JPH06105533A - 電磁ポンプの駆動電源装置 - Google Patents

電磁ポンプの駆動電源装置

Info

Publication number
JPH06105533A
JPH06105533A JP4251400A JP25140092A JPH06105533A JP H06105533 A JPH06105533 A JP H06105533A JP 4251400 A JP4251400 A JP 4251400A JP 25140092 A JP25140092 A JP 25140092A JP H06105533 A JPH06105533 A JP H06105533A
Authority
JP
Japan
Prior art keywords
flow rate
power supply
speed
residual heat
electromagnetic pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4251400A
Other languages
English (en)
Inventor
Shigeru Nakajima
中島  茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP4251400A priority Critical patent/JPH06105533A/ja
Publication of JPH06105533A publication Critical patent/JPH06105533A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Electric Motors In General (AREA)

Abstract

(57)【要約】 【目的】駆動源をMGセットとすると共に、発電機を極
数変換電動機等により複数の速度で駆動して出力周波数
変更と電圧制御により、流量制御範囲を拡張した電磁ポ
ンプの駆動電源装置を提供する。 【構成】液体金属等を移送する電磁ポンプの駆動源が慣
性モーメントを有するMGセットによる電源装置におい
て、上記MGセット29の駆動電動機を複数速度の極数変
換電動機28とすると共に、発電機14の回転速度の変更と
出力電圧制御により電磁ポンプ8のすべりを制御して移
送流量の調整を行うことを特徴とする。またMGセット
の駆動電動機を複数の単速度電動機38,39とする外、複
数速度の極数変換電動機28と単速度電動機41としたこと
を特徴とする。

