JPH06105613B2 - Method of manufacturing alkaline storage battery - Google Patents

Method of manufacturing alkaline storage battery

Info

Publication number
JPH06105613B2
JPH06105613B2 JP62294333A JP29433387A JPH06105613B2 JP H06105613 B2 JPH06105613 B2 JP H06105613B2 JP 62294333 A JP62294333 A JP 62294333A JP 29433387 A JP29433387 A JP 29433387A JP H06105613 B2 JPH06105613 B2 JP H06105613B2
Authority
JP
Japan
Prior art keywords
negative electrode
electrode plate
battery
cadmium
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62294333A
Other languages
Japanese (ja)
Other versions
JPH01134858A (en
Inventor
一博 松井
隆久 淡路谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP62294333A priority Critical patent/JPH06105613B2/en
Priority to US07/216,487 priority patent/US4906539A/en
Publication of JPH01134858A publication Critical patent/JPH01134858A/en
Publication of JPH06105613B2 publication Critical patent/JPH06105613B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/044Activating, forming or electrochemical attack of the supporting material
    • H01M4/0445Forming after manufacture of the electrode, e.g. first charge, cycling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/246Cadmium electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/80Porous plates, e.g. sintered carriers
    • H01M4/801Sintered carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/049Manufacturing of an active layer by chemical means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】 産業上の利用分野 本発明はニッケル−カドミウム蓄電池等負極にカドミウ
ム電極を備えたアルカリ蓄電池の製造方法に関し、特に
負極の製造方法に関する。
Description: TECHNICAL FIELD The present invention relates to a method for manufacturing an alkaline storage battery such as a nickel-cadmium storage battery having a cadmium electrode on the negative electrode, and particularly to a method for manufacturing the negative electrode.

従来の技術 上記の構造を有する電池では、充放電サイクルの進行に
ともなって負極における活物質利用率が徐々に低下し、
この結果電池容量の低下を招くという問題点を有してい
た。
In the battery having the above structure, the utilization factor of the active material in the negative electrode gradually decreases as the charge and discharge cycle progresses,
As a result, there is a problem that the battery capacity is lowered.

この現象は主として以下に示す理由によるものと考えら
れる。
This phenomenon is considered to be mainly due to the following reasons.

即ち、充放電サイクルの進行にともなって、放電生成物
である水酸化カドミウムが充電生成物である金属カドミ
ウムの表面を覆うように生成して金属カドミウムと電解
液との接触を妨げ、放電できない金属カドミウムが蓄積
することによっておこるものと考えられる。
That is, as the charge / discharge cycle progresses, cadmium hydroxide, which is a discharge product, is generated so as to cover the surface of metal cadmium, which is a charge product, and prevents contact between the metal cadmium and the electrolytic solution, so that a metal that cannot be discharged It is thought to be caused by the accumulation of cadmium.

上記問題点を解決するため、従来より、極板の表面にメ
チルセルロース、或いはポリビニルアルコール等の高分
子糊料を塗布し、上記水酸化カドミウムの結晶型を変化
させ、これにより、金属カドミウムの閉塞化を防止し電
解液と金属カドミウムとが容易に接触できるようにし
て、負極容量の低下を防止しうることが知られている。
例えば、特開昭61−158664号公報に示すように、負極板
に高分子水溶液を塗布し、負極板の表面に高分子皮膜を
形成するようなものが提案されている。
In order to solve the above problems, conventionally, a polymer paste such as methyl cellulose or polyvinyl alcohol is applied to the surface of the electrode plate to change the crystal form of the cadmium hydroxide, thereby closing the metal cadmium. It is known that the electrolytic solution and the metal cadmium can be easily brought into contact with each other to prevent the decrease in the negative electrode capacity.
For example, as disclosed in JP-A-61-158664, there has been proposed a method in which a polymer aqueous solution is applied to a negative electrode plate to form a polymer film on the surface of the negative electrode plate.

