 124 g of molybdenum trioxide, 39.4 g of nickel carbonate, 27 g of acetic acid, 180.3 g of 1,4-butanediol and water.
0 ml was added, and the mixture was heated and kneaded at 80 ° C., and further, a cylindrical molded product having a diameter of 1.6 mm was obtained using an extruder, and dried at 100 ° C. for 16 hours to obtain a catalyst G. The catalyst activity was determined in the same manner as in Example 1. Mo of catalyst G
The O 3 content was 22% and the NiO content was 4%. The amount of 1,4-butanediol added was 1.67 times the total molar amount of Mo and Ni, and the amount of acetic acid added was Mo and N.
It was 0.4 times the total molar amount with i.

【0027】[実施例8]シリカ−アルミナ水和物87
0g(SiO2として10%含有、含水率54%)に三
酸化モリブデン124g、炭酸コバルト39.4g、酒
石酸34.9g、ジエチレングリコール99gと水とか
ら調製した活性金属水溶液400mlを添加し、80℃
で加熱混練し、さらに、押出し成型機をもちいて直径
1.6mmのシリンダー状の成型物を得、これを100
℃で16時間乾燥し、触媒Hを得、実施例1と同様に触
媒活性を求めた。触媒HのMoO3の含量は22%、C
oOの含量は4%であった。また、ジエチレングリコー
ルの添加量はMoとCoとの総モル量の0.8倍であ
り、酒石酸の添加量はMoとCoとの総モル量の0.2
倍であった。
Example 8 Silica-alumina hydrate 87
0 g (containing 10% as SiO 2 , water content 54%) was added with 124 g of molybdenum trioxide, 39.4 g of cobalt carbonate, 34.9 g of tartaric acid, 400 ml of an active metal aqueous solution prepared from 99 g of diethylene glycol and water, and 80 ° C.
The mixture was heated and kneaded at, and a cylindrical molded product having a diameter of 1.6 mm was obtained using an extruder.
It dried at 16 degreeC for 16 hours, and obtained catalyst H, and the catalyst activity was calculated | required similarly to Example 1. MoO 3 content of catalyst H is 22%, C
The content of oO was 4%. The amount of diethylene glycol added was 0.8 times the total molar amount of Mo and Co, and the amount of tartaric acid added was 0.2 times the total molar amount of Mo and Co.
It was twice.

【0028】[実施例9]ジエチレングリコールの代り
に平均分子量200のポリエチレングリコール375g
を用い、活性金属水溶液の量を650mlとした以外は
実施例1と同様にして触媒Iを得、実施例1と同様に触
媒活性を求めた。触媒IのMoO3の含量は22%、C
oOの含量は4%、P25の含量は3%であった。ま
た、ポリエチリレングリコールの添加量はMoとCoと
の総モル量の1.6倍であり、クエン酸の添加量はMo
とCoとの総モル量の0.15倍であった。
Example 9 Instead of diethylene glycol, 375 g of polyethylene glycol having an average molecular weight of 200
The catalyst I was obtained in the same manner as in Example 1 except that the amount of the active metal aqueous solution was changed to 650 ml, and the catalytic activity was determined in the same manner as in Example 1. Catalyst I had a MoO 3 content of 22% and C
The content of oO was 4% and the content of P 2 O 5 was 3%. Further, the addition amount of polyethylylene glycol is 1.6 times the total molar amount of Mo and Co, and the addition amount of citric acid is Mo.
And 0.15 times the total molar amount of Co.

【0029】[実施例10]比較例として、アルミナ水
和物1000g(含水率60%)に三酸化モリブデン1
24g、炭酸コバルト39.4g、85%リン酸27
g、EDTA222g、28%アンモニア水8gと水と
から調製した活性金属水溶液450mlを添加し、80
℃で加熱混練し、さらに、押出し成型機をもちいて直径
1.6mmのシリンダー状の成型物を得、これを100
℃で16時間乾燥し、触媒Jを得、実施例1と同様に触
媒活性を求めた。触媒JのMoO3の含量は22%、C
oOの含量は4%、P25の含量は3%であった。ま
た、EDTAの添加量はMoとCoとの総モル量の0.
65倍であった。
Example 10 As a comparative example, molybdenum trioxide was added to 1000 g of alumina hydrate (water content: 60%).
24 g, cobalt carbonate 39.4 g, 85% phosphoric acid 27
g, EDTA 222 g, an active metal aqueous solution 450 ml prepared from 28% ammonia water 8 g and water,
The mixture was heated and kneaded at a temperature of 100 ° C., and a cylindrical molded product having a diameter of 1.6 mm was obtained using an extruder.
It dried at 16 degreeC for 16 hours, and obtained catalyst J, and the catalyst activity was calculated | required similarly to Example 1. Catalyst J had a MoO 3 content of 22% and C
The content of oO was 4% and the content of P 2 O 5 was 3%. Further, the amount of EDTA added was 0.1% of the total molar amount of Mo and Co.
It was 65 times.