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は、液体金属等を移送する
電磁ポンプの駆動に係り、特に液体金属冷却型高速増殖
炉の冷却材ポンプに使用する電磁ポンプの駆動電源装置
に関する。
【0002】
【従来の技術】例えば液体金属冷却型高速増殖炉は、冷
却材として液体金属ナトリウムを使用したもので、その
システム構成は図5の基本システム構成図に示すよう
に、原子炉炉心1で発生した熱は、1次冷却材ポンプ2
によって循環される1次冷却系3の液体金属ナトリウム
により中間熱交換器4に給送され、この中間熱交換器4
によって2次冷却系5の液体金属ナトリウムに伝達され
る。
【0003】2次冷却系5の液体金属ナトリウムは、2
次冷却材ポンプ6によって蒸気発生器7に輸送されて、
この蒸気発生器7によって、水あるいは蒸気に熱交換さ
れ発電等に利用される。従って、1次冷却系3および2
次冷却系5の液体金属ナトリウムは、水あるいは蒸気へ
の熱伝達媒体として使用されて冷却材ポンプ2,6はそ
の熱輸送に使われている。
【0004】前記冷却材ポンプ2,6の運転状態は、原
子炉炉心1の発生熱を伝達し利用するための通常運転状
態と、原子炉炉心1の核分裂が停止した後の崩壊熱等の
残留熱を伝達し、排熱するための残留熱除去運転状態の
2つに大きく分かれる。残留熱除去運転は、事故発生等
の異常時にも残留熱を除去し続けて原子炉炉心1の健全
性を確保するためにも必要であり、プラントの安全の確
保のために、高い信頼性や多重化構造等が要求されるが
必要流量は小さい。
【0005】通常運転状態では、原子炉炉心1の出力の
変更時に 300℃以上の高い液体金属ナトリウムの温度の
変化をできる限り緩和し、冷却材を内包する容器や配管
等の熱過渡変化に伴う疲労を抑制するため、1次冷却材
ポンプ2および2次冷却材ポンプ6は、原子炉炉心1の
出力の変化にほぼ比例して1次冷却系3および2次冷却
系5の流量を制御する。このため原子炉出力の変化に応
じた大流量から小流量までの広範囲で高い制御安定性が
要求される。
【0006】この2つの異なる運転状態の要求を満足す
るため、1次冷却材ポンプ2と2次冷却材ポンプ6は、
通常運転用の駆動電源装置と残留熱除去運転用の駆動電
源装置の両方を備えて、電源喪失等によって通常運転用
駆動電源装置が緊急停止した場合には、その駆動電源装
置に持たせた慣性モーメントによりコーストダウン時の
流量を確保し、流量の低下後に残留熱除去運転用駆動電
源装置に引き継ぐ構成としている。
【0007】従来の冷却材ポンプに電磁ポンプを使用し
た場合の構成例として、図6の回路構成図を示す。電磁
ポンプ8の電源としては、通常運転用電源9よりコース
トダウン開始信号10により作動するコーストダウン開始
用スイッチ11を介して、誘導電動機12、フライホイール
13および同期発電機14で構成されたMGセット15と、電
圧調整器16からなる通常運転用駆動電源装置と、残留熱
除去運転用電源17に接続した定電圧定周波数電源装置
(CVCF)18からなる残留熱除去運転用電源装置があ
り、コーストダウン引継ぎ信号19により作動する通常運
転/残留熱除去運転切換スイッチ20を介して電磁ポンプ
8に接続して構成されている。
【0008】前記通常運転用駆動電源装置のMGセット
15は、原子炉運転時には出力電圧制御による電磁ポンプ
8のすべり制御による冷却材の流量制御と、停止過渡時
の流量特性を満足するに必要な大きさの慣性モーメント
(必要によりフライホイール13を付加)を保有させてコ
ーストダウン運転を行う。また原子炉停止中は、前記残
留熱除去運転用駆動電源装置による冷却材の一定流量維
持を実施している。
【0009】上記の運転状態による冷却材流量の変化例
を、図7の原子炉緊急停止時の冷却材流量特性図に示
す。曲線21に示すように当初は通常運転用駆動電源装置
により電磁ポンプ8は所定の冷却材流量を流している。
しかしながら、時刻t0 において原子炉の緊急停止が発
生すると、電磁ポンプ8に供給される電力は、時刻t0
において通常運転用駆動電源装置の電源である通常運転
用電源9がコーストダウン開始用スイッチ11により遮断