しかし、上記の製造方法では、負極板の細孔中まで高分
子が浸透していないため、極板内部の活物質表面に高分
子糊料を浸透させることができない。このため、金属カ
ドミウムの閉塞化を完全に防止することができず、金属
カドミウムと電解液との接触が妨げられることがあるの
で、負極容量の低下を防止するのには十分ではなかっ
た。
However, in the above-mentioned manufacturing method, the polymer does not penetrate into the pores of the negative electrode plate, so that the polymer paste cannot penetrate into the surface of the active material inside the electrode plate. For this reason, it is not possible to completely prevent the clogging of the metal cadmium and the contact between the metal cadmium and the electrolytic solution may be hindered, which is not sufficient to prevent the decrease in the negative electrode capacity.

そこで、特開昭61−158666号公報に示すように、負極板
を減圧下で高分子水溶液に含浸する方法が提案されてい
る。
Therefore, as shown in JP-A-61-158666, a method of impregnating a negative electrode plate with an aqueous polymer solution under reduced pressure has been proposed.

発明が解決しようとする問題点 しかしながら、上記製造方法では、負極板の細孔中まで
高分子を十分に浸透させることができず、負極容量の低
下を防止するのには未だ十分ではない。加えて、減圧状
態を作り出すための設備等が別途必要となり、且つ、減
圧状態にするための真空引きに長時間を要する。したが
って、負極板の製造コストが高騰するという問題点を有
していた。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention However, in the above-mentioned production method, the polymer cannot be sufficiently permeated into the pores of the negative electrode plate, and it is still not sufficient to prevent the decrease in negative electrode capacity. In addition, equipment and the like for creating a depressurized state are required separately, and it takes a long time to evacuate to bring the depressurized state. Therefore, there is a problem that the manufacturing cost of the negative electrode plate increases.

本発明はこのような問題点に鑑み、従来よりも一層負極
板の細孔中まで高分子糊料を浸透させうることにより、
充放電サイクルの進行にともなう負極容量の低下を防止
し得ると共に、低コストで負極板を作製し得るアルカリ
蓄電池の製造方法の提供を目的とするものである。
In view of these problems, the present invention allows the polymer paste to penetrate into the pores of the negative electrode plate more than ever before,
It is an object of the present invention to provide a method for manufacturing an alkaline storage battery, which can prevent the negative electrode capacity from being reduced with the progress of charge / discharge cycles and can manufacture a negative electrode plate at low cost.

問題点を解決するための手段 本発明は上記問題点を解決するために、焼結式カドミウ
ム負極板の空孔部に、低粘度溶媒を保持させるステップ
と、前記溶媒に溶解可能な高分子糊料を、前記溶媒に溶
解させて、前記負極板の空孔部に高分子糊料を保持させ
るステップを経てアルカリ蓄電池を製造することを特徴
とするものである。
Means for Solving the Problems In order to solve the above problems, the present invention provides a step of holding a low-viscosity solvent in the pores of a sintered cadmium negative electrode plate, and a polymer paste soluble in the solvent. The alkaline storage battery is manufactured by the steps of dissolving the material in the solvent and holding the polymer paste in the pores of the negative electrode plate.

作用 上記の如く、焼結式カドミウム負極板の空孔部内に先に
低粘度の溶媒を保持せしめるような構成とすれば、上記
空孔部内に空気がある場合であっても、空孔部内に容易
に溶媒を浸透させることができる。そして、空孔部内に
溶媒を浸透させれば、高分子糊料はこの溶媒に容易に溶
解するため、高粘度の高分子糊料であっても空孔部内に
高分子糊料を浸透させることができる。したがって、極
板内部の活物質表面にまで高分子糊料を浸透させること
ができるため、金属カドミウムの閉塞化を十分に防止す
ることができる。この結果、充放電サイクルが進行した
場合であっても、金属カドミウムと電解液との接触が妨
げられることがなく、負極容量の低下を十分に防止する
ことが可能となる。
Action As described above, if the structure is such that the low viscosity solvent is first retained in the pores of the sintered cadmium negative electrode plate, even if air is present in the pores, the pores are The solvent can be easily permeated. If the solvent penetrates into the pores, the polymer paste easily dissolves in this solvent. Therefore, even if the polymer paste has high viscosity, the polymer paste should penetrate into the pores. You can Therefore, the polymer paste can be permeated to the surface of the active material inside the electrode plate, and thus the clogging of metal cadmium can be sufficiently prevented. As a result, even when the charging / discharging cycle progresses, the contact between the metal cadmium and the electrolytic solution is not hindered, and the reduction in the negative electrode capacity can be sufficiently prevented.