【0030】[実施例11]比較例として、アルミナ水
和物1000g(含水率60%)に三酸化モリブデン1
24g、炭酸コバルト39.4g、85%リン酸27
g、エチレンジアミン234gと水とから調製した活性
金属水溶液500mlを添加し、80℃で加熱混練し、
さらに、押出し成型機をもちいて直径1.6mmのシリ
ンダー状の成型物を得、これを100℃で16時間乾燥
し、触媒Kを得、実施例1と同様に触媒活性を求めた。
触媒KのMoO3の含量は22%、CoOの含量は4
%、P25の含量は3%であった。また、エチレンジア
ミンの添加量はMoとCoとの総モル量の2.5倍であ
った。得られた結果を表1に示した。なお、本発明の触
媒を用いた実施例1〜7で、活性化時に発生した分解生
成物はメタン、エタン等の低級炭化水素とアルコールと
であり、カルボン酸やアミン等は検出されなかった。
Example 11 As a comparative example, molybdenum trioxide was added to 1000 g of alumina hydrate (water content: 60%).
24 g, cobalt carbonate 39.4 g, 85% phosphoric acid 27
g, 234 g of ethylenediamine and 500 ml of an aqueous active metal solution prepared from water, and kneaded at 80 ° C. by heating,
Further, a cylindrical molded product having a diameter of 1.6 mm was obtained using an extruder, and this was dried at 100 ° C. for 16 hours to obtain a catalyst K. The catalyst activity was determined in the same manner as in Example 1.
Catalyst K has a MoO 3 content of 22% and a CoO content of 4%.
% And P 2 O 5 content was 3%. The amount of ethylenediamine added was 2.5 times the total molar amount of Mo and Co. Table 1 shows the obtained results. In Examples 1 to 7 using the catalyst of the present invention, decomposition products generated during activation were lower hydrocarbons such as methane and ethane and alcohols, and carboxylic acids and amines were not detected.

【0031】[0031]

【表1】 [Table 1]

【0032】表1より本発明によって調製された触媒A
〜Iは従来の含窒素有機化合物を添加した触媒J、Kと
比較して極めて高活性であることが分かる。
Table 1 shows that the catalyst A prepared according to the present invention
~ I have extremely high activity compared to the conventional catalysts J and K to which a nitrogen-containing organic compound is added.

【0033】[0033]

【発明の効果】本発明の方法で水素化処理触媒を調製す
ると、活性金属を極めて高分散とすることができ、その
結果極めて活性の高いものを得ることが可能となる。本
発明の方法で得た水素化処理触媒を用いれば炭化水素油
の深度脱硫、脱窒素等の高度な水素化処理が可能とな
る。
According to the present invention, when a hydrotreating catalyst is prepared by the method of the present invention, the active metal can be extremely dispersed, and as a result, a highly active catalyst can be obtained. The use of the hydrotreating catalyst obtained by the method of the present invention enables advanced hydrotreating such as deep desulfurization and denitrification of hydrocarbon oil.

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 無機酸化物あるいはその水和物のいずれ
か一方、又は双方を主成分とする触媒用担体物質に周期
表第6と第8の金属と、リン酸又はカルボン酸の
いずれか一方又は双方と、モル量で周期表第6と第
の金属との総モル量に対して0.3〜5.0倍量と
なるポリアルコールとを含有する水溶液を添加し、混練
し、成型し、次いで200℃以下で乾燥させることを特
徴とする水素化処理触媒の製造方法。
1. A catalyst carrier material containing one or both of an inorganic oxide and a hydrate thereof as a main component.
And Table Group 6 and Group 8 metal, and either or both of the phosphoric acid or carboxylic acid, based on the total molar amount of the periodic table Group 6 and Group 8 metal in a molar amount 0 3. A method for producing a hydrotreating catalyst, comprising adding an aqueous solution containing a polyalcohol in an amount of 3 to 5.0 times the amount, kneading, molding, and then drying at 200 ° C. or lower.
【請求項2】 周期表第6金属としてモリブデンま
たはタングステンのいずれか一方又は双方を用い、第8
金属としてニッケルまたはコバルトのいずれか一方又
は双方を用いることを特徴とする請求項1記載の水素化
処理触媒の製造方法。
2. Using one or both of molybdenum or tungsten as the periodic table Group 6 metal, 8
The method for producing a hydrotreating catalyst according to claim 1, wherein one or both of nickel and cobalt are used as the group metal.
【請求項3】 カルボン酸としてクエン酸、酒石酸、
グリコール酸、マロン酸、グルコン酸、グリセリン酸、
リンゴ酸、酢酸、コハク酸、グリオキサールのうちの少
なくとも1種を用いることを特徴とする請求項1〜2記
載の水素化処理触媒の製造方法。
3. Citric acid, tartaric acid, carboxylic acid,
Glycolic acid, malonic acid, gluconic acid, glyceric acid,
The method for producing a hydrotreating catalyst according to claim 1, wherein at least one of malic acid, acetic acid, succinic acid, and glyoxal is used.
【請求項4】 ポリアルコールとしてエチレングリコ
ール、ジエチレングリコール、トリエチレングリコー
ル、グリセリン、2,2−ジエチル−1,3−プロピレ
ングリコール、ブタンジオール、平均分子量400以下
のポリエチレンアルコールのうちの少なくとも1種を用
いることを特徴とする請求項1〜3記載の水素化処理触
媒の製造方法。
4. The polyalcohol used is at least one of ethylene glycol, diethylene glycol, triethylene glycol, glycerin, 2,2-diethyl-1,3-propylene glycol, butanediol, and polyethylene alcohol having an average molecular weight of 400 or less. The method for producing a hydrotreating catalyst according to any one of claims 1 to 3, wherein
JP3891491A 1991-02-12 1991-02-12 Method for producing hydrotreating catalyst Expired - Lifetime JP2936753B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3891491A JP2936753B2 (en) 1991-02-12 1991-02-12 Method for producing hydrotreating catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3891491A JP2936753B2 (en) 1991-02-12 1991-02-12 Method for producing hydrotreating catalyst

Publications (2)

Publication Number Publication Date
JPH04260442A JPH04260442A (en) 1992-09-16
JP2936753B2 true JP2936753B2 (en) 1999-08-23

Family

ID=12538475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3891491A Expired - Lifetime JP2936753B2 (en) 1991-02-12 1991-02-12 Method for producing hydrotreating catalyst

Country Status (1)

Country Link
JP (1) JP2936753B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2900771B2 (en) * 1992-11-18 1999-06-02 住友金属鉱山株式会社 Method for producing catalyst for hydrotreating hydrocarbon oil
JP3538887B2 (en) * 1993-05-07 2004-06-14 住友金属鉱山株式会社 Catalyst for hydrotreating hydrocarbon oil and method for producing the same
PL1680486T3 (en) * 2003-10-03 2023-01-09 Albemarle Netherlands B.V. Process for activating a hydrotreating catalyst
KR20110018875A (en) * 2008-04-10 2011-02-24 셀 인터나쵸나아레 레사아치 마아츠샤피 비이부이 Catalyst systems and methods for converting a crude feed with such catalyst systems
US8114806B2 (en) * 2008-04-10 2012-02-14 Shell Oil Company Catalysts having selected pore size distributions, method of making such catalysts, methods of producing a crude product, products obtained from such methods, and uses of products obtained
CN102166521B (en) * 2010-02-25 2013-03-27 中国石油天然气股份有限公司 Preparation method of hydrofining catalyst

Also Published As

Publication number Publication date
JPH04260442A (en) 1992-09-16

Similar Documents

Publication Publication Date Title
JP3244692B2 (en) Method for producing catalyst for hydrotreating hydrocarbon oil
JP2832033B2 (en) Method for catalytic hydroprocessing of hydrocarbon oils containing nitrogen or sulfur
EP2408556B1 (en) An oil and polar additive impregnated composition useful in the catalytic hydroprocessing of hydrocarbons, a method of making such catalyst, and a process of using such catalyst
US3909450A (en) Method of catalyst manufacture
JP3244693B2 (en) Method for producing catalyst for hydrotreating hydrocarbon oil
US20030104926A1 (en) Process for regenerating and rejuvenating additive-based catalysts
EP1145763B1 (en) Hydrotreating catalyst for hydrocarbon oil, carrier for the same and method for hydrotreating of hydrocarbon oil
JP5060044B2 (en) Hydrocarbon hydrotreating catalyst, process for producing the same, and hydrotreating process for hydrocarbon oil
US4455390A (en) Catalyst and method for impregnating at a pH less than one
KR102277831B1 (en) Process for preparing a hydrotreating catalyst
JP3272384B2 (en) Catalyst composition, method for producing the same, and method for hydrodesulfurizing sulfur-containing hydrocarbons using the catalyst composition
JPH06339635A (en) Preparation of hydrogenation catalyst
JP2936753B2 (en) Method for producing hydrotreating catalyst
JP3244694B2 (en) Method for producing hydrotreating catalyst
JP3382619B2 (en) Method for producing catalyst composition and method for hydrodesulfurizing sulfur-containing hydrocarbon using the catalyst composition
JP3244695B2 (en) Method for producing hydrotreating catalyst
JPH0661464B2 (en) Catalyst for hydrodesulfurization and denitrification of heavy hydrocarbon oils
JP3106761B2 (en) Catalyst for hydrodesulfurization and denitrification of hydrocarbon oil and method for producing the same
US4743359A (en) Reforming and related processes
JP3538887B2 (en) Catalyst for hydrotreating hydrocarbon oil and method for producing the same
JPH04244238A (en) Preparation of catalyst for hydrogen treatment
JP2000354766A (en) Catalyst for hydrogenation treatment of hydrocarbon oil
JPH08243407A (en) Preparation of hydrogenated catalyst
JP2789489B2 (en) Hydrodesulfurization catalyst composition for hydrocarbon oil, method for producing the same, and hydrodesulfurization method using the same
JP3230585B2 (en) Method for producing hydrotreating catalyst

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080611

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090611

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20100611

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20100611

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20110611

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110611

Year of fee payment: 12