され、時刻t1までの停止過渡時にはMGセット15の有
する大きな慣性モーメントによるコーストダウン運転が
行われる。
【0010】このコーストダウン時の流量減少特性は、
慣性モーメントの大きさによって適度に設定することが
でき、過渡時の冷却材温度変化が緩和できる設計がされ
ている。さらに、コーストダウンが終了した時刻t1 に
おける通常運転/残留熱除去運転切換スイッチ20の切換
により、時刻t1 以降は電磁ポンプ8に対して残留熱除
去運転用電源装置である定電圧定周波数電源装置18から
の電力供給により、小流量の冷却材により原子炉の残留
熱除去運転を行う。
【0011】すなわち、図6に示す電磁ポンプ8は、通
常運転時はコーストダウン時の流量特性を満足するに必
要な慣性モーメントを持つMGセット15により駆動さ
れ、このMGセット15は、誘導電動機12および同期発電
機14と、慣性モーメントを確保するために必要により設
けるフライホイール13を互いに軸を直結して構成されて
いる。
【0012】誘導電動機12は、通常運転用電源9からコ
ースとダウン開始用スイッチ11を通して三相交流電源を
供給され、三相交流電源の周波数fiと誘導電動機12の
極数pmから定まる同期回転数nより少し低い回転数
で、同期発電機14およびフライホイール13を駆動する。
同期発電機14は通常、電圧調整装置16から励磁電力が供
給され、同期発電機14の回転数(誘導電動機12の回転数
と同一)nと極数pgから定まる周波数fgの三相交流
電圧を発生し、この電圧は前記電圧調整装置16により調
整できる。
【0013】このような構成により、通常運転時は同期
発電機14の出力電圧を変化させることにより電磁ポンプ
8のすべりを制御して冷却材流量を調整する。
【0014】一般に誘導機および同期機は、その回転数
をn、極数をp、周波数をfとすると、相互の関係は次
ぎの式 (1)のように表される。 n= 120f/p … (1)
【0015】従って、誘導電動機12の極数pmと同期発
電機14の極数pgの比を変えることにより出力周波数を
整数比で選定することができる。また原子炉の残留熱除
去運転時は、定電圧周波数を発生する定電圧定周波数電
源装置18によって電磁ポンプ8は駆動される。定電圧定
周波数電源装置18は残留熱除去運転用電源17から電力が
供給され、一定周波数の三相交流電圧を発生して電磁ポ
ンプ8の流量を一定に調整する。
【0016】通常運転用駆動電源装置の電源喪失等が発
生して原子炉を緊急停止した場合には、コーストダウン
開始信号10によりコーストダウン開始用スイッチ11を開
き、前記図7の原子炉緊急停止特性図の曲線21に示すよ
うにコーストダウンさせ、残留熱除去運転時流量近傍ま
で流量が減少した時に、コーストダウン引継信号19によ
り通常運転/残留熱除去運転切換スイッチ20で電磁ポン
プ8の電源をMGセット15から定電圧定周波数電源装置
18に切換えて残留熱除去運転に移行する。
【0017】
【発明が解決しようとする課題】図8は従来の通常運転
用駆動電源装置におけるMGセット15の同期発電機14の
発電機電圧と、電磁ポンプ8における冷却材流量の特性
図で、この発電機電圧−冷却材流量特性は曲線22に示す
ように直線ではなく、発電機電圧を低下させても冷却材
流量の減少は小さい。また発電機電圧を低下させ過ぎる
と点線部のように発電機の界磁が弱まり、電磁ポンプ8
のすべり制御が不安定になる。さらに、通常運転流量可
変可能範囲23は小さく、残留熱除去運転流量24との間も
大きく離れている。
【0018】このように従来の技術では、電磁ポンプ8
は通常運転と残留熱除去運転との2つの異なる運転状態
の要求に合わせるために夫々通常運転用と残留熱除去運
転用の2種類の駆動電源装置と、コーストダウン時の熱
過渡緩和のために大きな慣性モーメントを駆動電源装置
に設けていた。このため駆動電源装置は全体として大き
くなり、2つの電源装置の出力を切換える大容量の切換
装置である通常運転/残留熱除去運転切換スイッチ20が
必要となる支障があった。
【0019】また通常運転用駆動電源装置は、MGセッ
ト15の出力電圧制御により電磁ポンプ8のすべりを制御
して冷却材流量を調整しているため、流量制御範囲を広