加えて、上記構成であれば、減圧状態を作り出すための
設備等が不要であり、且つ、減圧状態にするための真空
引き等の時間も不要となるので、負極板の製造コストを
著しく低減することができる。
In addition, in the case of the above configuration, equipment for creating a reduced pressure state and the like are not necessary, and time such as evacuation for reducing the pressure state is also unnecessary, thus significantly reducing the manufacturing cost of the negative electrode plate. be able to.

実施例 本発明の実施例を説明すれば、以下の通りである。EXAMPLES The examples of the present invention are described below.

〔第1実施例〕 先ず初めに、焼結式カドミウム極板の化成を行なって極
板中の不純物の除去等を行なう。次に、このカドミウム
極板の水洗を行なっ後、乾燥を行なう。次いで、カドミ
ウム極板を水中に浸漬してカドミウム極板に水を含ませ
た後、カドミウム極板に1wt%のメチルセルロース水溶
液を塗布する。しかる後、カドミウム極板を乾燥させた
後、この極板を200mm×33.5mmの寸法に切断する。これ
により、極板容量3000mAhの負極板を得た。そして、こ
の負極板と、負極板の対極として負極板と同寸法の焼結
式ニッケル正極板を2枚と、比重1.23の水酸化カリウム
水溶液とを用いて電池を作製した。
First Embodiment First, a sintered cadmium electrode plate is formed to remove impurities in the electrode plate. Next, this cadmium electrode plate is washed with water and then dried. Then, the cadmium electrode plate is immersed in water to contain water, and then a 1 wt% methylcellulose aqueous solution is applied to the cadmium electrode plate. Then, after drying the cadmium plate, the plate is cut into a size of 200 mm × 33.5 mm. As a result, a negative electrode plate having an electrode plate capacity of 3000 mAh was obtained. Then, a battery was prepared using this negative electrode plate, two sintered nickel positive electrode plates having the same dimensions as the negative electrode plate as a counter electrode of the negative electrode plate, and an aqueous potassium hydroxide solution having a specific gravity of 1.23.

以下、このようにして作製した電池を(A)電池と称す
る。
Hereinafter, the battery thus manufactured will be referred to as (A) battery.

〔第2実施例〕 カドミウム極板をメタノール液中に浸漬してカドミウム
極板にメタノールを含ませた後、このカドミウム極板に
1wt%メチルセルロースのメタノール溶液を塗布して負
極を作製する以外は第1実施例と同様にして電池を作製
した。
[Second Example] A cadmium electrode plate was dipped in a methanol solution so that the cadmium electrode plate contained methanol.
A battery was produced in the same manner as in Example 1 except that a 1 wt% methylcellulose methanol solution was applied to produce the negative electrode.

以下、このようにして作製した電池を(B)電池と称す
る。
Hereinafter, the battery thus manufactured is referred to as a (B) battery.

〔第3実施例〕 化成工程後の水洗を行った後に乾燥を行なうことなく1w
t%メチルセルロース水溶液を塗布して負極を作製する
以外は第1実施例と同様にして電池を作製した。
[Third Example] After washing with water after the chemical conversion step, 1 w was obtained without drying.
A battery was manufactured in the same manner as in Example 1 except that a negative electrode was manufactured by applying a t% methylcellulose aqueous solution.

以下、このようにして作製した電池を(C)電池と称す
る。
Hereinafter, the battery thus manufactured will be referred to as a (C) battery.

〔比較例〕[Comparative example]

カドミウム極板を水中に浸漬することなく、カドミウム
極板に1wt%のメチルセルロース水溶液を塗布して負極
を作製する以外は第1実施例と同様にして電池を作製し
た。
A battery was prepared in the same manner as in Example 1 except that the negative electrode was prepared by applying a 1 wt% methylcellulose aqueous solution to the cadmium plate without immersing the cadmium plate in water.

以下、このようにして作製した電池を(D)電池と称す
る。
Hereinafter, the battery thus manufactured will be referred to as a (D) battery.

カドミウム極板を水中に浸漬する工程以後の工程を行う
ことなく負極を作製する以外は第1実施例と同様にして
電池を作製した。
A battery was produced in the same manner as in Example 1 except that the negative electrode was produced without performing the steps subsequent to the step of immersing the cadmium electrode plate in water.

以下、このようにして作製した電池を(E)電池を称す
る。
Hereinafter, the battery thus manufactured will be referred to as (E) battery.

ここで、上記本発明の(A)〜(C)電池と、比較例の
(D)電池及び(E)電池とのサイクル特性を調べたの
で、その結果を第1図に示す。尚、実験条件は、極板容
量の3/10の電流値で4.8時間充填した後、極板容量の1/1
の電流値で放電を行った。
Here, the cycle characteristics of the batteries (A) to (C) of the present invention and the batteries (D) and (E) of the comparative examples were examined. The results are shown in FIG. In addition, the experimental condition is that the current value of 3/10 of the electrode plate capacity is filled for 4.8 hours, then 1/1 of the electrode plate capacity is filled.
The discharge was performed at the current value of.

第1図より明らかなように、比較例の(D)電池及び
(E)電池は、充放電サイクルの進行にともなって電池
容量が急激に低下し、300サイクル経過後には、(D)
電池では略2200mAhまで、(E)電池では略1600mAhまで
それぞれ電池容量が低下することが認められる。これに
対して、本発明の(A)電池〜(C)電池では、充放電
サイクルが進行してもあまり電池容量が低下せず、300
サイクル経過後であっても、電池容量は(A)電池及び
(B)電池では略2800mAh、(C)電池では略2900mAhを
維持していることが認められる。この結果、本発明の
(A)電池〜(C)電池は、比較例の(D)電池及び
(E)電池と比べ、サイクル特性が飛躍的に向上してい
ることが伺える。
As is clear from FIG. 1, the battery capacity of the (D) battery and the (E) battery of the comparative example drastically decreased as the charge / discharge cycle progressed, and after 300 cycles, (D)
It is recognized that the battery capacity decreases to about 2200 mAh for the battery, and the battery capacity decreases to about 1600 mAh for the (E) battery. On the other hand, in the batteries (A) to (C) of the present invention, the battery capacity did not decrease so much even if the charge and discharge cycle proceeded, and
It is recognized that the battery capacities of the (A) battery and the (B) battery are maintained at approximately 2800 mAh and the (C) battery is maintained at approximately 2900 mAh even after the lapse of cycles. As a result, it can be seen that the batteries (A) to (C) of the present invention have dramatically improved cycle characteristics as compared with the batteries (D) and (E) of Comparative Examples.

尚、本発明の(C)電池は同じ本発明の(A)電池及び
(B)電池と比べて、初期の電池容量及び300サイクル
経過後の電池容量がともに若干高くなっていることが認
められる。これは以下に示す理由によるものと考えられ
る。
It is noted that the battery (C) of the present invention has a slightly higher initial battery capacity and battery capacity after 300 cycles than the same batteries (A) and (B) of the present invention. . It is considered that this is due to the following reasons.

即ち、(C)電池は化成工程終了後の乾燥工程を省略し
ているため、(A)電池及び(B)電池の製造工程と比
べて乾燥回数が1回少なくなっている。従って、負極の
カドミウムの酸化を一層防止することができるため、カ
ドミウム活物質の活性度が(A)電池及び(B)電池よ
りも高くなるためと考えられる。
That is, since the (C) battery omits the drying process after the chemical conversion process, the number of times of drying is one less than that in the manufacturing processes of the (A) battery and the (B) battery. Therefore, it is considered that since the oxidation of cadmium in the negative electrode can be further prevented, the activity of the cadmium active material is higher than that of the batteries (A) and (B).