くとると制御の安定性が悪くなる。さらに液体金属冷却
型高速増殖炉は、原子炉の出力に比例して1次冷却系お
よび2次冷却系ナトリウムの流量を制御するため、流量
制御範囲が狭いことは、出力の制御範囲を広く得られな
いことになる。
【0020】なお、コーストダウン時および残留熱除去
運転時に必要な機器は、原子炉の安全確保に必要な設備
となり高い信頼性が要求されるが、機器数の多いことは
信頼性の低下と設備コストが上昇する要因となってい
た。
【0021】本発明の目的とするところは、駆動源をM
Gセットとすると共に、発電機を極数変換電動機等によ
り複数の速度で駆動して出力周波数変更と電圧制御によ
り、流量制御範囲を拡張した電磁ポンプの駆動電源装置
を提供することにある。
【0022】
【課題を解決するための手段】液体金属等を移送する電
磁ポンプの駆動源が慣性モーメントを保有するMGセッ
トによる電源装置において、上記MGセットの駆動電動
機を複数速度の極数変換電動機とすると共に、発電機の
回転速度の変更と出力電圧制御により電磁ポンプのすべ
りを制御して移送流量の調整を行うことを特徴とする。
【0023】またMGセットの駆動電動機を複数の単速
度電動機とすると共に、発電機の回転速度の変更と出力
電圧制御により電磁ポンプのすべりを制御して移送流量
の調整を行うことを特徴とする。さらにMGセットの駆
動電動機を、複数速度の極数変換電動機と単速度電動機
として、発電機の回転速度の変更と出力電圧制御により
電磁ポンプのすべりを制御して移送流量の調整を行うこ
とを特徴とする。
【0024】
【作用】通常運転時には、高速運転用電源からの電力
は、MGセットの極数変換電動機の高速巻線に供給さ
れ、極数変換電動機は高速回転で運転する。この極数変
換電動機と直結された発電機からは高い周波数の交流電
圧が電磁ポンプへ出力され、この電圧は電圧調整装置に
より制御される。電磁ポンプでは、発電機から供給され
た高い周波数の制御電圧により定められた大流量で、冷
却材である液体金属ナトリウムの移送を行う。この流量
は電圧調整装置による電圧制御により任意に調整され
る。
【0025】なお、通常運転時で小流量が要求された際
には、極数変換電動機を低速巻線に切換えて低速運転用
電源からの電力により発電機を低速回転で運転して、低
い周波数と電圧調整装置の電圧制御による交流電圧で電
磁ポンプの運転を行ない、所定の小流量を得る。さら
に、小流量から大流量に要求が変化した場合には、極数
変換電動機の低速巻線を高速巻線に切換え、かつ発電機
の出力電圧を電圧調整装置で制御して電磁ポンプの移送
流量を円滑に変更する。
【0026】原子炉停止時には、低速運転用電源からの
電力を極数変換電動機の低速巻線に供給すると共に、電
圧調整装置を逐次調整してコーストダウン時に適切な流
量減少特性を得る。さらに、原子炉の緊急停止時で電源
喪失の場合には、MGセットが保有する慣性モーメント
により発電機の速度低下が行われ、この出力電圧の変化
に対応したコーストダウン特性により流量が減少する。
【0027】また原子炉停止中の残留熱除去運転時は、
低速運転用電源からの電力を極数変換電動機の低速巻線
に供給して発電機を低速運転すると共に、電圧調整装置
を調整して一定の出力電圧を電磁ポンプに供給して、予
め設定された一定の流量にて運転する。
【0028】なお、上記通常運転(大流量、小流量)、
原子炉停止時、残留熱除去運転時等の各種切換えは、高
速/低速切換信号とコーストダウン開始信号、およびコ
ーストダウン引継ぎ信号により、高速運転用スイッチと
低速運転用スイッチの開閉で行われる。
【0029】
【実施例】本発明の一実施例について図面を参照して説
明する。なお、上記した従来技術と同じ構成部分につい
ては同一符号を付して詳細な説明を省略する。図1の回
路構成図に示すように、電磁ポンプ8の電源としては、
高速運転用電源25よりコーストダウン開始信号10および
高速/低速切換信号26により作動する高速運転用スイッ
チ27を介して接続された極数変換誘導電動機28と、この
極数変換誘導電動機28とフライホイール13および同期発
電機14で構成されたMGセット29がある。