また、本発明の(C)電池の製造方法であれば、化成工
程と水洗工程を終えた後、未乾燥の状態で1wt%のメチ
ルセルロース水溶液を塗布しているので、水洗工程とメ
チルセルロース水溶液の塗布工程との連続化が可能とな
る。従って、これら両工程を同一ラインで行なうことが
でき、生産工数の低減が可能となるので、アルカリ蓄電
池の製造コストを一層低減することが可能となる。
Further, in the case of the battery manufacturing method (C) of the present invention, since the 1 wt% aqueous solution of methyl cellulose is applied in an undried state after the chemical conversion step and the water washing step, the water washing step and the application of the methyl cellulose aqueous solution are performed. It is possible to make it continuous with the process. Therefore, these two steps can be performed on the same line, and the number of production steps can be reduced, so that the manufacturing cost of the alkaline storage battery can be further reduced.

更に、上記実施例では全て水洗工程を有しているが、こ
の水洗工程を省略した場合であっても本発明の効果を奏
する。この場合には化成工程時の化成液体が高分子糊料
の溶媒となる。
Further, although all of the above-mentioned examples have a water washing step, the effects of the present invention can be obtained even if this water washing step is omitted. In this case, the chemical liquid during the chemical conversion step serves as a solvent for the polymer paste.

加えて、本発明でも高分子膜形成後に乾燥工程が必要と
なるが、この場合にはカドミウム活物質は高分子膜にて
十分に覆われているため、カドミウム活物質の酸化は微
小である。
In addition, the present invention also requires a drying step after forming the polymer film, but in this case, the cadmium active material is sufficiently covered with the polymer film, so that the oxidation of the cadmium active material is minute.

発明の効果 以上のように本発明では、焼結式カドミウム負極板の空
孔部内に低粘度溶媒を保持させた後、この負極板の表面
に高粘度の高分子糊料を塗布するなどして、前記低粘度
溶媒に高分子糊料を溶解させているので、上記空孔部内
に空気がある場合であっても、空孔部内に容易に高分子
糊料を浸透させることができる。したがって、極板内部
の活物質表面にまで高分子糊料を浸透させることができ
るため、金属カドミウムの閉塞化を十分に防止すること
ができる。この結果、充放電サイクルが進行した場合で
あっても、金属カドミウムと電解液との接触が妨げられ
ることがなく、負極容量の低下を防止することが可能と
なるため、アルカリ蓄電池の性能を飛躍的に向上させる
ことができるという効果を奏する。
As described above, in the present invention, after the low viscosity solvent is held in the pores of the sintered cadmium negative electrode plate, the high viscosity polymer paste is applied to the surface of the negative electrode plate. Since the polymeric paste is dissolved in the low-viscosity solvent, the polymeric paste can be easily permeated into the pores even when air is present in the pores. Therefore, the polymer paste can be permeated to the surface of the active material inside the electrode plate, and thus the clogging of metal cadmium can be sufficiently prevented. As a result, even if the charge / discharge cycle progresses, the contact between the metal cadmium and the electrolytic solution is not hindered, and it is possible to prevent the reduction of the negative electrode capacity, so that the performance of the alkaline storage battery is leapt. The effect is that it can be improved.