【0030】前記極数変換誘導電動機28には、低速運転
用電源30が前記コーストダウン開始信号10とコーストダ
ウン引継信号19、さらに高速/低速切換信号26がないこ
とにより作動する低速運転用スイッチ31を介して接続さ
れている。また前記同期発電機14には電圧調整器16が接
続されて構成されている。
【0031】すなわち、電磁ポンプ8は、通常運転時お
よび残留熱除去運転時共に、コーストダウン時の流量特
性を満足するのに必要な慣性モーメントを保有するMG
セット29により駆動される。このMGセット29は、高速
巻線と低速巻線の2つの極数の異なる巻線を持つ極数変
換誘導電動機28と、同期発電機14およびコーストダウン
特性を満足する慣性モーメントを確保するために必要に
より設けるフライホイール13を互いに軸を直結して構成
している。
【0032】前記極数変換誘導電動機28は2組の巻線を
有する3相かご形誘導電動機で、同期発電機14は多極の
3相交流同期発電機であり、図示しない共通台床の上に
軸を直結して設置される。極数変換誘導電動機28および
同期発電機14の回転子の慣性モーメントがコーストダウ
ン時の流量特性を満足するに十分でない場合には、フラ
イホイール13を設ける。なお、このフライホイール13は
前記極数変換誘導電動機28、または同期発電機14に組み
込むこともある。
【0033】次に、上記構成による作用について説明す
る。通常運転時には極数変換誘導電動機28は高速運転用
電源25から高速運転用スイッチ27を通して三相交流電源
が供給され、この三相交流電源の周波数fiと極数変換
誘導電動機28の高速巻線の極数pmhから定まる同期回
転数nhより少し低い高速回転数にて同期発電機14とフ
ライホイール13を駆動する。
【0034】また低速運転用電源30からは、低速運転用
スイッチ31を通して三相交流電源が供給され、この三相
交流電源の周波数fiと極数変換誘導電動機28の低速巻
線の極数pmlにより定まる同期回転数nlより少し低
い低速回転数で同期発電機14とフライホイール13が駆動
される。
【0035】前記同期発電機14は電圧調整装置16から励
磁電力を供給され、同期発電機14の回転数(極数変換誘
導電動機28の回転数と同一)nh(高速)、およびnl
(低速)と、極数pgから定まる周波数fgh(高)、
およびfgl(低)の三相交流電圧を発生する。なお、
この出力電圧は電圧調整装置16により調整される。
【0036】コーストダウン運転は、高速運転用スイッ
チ27と低速運転用スイッチ31を同時に開くことにより実
施され、この時にMGセット29が保有する慣性モーメン
トに対応したコーストダウン特性により流量低下が行わ
れる。以上のような操作により、通常運転時は極数変換
誘導電動機28の回転数の切換えと、同期発電機14の出力
電圧を変化させることにより、電磁ポンプ8のすべりを
制御して冷却材流量を調整する。
【0037】極数変換誘導電動機28および同期発電機14
で、夫々の回転数をn、極数をp、周波数をfiとし、
すべりを無視すると各々の関係は以下の式 (2), (3)の
ようになる。 nh= 120fi/pmh= 120fgh/pg … (2) nl= 120fi/pml= 120fgl/pg … (3)
【0038】但し、nhは高速回転数、nlは低速回転
数、pmhは極数変換誘導電動機の高速側極数、pml
は極数変換誘導電動機の低速側極数、fghは同期発電
機の高速時の出力周波数、fglは同期発電機の低速時
の出力周波数、pgは、同期発電機の極数である。従っ
て、極数変換変換誘導電動機28の極数pmh,pml
と、同期発電機14の極数pgの比を変えることにより出
力周波数を整数比で選定することができ、極数変換誘導
電動機28の極数pmh,pmlを切換えることにより2
つの出力周波数に切換えることができる。
【0039】残留熱除去運転時は、極数変換誘導電動機
28の低速運転により、電磁ポンプ8は駆動され、予め設
定された一定の流量にて運転する。高速および低速の切
換え時は、高速/低速切換信号26により高速運転用スイ
ッチ27と、低速運転用スイッチ31の切換えを行う。
【0040】高速運転用電源25の電源喪失等が発生して
原子炉を緊急停止した場合には、コーストダウン開始信
号10により高速運転用スイッチ27と低速運転用スイッチ
31の両方を開き、電圧調整装置16により同期発電機14の
出力電圧の制御をしながらコーストダウンさせ、残留熱
除去運転時の流量近傍まで流量が減少した時に、コース
トダウン引継信号19により低速運転用スイッチ31を閉じ
ることによって、残留熱除去運転に移行する。
【0041】以上は図2の発電機電圧−冷却材流量特性
図で示すように、本実施例によれば高速時の特性は曲線
32のように、低速時特性の曲線33を高→低速切換流量3
4、あるいは低→高速切換流量35にて切換えることによ
り、通常運転流量可変可能範囲23を広範囲に得られる。
また残留熱除去運転点36は低速時特性の曲線33の下端付
近にあり、この時の残留熱除去運転流量24は通常運転流
量可変可能範囲23と連続している。
【0042】この一実施例によれば、駆動電源装置をM
Gセット29の1組に集約でき、コンパクトで簡易な構成
となる。また通常運転と残留熱除去運転の切換装置も、
本来必要な電源用遮断器を高速運転用スイッチ27と低速
運転用スイッチ31として使用することによって新規に設
置する必要はない。
【0043】さらに、通常運転用の駆動電源はMGセッ
ト29における極数変換誘導電動機28の回転数切換えと、
電圧調整装置16による出力電圧制御により電磁ポンプ8
のすべりを制御して冷却材流量を調整しているため、流
量制御範囲を広範囲に得ることができ、原子炉の出力運
転調整範囲を円滑で広くすることができる。従って、通
常運転流量可変可能範囲23の下限近くに残留熱除去運転
流量24があり、原子炉および冷却系の状態に大きなショ
ックを与えないで、残留熱除去運転状態と通常運転状態
の間を容易に切換えることができ、原子炉の運転性が向
上する。
【0044】なお、原子炉を緊急停止する時に本駆動電
源装置の電源がある場合は、同期発電機14の電圧調整装
置16によりコーストダウン時の流量減少特性を適切に制
御することができる。また原子炉の安全確保に必要な設
備となるコーストダウン時、および残留熱除去運転時に
必要な機器は、駆動電源装置がMGセット29のみでコン
パクトになるために装置の物量が減少し、信頼性、保全
性が向上してコストは低減する。
【0045】図3の回路構成図は本発明の他の実施例を
示し、MGセット37が高速用誘導電動機38と低速用誘導
電動機39、およびフライホイール13、同期発電機14を直
結して構成したもので、同期発電機14を駆動する電動機
を極数変換誘導電動機でなく、高速用誘導電動機38と低
速用誘導電動機39の2台を設置したことが特徴で、高速
用誘導電動機38は高速運転用スイッチ27を介して高速運
転用電源25より、また低速用誘導電動機39は低速運転用
スイッチ31を介して低速運転用電源30より電力を供給さ
れていて、その他は上記図1の一実施例と同様の構成と
している。
【0046】従って、基本的な運転方法や作用、効果は
上記一実施例と同様であるが、巻線構造が複雑となる極
数変換誘導電動機28に比較して2台の高速用誘導電動機
38および低速用誘導電動機39は、夫々単速度機であり構
造が簡単で互いの極数選択が多岐に可能であると共に、
特性等の設計自由度が増す外、慣性モーメントを大とし
てフライホイール13が省略される可能性も高い。また各
誘導電動機38,39と同期発電機14、およびフライホイー
ル13との直結に際しての配置は任意であり、MGセット
37の構造を簡単にすることができる。
【0047】また図4に示す回路構成図は本発明のその
他の実施例で、MGセット40は上記一実施例のMGセッ
ト29に残留熱除去運転用誘導電動機41を付加して、この
残留熱除去運転用誘導電動機41を残留熱除去運転用スイ
ッチ42を介した残留熱除去運転用電源17により駆動する
構成としたことが特徴で、この外は上記図1に示す一実
施例と同様の構成としている。
【0048】また作用については、残留熱除去運転時に
低速運転用電源30による極数変換誘導電動機28の低速巻
線と、別電源の残留熱除去運転用電源17による残留熱除
去運転用誘導電動機41を切換えて同期発電機14を駆動す
るもので、これにより、原子炉の安全確保に必要な残留
除去運転用の電源回路と通常運転用の電源回路を、物理
的に分離しているので、信頼性と安全性が高い。
【0049】なお、上記図1および図3に示した一実施
例および他の実施例においても、極数変換誘導電動機28
の低速巻線と、低速用誘導電動機39の電源を残留熱除去
運転用電源17とすることも容易である。
【0050】上記した他の実施例および、その他の実施
例に対する特許請求の範囲は次の (1)および (2)のよう
になる。 「(1) 電磁ポンプの駆動源である慣性モーメントを有す
るMGセットによる電源装置において、MGセットの駆
動電動機を複数の単速度電動機とすると共に、発電機の
回転速度の変更と出力電圧制御による電磁ポンプのすべ
り制御により移送流量の調整をすることを特徴とする電
磁ポンプの駆動電源装置」。
【0051】「(2) 電磁ポンプの駆動源である慣性モー
メントを有するMGセットによる電源装置において、M
Gセットの駆動電動機を複数速度の極数変換電動機およ
び単速度電動機とすると共に、発電機の回転速度の変更
と出力電圧制御による電磁ポンプのすべり制御により移
送流量の調整をすることを特徴とする電磁ポンプの駆動
電源装置。」
【0052】
【発明の効果】以上本発明によれば、次のような効果が
得られる。駆動電源装置が1組のMGセットで構成さ
れ、通常運転と残留熱除去運転の切換も専用装置が不要
なため、コンパクトな構造となり、物量の削減や所要据
付スペースの減少により設備のコストが低下する。また
原子炉の安全確保に必須の設備で、耐震性・対環境性等
に高い信頼性が要求されるコーストダウン時および残留
熱除去運転時に必要な機器は、駆動電源装置がコンパク
トになることにより信頼性が向上する。
【0053】通常運転における電磁ポンプの流量制御範
囲が拡張することから、原子炉の出力運転調整範囲が円
滑で広くできる。また通常運転流量可変可能範囲の下限
近傍に残留熱除去運転流量を位置させるため、原子炉お
よび冷却系に大きなショックを与えずに、残留熱除去運
転状態と通常運転状態の切換えが円滑に実施できて原子
炉の運転特性が向上する。
【0054】さらに、原子炉の緊急停止時で、駆動電源
装置の電源が確保されている場合には、コーストダウン
時の流量減少特性をMGセットの慣性モーメントによる
だけではなく、発電機の電圧調整装置でも制御して、過
渡時の冷却材温度変化をより緩和することができる効果
がある。
【図面の簡単な説明】
【図1】本発明に係る一実施例の電磁ポンプの駆動電源
装置の回路構成図。
【図2】本発明に係る一実施例の発電機電圧−冷却材流
量特性図。
【図3】本発明に係る他の実施例の電磁ポンプの駆動電
源装置の回路構成図。
【図4】本発明に係るその他の実施例の電磁ポンプの駆
動電源装置の回路構成図。
【図5】液体金属冷却型高速増殖炉の基本システム構成
図。
【図6】従来の電磁ポンプの駆動電源装置の回路構成
図。
【図7】原子炉緊急停止時の冷却材流量特性図。
【図8】従来の電磁ポンプの駆動電源装置の発電機電圧
−冷却材流量特性図。
【符号の説明】
1…原子炉炉心、2…1次冷却材ポンプ、3…1次冷却
系、4…中間熱交換器、5…2次冷却系、6…2次冷却
材ポンプ、7…蒸気発生器、8…電磁ポンプ、9…通常
運転用電源、10…コーストダウン開始信号、11…コース
トダウン開始用スイッチ、12…誘導電動機、13…フライ
ホイール、14…同期発電機、15,29,37,40…MGセッ
ト、16…電圧調整器、17…残留熱除去運転用電源、18…
定電圧定周波数電源装置、19…コーストダウン引継ぎ信
号、20…通常運転/残留熱除去運転切換スイッチ、21,
22…曲線、23…通常運転流量可変可能範囲、24…残留熱
除去運転流量、25…高速運転用電源、26…高速/低速切
換信号、27…高速運転用スイッチ、28…極数変換誘導電
動機、30…低速運転用電源、31…低速運転用スイッチ、
32…高速時特性の曲線、33…低速時特性の曲線、34…高
→低速切換流量、35…低→高速切換流量、36…残留熱除
去運転点、38…高速用誘導電動機、39…低速用誘導電動
機、41…残留熱除去運転用誘導電動機、42…残留熱除去
運転用スイッチ。

Claims (1)

    【特許請求の範囲】
  1. 【請求項1】 液体金属等を移送する電磁ポンプの駆動
    源が慣性モーメントを保有するMGセットによる電源装
    置において、上記MGセットの駆動電動機を複数速度の
    極数変換電動機とすると共に、発電機の回転速度の変更
    と出力電圧制御により電磁ポンプのすべりを制御して移
    送流量の調整を行うことを特徴とする電磁ポンプの駆動
    電源装置。
JP4251400A 1992-09-21 1992-09-21 電磁ポンプの駆動電源装置 Pending JPH06105533A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4251400A JPH06105533A (ja) 1992-09-21 1992-09-21 電磁ポンプの駆動電源装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4251400A JPH06105533A (ja) 1992-09-21 1992-09-21 電磁ポンプの駆動電源装置

Publications (1)

Publication Number Publication Date
JPH06105533A true JPH06105533A (ja) 1994-04-15

Family

ID=17222283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4251400A Pending JPH06105533A (ja) 1992-09-21 1992-09-21 電磁ポンプの駆動電源装置

Country Status (1)

Country Link
JP (1) JPH06105533A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018524778A (ja) * 2015-07-06 2018-08-30 ロッテ ケミカル コーポレーション レドックスフロー電池

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018524778A (ja) * 2015-07-06 2018-08-30 ロッテ ケミカル コーポレーション レドックスフロー電池

Similar Documents

Publication Publication Date Title
US4481455A (en) Method of starting variable-speed induction motor
JPS5972998A (ja) 可変速水車発電機の運転装置
Larsen A classical approach to constructing a power flow controller
JPH08116629A (ja) 原子炉循環ポンプ用電源装置
JPH06105533A (ja) 電磁ポンプの駆動電源装置
US4652807A (en) Starting method for induction motors
JPH06169562A (ja) 電磁ポンプ駆動電源装置
JP2664778B2 (ja) 電磁ポンプ制御装置
JP2856869B2 (ja) 可変速揚水発電設備の運転方法
JP7475048B2 (ja) 誘導発電機の系統並列方法及び装置
JP3572676B2 (ja) フライホイールによるエネルギー貯蔵放出装置
CA1124367A (en) Procedure for starting and reversing a gas-turbine-electric power-plant for an icebreaker
JPS6359798A (ja) 水車発電機
JPH0835483A (ja) 電磁ポンプ装置
Scott et al. Large grinding mill drives update
JP3141226B2 (ja) 炉心流量制御システム
JPH05284796A (ja) 電磁ポンプ電源制御装置
JPH05142382A (ja) 電磁ポンプ制御装置
WO2019163236A1 (ja) エンジン発電機システムとその制御方法並びにコジェネレーションシステム
JPS6315684A (ja) 揚水発電機システム
JPH0850190A (ja) 炉心流量制御システム
JP2523520B2 (ja) 可変速水車発電装置の制御装置
CN116388234A (zh) 并网发电系统的控制方法、系统、控制器及存储介质
JPS6128892A (ja) インタ−ナルポンプシステム
JPH02220115A (ja) 原子炉再循環ポンプモータ駆動用電源装置