加えて、減圧状態を作り出すための設備等が不要であ
り、且つ、減圧状態にするための真空引き等の時間も不
要となるので、負極板の製造コストを著しく低減するこ
とができるという効果も奏しうる。
In addition, since there is no need for equipment or the like for creating a reduced pressure state, and the time for vacuuming or the like for achieving a reduced pressure state is also unnecessary, the manufacturing cost of the negative electrode plate can be significantly reduced. Can play.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の(A)〜(C)電池と、比較例の
(D)電池及び(E)電池とのサイクル特性を示すグラ
フである。
FIG. 1 is a graph showing cycle characteristics of the batteries (A) to (C) of the present invention and the batteries (D) and (E) of Comparative Examples.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】焼結式カドミウム負極板の空孔部に、低粘
度溶媒を保持させるステップと、 前記溶媒に溶解可能な高分子糊料を、前記溶媒に溶解さ
せて、前記負極板の空孔部に高分子糊料を保持させるス
テップを備えたアルカリ蓄電池の製造方法。
1. A step of holding a low-viscosity solvent in the pores of a sintered cadmium negative electrode plate, and dissolving a high-molecular-weight solvent that is soluble in the solvent in the solvent to obtain a void in the negative electrode plate. A method for manufacturing an alkaline storage battery, comprising a step of holding a polymer paste in a hole.
【請求項2】前記低粘度溶媒を保持させるステップが、
焼結式カドミウム負極板を洗浄する際に使用した洗浄液
を前記低粘度溶媒として負極板に保持させることにより
行われる特許請求の範囲第(1)項記載のアルカリ蓄電
池の製造方法。
2. The step of retaining the low-viscosity solvent comprises:
The method for producing an alkaline storage battery according to claim (1), wherein the cleaning liquid used when cleaning the sintered cadmium negative electrode plate is carried out by holding the cleaning liquid as the low-viscosity solvent on the negative electrode plate.
JP62294333A 1987-07-08 1987-11-20 Method of manufacturing alkaline storage battery Expired - Fee Related JPH06105613B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP62294333A JPH06105613B2 (en) 1987-11-20 1987-11-20 Method of manufacturing alkaline storage battery
US07/216,487 US4906539A (en) 1987-07-08 1988-07-08 Sintered type negative cadmium electrode for an alkaline storage cell and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62294333A JPH06105613B2 (en) 1987-11-20 1987-11-20 Method of manufacturing alkaline storage battery

Publications (2)

Publication Number Publication Date
JPH01134858A JPH01134858A (en) 1989-05-26
JPH06105613B2 true JPH06105613B2 (en) 1994-12-21

Family

ID=17806344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62294333A Expired - Fee Related JPH06105613B2 (en) 1987-07-08 1987-11-20 Method of manufacturing alkaline storage battery

Country Status (1)

Country Link
JP (1) JPH06105613B2 (en)

Also Published As

Publication number Publication date
JPH01134858A (en) 1989-05-26

Similar Documents

Publication Publication Date Title
JPH06105613B2 (en) Method of manufacturing alkaline storage battery
US7226693B2 (en) Cadmium negative electrode for alkaline storage battery and method for producing the same
US4906539A (en) Sintered type negative cadmium electrode for an alkaline storage cell and method of manufacturing the same
JP2567672B2 (en) Sintered cadmium negative electrode for alkaline storage battery and method for producing the same
JPS5838459A (en) Manufacture of plate for enclosed alkaline battery
JP2902751B2 (en) Manufacturing method of cadmium negative electrode for alkaline storage battery
JP2786902B2 (en) Manufacturing method of non-sintered cadmium electrode
JP3414184B2 (en) Method for producing positive electrode plate for alkaline storage battery
JPH0773048B2 (en) Method for manufacturing sintered cadmium cathode
JP2755690B2 (en) Method for producing cadmium negative electrode plate for alkaline storage battery
JPS58115760A (en) Manufacture of negative electrode plate for sealed nickel-cadmium storage battery
JP2810460B2 (en) Positive plate for alkaline storage battery
JPH11273669A (en) Manufacture of sintered cadmium negative electrode
JP3272009B2 (en) Method for producing nickel electrode for alkaline storage battery
JPS6068557A (en) Manufacture of plate for alkaline storage battery
JP2000100427A (en) Manufacture of cadmium negative electrode for alkaline storage battery
JP2000106178A (en) Manufacture of sintered cadmium negative electrode
JP2686136B2 (en) Cadmium negative electrode for alkaline storage batteries
JPH09283129A (en) Manufacture of cadmium electrode plate for alkaline storage battery
JPS62243251A (en) Manufacture of plate for alkaline battery
JPH06101350B2 (en) Nickel cadmium alkaline storage battery
JPH0251857A (en) Manufacture of cadmium plate for alkaline storage battery
JPH0444389B2 (en)
JPH0828237B2 (en) Manufacturing method of sealed alkaline storage battery
JPS58126671A (en) Manufacture of cathode plate for alkaline storage battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees