JPH06105315B2 - Method of restarting liquid metal cooled reactor in case of emergency shutdown - Google Patents

Method of restarting liquid metal cooled reactor in case of emergency shutdown

Info

Publication number
JPH06105315B2
JPH06105315B2 JP58122192A JP12219283A JPH06105315B2 JP H06105315 B2 JPH06105315 B2 JP H06105315B2 JP 58122192 A JP58122192 A JP 58122192A JP 12219283 A JP12219283 A JP 12219283A JP H06105315 B2 JPH06105315 B2 JP H06105315B2
Authority
JP
Japan
Prior art keywords
reactor
temperature
coolant
liquid metal
overflow tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58122192A
Other languages
Japanese (ja)
Other versions
JPS6014200A (en
Inventor
雅夫 峯
達雄 天田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58122192A priority Critical patent/JPH06105315B2/en
Publication of JPS6014200A publication Critical patent/JPS6014200A/en
Publication of JPH06105315B2 publication Critical patent/JPH06105315B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)
  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、緊急停止した高速増殖炉等の液体金属冷却型
原子炉を早期に再起動させる方法に関する。
Description: FIELD OF THE INVENTION The present invention relates to a method for early restarting a liquid metal cooled nuclear reactor such as an emergency shutdown fast breeder reactor.

〔発明の背景〕 液体金属冷却型原子炉は、炉心を収納した炉容器内に液
体金属冷却材(以下冷却材と称す)が入つており、この
冷却材と炉容器上面との間を不活性ガス空間としてい
る。そして、この不活性ガス空間を確保するため、炉容
器内の冷却材温度の変化に伴う冷却材の膨張収縮による
冷却材液位の変化をなくすように、炉容器オーバーフロ
ー汲上げ装置を設けている。この炉容器オーバーフロー
汲上げ装置は、炉容器の外部にオーバーフロータンクを
設置し、オーバーフロータンク内の冷却材を電磁ポンプ
により炉容器に汲み上げることができるようにしてある
とともに、炉容器内の余分な冷却材をオーバーフロータ
ンク内に戻すことにより、炉容器内冷却材液位を一定に
保持することができるようになつている。このような原
子炉においては、通常の原子炉の起動・停止時に炉容器
内の冷却材温度の昇降温率を15℃/hr程度にし、緩やか
に昇降温を行いつつ炉容器オーバーフロー汲上げ装置の
運転を継続している。従つて、オーバーフロータンク及
びオーバーフロータンクと炉容器とを連通する配管の温
度は、炉容器内冷却材温度と大きな差を生じることなく
冷却材温度に追従して昇降温する。
[Background of the Invention] A liquid metal cooling type reactor has a liquid metal coolant (hereinafter referred to as a coolant) contained in a reactor vessel accommodating a core, and an inert gas is provided between the coolant and the upper surface of the reactor vessel. It is a gas space. In order to secure this inert gas space, a reactor vessel overflow pumping device is provided so as to eliminate the change in the coolant liquid level due to the expansion and contraction of the coolant due to the change in the coolant temperature in the furnace vessel. . In this furnace vessel overflow pumping device, an overflow tank is installed outside the furnace vessel so that the coolant in the overflow tank can be pumped up to the furnace vessel by an electromagnetic pump, and the excess cooling in the furnace vessel can be performed. By returning the material to the overflow tank, the liquid level of the coolant in the furnace vessel can be kept constant. In such a reactor, the rate of temperature increase / decrease of the coolant temperature in the reactor vessel is set to about 15 ° C / hr during normal reactor startup / shutdown, and the reactor vessel overflow pumping device It continues to operate. Therefore, the temperature of the overflow tank and the temperature of the pipe connecting the overflow tank and the furnace vessel rise and fall while following the coolant temperature without causing a large difference from the temperature of the coolant in the furnace vessel.

しかし、何らかの原因により原子炉が緊急停止した場合
には、第1図に示す如く炉容器内冷却材温度とオーバー
フロータンク内の冷却材温度とに著しい温度差を生じ
る。即ち、原子炉緊急停止信号が発生した場合には、炉
心に制御棒を挿入して原子炉出力を急速に低下させると
ともに、炉心冷却材流量の低下と炉容器内冷却材温度の
急速な低下を図つている。そして、急速に温度が低下し
た炉容器内冷却材は、第1図に示すように固化を防止す
るために200℃程度の一定の温度に保持される。一方、
オーバーフロータンク内の冷却材は、オーバーフロータ
ンクの保温材表面から雰囲気中への放散熱により徐々に
降温する。このため、オーバーフロータンクと炉容器と
の冷却材の間に大きな温度差を生じることになる。従つ
て、オーバーフロータンクから炉容器への冷却材の汲み
上げを継続すると、冷却材汲上げ配管の炉容器取り付け
部において大きな温度差に基づく熱応力が発生する。特
に、第2図に示すように炉容器10に取り付けた汲上げ配
管12のノズル先端部14と炉容器10の内部15のノズル付け
根部16とにおいて大きな温度差による熱応力が厳しくな
り、熱疲労を生ずる虞れがあるため、原子炉の緊急停止
時には速やかに炉容器内への冷却材の汲み上げ運転を停
止している。この冷却材の汲み上げ運転の停止により、
冷却剤汲上げ配管および冷却材戻り配管の温度は、雰囲
気中への放熱により第1図の2点鎖線に示す如く急速に
低下する。そして、各配管の温度は、配管内に留まつて
いる冷却材の固化を防止するため、配管に設けてある予
熱ヒータをON-OFF制御することにより、TH(230℃程
度)とTL(270℃程度)との間において制御される。
However, when the nuclear reactor is shut down for some reason, as shown in FIG. 1, a significant temperature difference occurs between the temperature of the coolant in the reactor vessel and the temperature of the coolant in the overflow tank. That is, when the reactor emergency stop signal is generated, the control rod is inserted into the core to rapidly reduce the reactor output, and the core coolant flow rate and the reactor vessel coolant temperature are rapidly reduced. I'm drawing. Then, the coolant in the furnace vessel whose temperature has dropped rapidly is kept at a constant temperature of about 200 ° C. in order to prevent solidification as shown in FIG. on the other hand,
The coolant in the overflow tank is gradually cooled by the heat dissipated from the surface of the heat insulating material of the overflow tank into the atmosphere. For this reason, a large temperature difference occurs between the coolant in the overflow tank and the furnace container. Therefore, when the pumping of the coolant from the overflow tank to the furnace vessel is continued, thermal stress is generated due to a large temperature difference in the furnace vessel attachment portion of the coolant pumping pipe. In particular, as shown in FIG. 2, thermal stress due to a large temperature difference between the nozzle tip portion 14 of the pumping pipe 12 attached to the furnace vessel 10 and the nozzle root portion 16 of the inside 15 of the furnace vessel 10 becomes severe, and thermal fatigue is caused. Therefore, the pumping operation of the coolant into the reactor vessel is immediately stopped at the time of an emergency shutdown of the reactor. By stopping the pumping operation of this coolant,
The temperature of the coolant pumping pipe and the coolant return pipe rapidly decreases due to heat radiation into the atmosphere, as shown by the chain double-dashed line in FIG. The temperature of each pipe is adjusted to T H (approximately 230 ° C) and T L by controlling the preheating heater installed in the pipe to ON / OFF control in order to prevent the solidification of the coolant remaining in the pipe. (About 270 ℃).

一方、炉容器内の冷却材の温度低下は、冷却材の収縮を
生じ、炉容器内の冷却材液位が通常のレベルより低下す
る。このため、原子炉を再起動する場合には、オーバー
フロータンクからの冷却材の汲み上げを再開し、炉容器
液位を通常のレベルまで復帰させる必要がある。ところ
が、前記した原子炉の緊急停止時には、早期に冷却材の
汲み上げを再開すると、次のような不都合が生じる。
On the other hand, a decrease in the temperature of the coolant in the furnace container causes the coolant to contract, and the liquid level of the coolant in the furnace container falls below a normal level. Therefore, when the nuclear reactor is restarted, it is necessary to restart pumping of the coolant from the overflow tank and restore the reactor vessel liquid level to a normal level. However, if the pumping of the coolant is restarted early at the time of the emergency shutdown of the reactor, the following inconvenience occurs.

(1)オーバーフロータンク内の冷却材温度が、炉容器
内の冷却材温度より非常に高いため、汲み上げノズル部
に大きな熱応力が発生する。
(1) Since the temperature of the coolant in the overflow tank is much higher than the temperature of the coolant in the furnace vessel, large thermal stress is generated in the pumping nozzle portion.

(2)オーバーフロータンク内の冷却材温度が、冷却材
汲み上げ配管の予熱温度に比べて非常に高いため、冷却
材汲み上げ配管に大きな熱応力が生ずる。
(2) Since the coolant temperature in the overflow tank is much higher than the preheating temperature of the coolant pumping pipe, a large thermal stress is generated in the coolant pumping pipe.

(3)炉容器内に汲み上げた高温のオーバーフロータン
ク内の冷却材が、低い予熱温度の冷却材戻り配管内に溢
流するため、冷却材戻り配管に大きな熱応力が生ずる。
(3) Since the coolant in the high temperature overflow tank pumped into the furnace vessel overflows into the coolant return pipe having a low preheating temperature, a large thermal stress is generated in the coolant return pipe.

従つて、従来の緊急停止時における液体金属冷却型原子
炉の再起動は、オーバーフロータンク内の冷却材が上記
した不都合を生じない温度まで低下した後に、オーバー
フロータンクから炉容器に冷却材の汲み上げを再開する
ようにしており、原子炉緊急停止後の再起動に時間がか
かるという欠点があつた。
Therefore, when restarting a conventional liquid metal cooling reactor during an emergency shutdown, pumping of coolant from the overflow tank to the reactor vessel should be performed after the coolant in the overflow tank has cooled to a temperature that does not cause the above-mentioned inconvenience. However, there is a drawback that it takes time to restart after an emergency shutdown of the reactor.

〔発明の目的〕[Object of the Invention]

本発明は、前記従来技術の欠点を解消するためになされ
たもので、緊急停止した原子炉を早期に再起動できる液
体金属冷却型原子炉の緊急停止時の再起動方法を提供す
ることを目的とする。
The present invention has been made to solve the above-mentioned drawbacks of the prior art, and it is an object of the present invention to provide a restart method for an emergency shutdown of a liquid metal cooled nuclear reactor capable of restarting an emergency shutdown reactor early. And

〔発明の概要〕[Outline of Invention]

本発明は、上記目的を達成するために、原子炉の炉容器
内の余分な冷却用液体金属をオーバーフロータンクに戻
す戻り配管と炉容器内で不足した冷却用液体金属をオー
バーフロータンクから補給する汲み上げ配管とを備え、
運転を停止した場合はオーバーフロータンク内の冷却用
液体金属を汲み上げ配管により炉容器内の基準高さまで
注入した後に運転を再開する液体金属冷却型原子炉の緊
急停止時の再起動方法において、原子炉の緊急停止時に
炉容器内を一時的に原子炉の通常停止時の汲み上げ再開
温度よりも高い温度に保持するとともに戻り配管および
汲み上げ配管を一時的に炉容器内の前記高い保持温度を
中心とする所定範囲内の温度に保持し、オーバーフロー
タンク内の液体金属の温度を徐々に低下し炉容器内の高
い保持温度に対して許容温度差以下まで近づいた状態で
オーバーフロータンクから炉容器内への液体金属の汲み
上げを再開し、前記汲み上げ配管による前記炉容器内の
基準高さまでの冷却用液体金属の注入が完了しかつ原子
炉の緊急停止の原因が排除された状態で原子炉の再起動
を開始する液体金属冷却型原子炉の緊急停止時の再起動
方法を提案するものである。
In order to achieve the above object, the present invention provides a return pipe for returning excess cooling liquid metal in a reactor vessel of a nuclear reactor to an overflow tank and a pumping for replenishing cooling liquid metal lacking in the reactor vessel from the overflow tank. With piping,
When the operation is stopped, the cooling liquid metal in the overflow tank is pumped up to the reference height in the reactor vessel, and then the operation is restarted. In the event of an emergency stop, the reactor vessel is temporarily held at a temperature higher than the pumping restart temperature at the time of normal shutdown of the reactor, and the return pipe and pumping pipe are temporarily centered on the high holding temperature in the reactor vessel. Maintaining the temperature within the specified range, gradually lowering the temperature of the liquid metal in the overflow tank and approaching the allowable temperature difference below the high holding temperature in the furnace vessel, the liquid from the overflow tank into the furnace vessel The pumping of metal is restarted, the injection of the cooling liquid metal to the reference height in the reactor vessel by the pumping pipe is completed, and the emergency stop of the reactor is caused. There is to propose a re-starting the emergency stop of the liquid metal-cooled nuclear reactor to start the restarting of the reactor while being eliminated.

〔作用〕[Action]

本発明においては、原子炉の緊急停止時に戻り配管およ
び汲み上げ配管と炉容器内とを一時的に原子炉の通常停
止時の汲み上げ再開温度よりも高い温度に保持するよう
にしたので、徐々に低下してくるオーバーフロータンク
内の液体金属の温度と通常停止時の汲み上げ再開温度と
の差が所定値以下になるまでの従来の時間よりもかなり
短い時間で、前記高い保持温度と徐々に低下するオーバ
ーフロータンク内の液体金属の温度との差が許容温度差
以下になり、オーバーフロータンクから炉容器内への液
体金属の汲み上げとそれに続く原子炉の再起動を早期に
できることになる。
In the present invention, during the emergency shutdown of the reactor, the return pipe, the pumping pipe, and the inside of the reactor vessel are temporarily held at a temperature higher than the pumping restart temperature at the time of the normal shutdown of the reactor, so the temperature gradually decreases. In the overflow tank, the difference between the temperature of the liquid metal in the overflow tank and the temperature at which the pumping is restarted during a normal stop is reduced to a predetermined value or less. The difference from the temperature of the liquid metal in the tank becomes less than the allowable temperature difference, and the pumping of the liquid metal from the overflow tank into the reactor vessel and the subsequent restart of the reactor can be performed early.

このようにオーバーフロータンクから炉容器内への液体
金属の汲み上げを早期に再開しても、再開時には前記高
い保持温度と徐々に低下してきたオーバーフロータンク
内の液体金属の温度との差が許容温度差以下になってい
るから、汲み上げノズル部、冷却材汲み上げ配管,冷却
材戻り配管のいずれにも大きな熱応力が生ずることはな
い。
Even if the pumping of the liquid metal from the overflow tank into the furnace vessel is restarted at an early stage, the difference between the high holding temperature and the temperature of the liquid metal in the overflow tank that has gradually decreased at the restart is the allowable temperature difference. Because of the following, no large thermal stress is generated in any of the pumping nozzle portion, the coolant pumping pipe, and the coolant return pipe.

〔発明の実施例〕Example of Invention

本発明に係る液体金属冷却型原子炉の緊急停止時の再起
動方法の好ましい実施例を、添付図面に従つて詳説す
る。
A preferred embodiment of a restart method for an emergency shutdown of a liquid metal cooled nuclear reactor according to the present invention will be described in detail with reference to the accompanying drawings.

第3図は、本発明に係る再起動方法を実施するための装
置の一例を示したものである。第3図において、炉心20
を収納してある炉容器10には、オーバーフロー堰22が設
けてある。このオーバーフロー堰22は、戻り配管24の一
端に接続され、戻り配管24の他端がオーバーフロータン
ク26に接続してある。また、オーバーフロータンク26に
は、炉容器10と連通する汲上げ配管28が接続してあり、
電磁ポンプ30によりオーバーフロータンク内の冷却材32
を炉容器10に汲み上げることができるようになつてい
る。
FIG. 3 shows an example of an apparatus for implementing the restart method according to the present invention. In FIG. 3, the core 20
An overflow weir 22 is provided in the furnace vessel 10 in which is stored. The overflow weir 22 is connected to one end of a return pipe 24, and the other end of the return pipe 24 is connected to an overflow tank 26. Further, the overflow tank 26 is connected with a pumping pipe 28 communicating with the furnace vessel 10,
Coolant 32 in the overflow tank by the electromagnetic pump 30
Can be pumped to the furnace vessel 10.

戻り配管24と、汲上げ配管28には、それぞれ予熱ヒータ
34,36が設けてあり、これら予熱ヒータ34,36は、接点3
8,40を介して電源42に接続されている。また、戻り配管
24と汲上げ配管28には、温度検出器44,46が取り付けら
れ、コントローラ48,50が温度検出器44,46の検出信号に
より接点38,40を開閉するようになつている。なお、コ
ントローラ48,50には、第4図に示すシーケンス制御回
路が組み込まれており、原子炉の緊急停止時と通常の停
止時とにおいて、それぞれ戻り配管24及び汲み上げ配管
28の予熱温度を変えることができるようになつている。
The return pipe 24 and the pumping pipe 28 are each equipped with a preheating heater.
34, 36 are provided, and these preheater 34, 36 are connected to the contact 3
It is connected to the power supply 42 via 8,40. Also, return piping
Temperature detectors 44 and 46 are attached to the 24 and the pumping pipe 28, and the controllers 48 and 50 open and close the contacts 38 and 40 according to the detection signals of the temperature detectors 44 and 46. The controllers 48 and 50 have the sequence control circuit shown in FIG. 4 incorporated therein, and the return pipe 24 and the pumping pipe are respectively provided during an emergency shutdown of the reactor and during a normal shutdown.
The preheating temperature of 28 can be changed.

上記の如く構成した装置による通常の原子炉の運転は、
オーバーフロータンク26内の冷却材32を電磁ポンプ30に
より汲み上げ、汲上げ配管28を介して炉容器10に供給す
る。そして、炉容器10内の余分な冷却材32は、オーバー
フロー堰22内に流入し、戻り配管24を介してオーバーフ
ロータンク26に戻される。通常の原子炉の停止時には、
冷却材の汲上げ操作を継続しつつ炉容器10内の冷却材32
の温度を15℃/hr程度の小さな降温率で約200℃まで下
げ、炉容器内を約200℃に保つ。そして、戻り配管24と
汲上げ配管28とは、コントローラ48,50を介して予熱ヒ
ータ34,36により一定の温度範囲に保たれる。即ち、コ
ントローラ48,50は、第4図に示すように原子炉緊急停
止信号を受けていないとき(通常停止時)であつて、温
度検出器44,46からの検出信号が配管温度TL1(約170
℃)のときは、接点38,40を閉とし、予熱ヒータ34,36を
ONする。そして、原子炉緊急停止信号を受けず配管温度
TH1(約230℃)であるときは、接点38,40を開とし、
予熱ヒータ34,36をOFFする。
The normal operation of a nuclear reactor by the device configured as described above is
The coolant 32 in the overflow tank 26 is drawn up by the electromagnetic pump 30 and supplied to the furnace vessel 10 through the drawing pipe 28. Then, the excess coolant 32 in the furnace vessel 10 flows into the overflow weir 22 and is returned to the overflow tank 26 via the return pipe 24. When a normal nuclear reactor is shut down,
Coolant in the reactor vessel 10 while continuing to pump coolant 32
The temperature of the furnace is lowered to about 200 ℃ at a small cooling rate of about 15 ℃ / hr, and the inside of the furnace vessel is maintained at about 200 ℃. Then, the return pipe 24 and the pumping pipe 28 are maintained in a constant temperature range by the preheat heaters 34, 36 via the controllers 48, 50. That is, as shown in FIG. 4, the controllers 48 and 50 receive the detection signals from the temperature detectors 44 and 46 when the reactor emergency stop signal is not received (during normal shutdown), and the pipe temperature T L1 ( About 170
℃), close the contacts 38, 40 and turn on the preheater 34, 36.
Turn on. And the temperature of the pipe does not receive the reactor emergency stop signal.
When it is T H1 (about 230 ℃), open the contacts 38, 40,
Turn off the preheater heaters 34 and 36.

一方、原子炉が緊急停止したときは、前記したように炉
心20に制御棒が挿入され、炉容器10内の冷却材32が急速
に冷却される。そして、電磁ポンプ30は、低電圧とされ
炉容器10への冷却材の汲み上げが停止される。このた
め、戻り配管24と汲上げ配管28とは、雰囲気中に熱を放
出して急速に冷却される。このとき、コントローラ48,5
0は、第4図に示すように原子炉緊急停止信号を受け、
かつ温度検出器44,46からの検出信号が配管温度T
L2(約350℃)となつたときに、予熱ヒータ34,36をON
し、配管温度TH2(約430℃)となつたときに予熱ヒー
タ34,36をOFFする。更に、炉容器10内の冷却材温度が40
0℃程度まで低下したときに、冷却系等の熱源を利用
し、炉容器内冷却材温度を400℃程度に維持する。炉容
器10内の冷却材の温度を通常停止時の低温停止状態(20
0℃程度)まで低下させてしまうと、徐々に低下してく
るオーバーフロータンク内の冷却材の温度との差が大き
くなって、この温度差が所定値以内すなわち許容温度差
ΔTA(約100℃)以内になるまで炉容器10への冷却材の
汲み上げを長期間再開できないことになる。そこで、本
実施例においては、徐々に低下してくるオーバーフロー
タンク内の冷却材の温度との差が最初からあまり大きく
ならないようにするため、第5図に示すように、炉容器
内10内の冷却材温度を一時的に高い温度約350℃に保持
し、オーバーフロータンク26の温度が450℃程度まで低
下した時点において電磁ポンプ30を作動させ、オーバー
フロータンク26内の冷却材32の汲み上げを再開する。こ
の結果、オーバーフロータンク26内の冷却材32の温度と
炉容器10内、戻り配管24および汲上げ配管28との温度差
が、許容温度差ΔTA以内にあるため、炉容器10、戻り配
管24、汲み上げ配管28に大きな熱応力を与えることがな
い。
On the other hand, when the nuclear reactor is brought to an emergency stop, the control rod is inserted into the core 20 and the coolant 32 in the reactor vessel 10 is rapidly cooled, as described above. Then, the electromagnetic pump 30 is set to a low voltage and the pumping of the coolant into the furnace vessel 10 is stopped. Therefore, the return pipe 24 and the pumping pipe 28 radiate heat into the atmosphere and are rapidly cooled. At this time, the controller 48,5
0 receives a reactor emergency stop signal as shown in FIG.
Moreover, the detection signals from the temperature detectors 44 and 46 are the pipe temperature T.
Turns on the preheat heaters 34 and 36 when L2 (about 350 ℃) is reached
Then, the preheat heaters 34 and 36 are turned off when the pipe temperature becomes TH2 (about 430 ° C). In addition, the coolant temperature in the furnace vessel 10 is 40
When the temperature drops to approximately 0 ° C, the temperature of the coolant inside the furnace vessel is maintained at approximately 400 ° C by using a heat source such as a cooling system. The temperature of the coolant inside the furnace vessel 10 is kept in the low temperature stop state (20
If the temperature is lowered to about 0 ° C), the difference between the temperature of the coolant in the overflow tank and the gradually decreasing temperature becomes large, and this temperature difference is within a predetermined value, that is, the allowable temperature difference ΔT A (about 100 ° C). The pumping of the coolant into the reactor vessel 10 cannot be restarted for a long period until the time becomes within the range. Therefore, in this embodiment, in order to prevent the difference from the temperature of the coolant in the overflow tank, which gradually decreases, from becoming too large from the beginning, as shown in FIG. The coolant temperature is temporarily maintained at a high temperature of about 350 ° C., and when the temperature of the overflow tank 26 drops to about 450 ° C., the electromagnetic pump 30 is operated and pumping of the coolant 32 in the overflow tank 26 is restarted. . As a result, the temperature difference between the coolant 32 in the overflow tank 26 and the temperature inside the furnace container 10, the return pipe 24 and the pumping pipe 28 is within the allowable temperature difference ΔT A , so the furnace container 10 and the return pipe 24 Therefore, large thermal stress is not applied to the pumping pipe 28.

このようにして電磁ポンプ30による冷却材の汲み上げを
再開すると、オーバーフロータンク26内の冷却材32の温
度は、第5図に示すように急速に炉容器10の温度に接近
する。そこで、冷却材の汲み上げを再開した後に、炉容
器内冷却材の高温一定保持指令を解除し、適切な降温速
度(15℃/hr程度)をもつて炉容器内容冷却材を200℃程
度まで降温させる。この際、炉容器内冷却材温度の降温
開始とともにコントローラ48,50に与えていた原子炉緊
急停止信号を解除し、通常の配管予熱温度制御に切り換
え、戻り配管24と汲上げ配管28とをTH1とTL1との温度範
囲において配管温度を制御する。一方、オーバーフロー
タンク26内の冷却材32は、オーバーフロータンク26内に
戻つてくる炉容器10内の冷却材と混合し、炉容器内冷却
材温度に追従して降温する。従つて、戻り配管24および
汲上げ配管28の温度は、配管内を流れる冷却材温度に略
等しくなり、第2図に示したノズル取付部14やノズル付
け根部16に大きな温度差を与えることなく、原子炉の健
全性を向上することができる。しかも、炉容器10内の冷
却材液位は、炉容器内冷却材の降温中においても通常の
レベルに保たれるため、原子炉緊急停止の原因を復旧し
た後、速やかに原子炉を再起動することができ、大幅な
設備増加を伴う必要がなく稼動率の高いプラントを提供
することができる。
When the pumping of the coolant by the electromagnetic pump 30 is restarted in this way, the temperature of the coolant 32 in the overflow tank 26 rapidly approaches the temperature of the furnace vessel 10 as shown in FIG. Therefore, after restarting the pumping of the coolant, the high temperature constant holding command for the coolant in the reactor vessel was released, and the coolant in the reactor vessel was cooled to about 200 ° C with an appropriate cooling rate (about 15 ° C / hr). Let At this time, the reactor emergency stop signal given to the controllers 48 and 50 was released at the same time as the cooling of the temperature of the coolant in the reactor vessel was started, the pipe preheat temperature control was switched to normal, and the return pipe 24 and the pumping pipe 28 were turned to T Control the pipe temperature in the temperature range between H1 and TL1 . On the other hand, the coolant 32 in the overflow tank 26 mixes with the coolant in the furnace vessel 10 returning to the overflow tank 26, and cools down following the temperature of the coolant in the furnace vessel. Therefore, the temperatures of the return pipe 24 and the pumping pipe 28 become substantially equal to the temperature of the coolant flowing in the pipes, without giving a large temperature difference to the nozzle mounting portion 14 and the nozzle base portion 16 shown in FIG. , The health of the reactor can be improved. Moreover, the coolant liquid level in the reactor vessel 10 is maintained at a normal level even while the temperature of the coolant in the reactor vessel is being lowered, so the reactor is promptly restarted after recovering the cause of the reactor emergency shutdown. Therefore, it is possible to provide a plant with a high operating rate without the need for a large increase in equipment.

なお、前記実施例においては、原子炉緊急停止時の配管
予熱温度設定の切り換えをシーケンス回路により行う場
合について説明したが、本操作を運転員が手動によつて
行うようにしてもよい。
In addition, although the case where the pipe preheating temperature setting is switched by the sequence circuit at the time of the emergency stop of the reactor has been described in the above-described embodiment, the operation may be manually performed by the operator.

〔発明の効果〕 以上説明したように本発明によれば、緊急停止した液体
金属冷却型原子炉を早期に再起動することができる。
[Effects of the Invention] As described above, according to the present invention, it is possible to quickly restart an emergency stopped liquid metal cooled nuclear reactor.

【図面の簡単な説明】[Brief description of drawings]

第1図は従来の液体金属冷却型原子炉における緊急停止
時の炉容器内冷却材温度とオーバーフロータンク内冷却
材温度との温度降下の状態を示す図、第2図は炉容器に
取り付けたノズルの一部断面図、第3図は本発明に係る
再起動方法の実施のための装置の一例を示す構成図、第
4図は第3図に示したコントローラのシーケンス制御
図、第5図は本発明に係る実施例による炉容器内冷却材
温度とオーバーフロータンク内冷却材温度との温度降下
の状態を示す図である。 10……炉容器、24……戻り配管、26……オーバーフロー
タンク、28……汲上げ配管、30……電磁ポンプ、32……
冷却材、34,36……予熱ヒータ、42……電源、48,50……
コントローラ。
FIG. 1 is a diagram showing a state of temperature drop between a coolant temperature in a reactor vessel and a coolant temperature in an overflow tank at the time of an emergency stop in a conventional liquid metal cooling reactor, and FIG. 2 is a nozzle attached to the reactor vessel. FIG. 3 is a partial sectional view of FIG. 3, FIG. 3 is a block diagram showing an example of an apparatus for carrying out a restart method according to the present invention, FIG. 4 is a sequence control diagram of the controller shown in FIG. 3, and FIG. It is a figure which shows the state of the temperature fall of the coolant temperature in a furnace container and the coolant temperature in an overflow tank by the Example which concerns on this invention. 10 …… Furnace vessel, 24 …… Return pipe, 26 …… Overflow tank, 28 …… Pumping pipe, 30 …… Electromagnetic pump, 32 ……
Coolant, 34,36 …… Preheater, 42 …… Power supply, 48,50 ……
controller.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】原子炉の炉容器内の余分な冷却用液体金属
をオーバーフロータンクに戻す戻り配管と前記炉容器内
で不足した冷却用液体金属をオーバーフロータンクから
補給する汲み上げ配管とを備え、運転を停止した場合は
オーバーフロータンク内の冷却用液体金属を前記汲み上
げ配管により前記炉容器内の基準高さまで注入した後に
運転を再開する液体金属冷却型原子炉の緊急停止時の再
起動方法において、 前記原子炉の緊急停止時に前記炉容器内を一時的に前記
原子炉の通常停止時の汲み上げ再開温度よりも高い温度
に保持するとともに前記戻り配管および前記汲み上げ配
管を一時的に前記炉容器内の高い保持温度を中心とする
所定範囲内の温度に保持し、 前記オーバーフロータンク内の前記液体金属の温度が徐
々に低下し前記炉容器内の高い保持温度に対して許容温
度差以下まで近づいた状態で前記オーバーフロータンク
から前記炉容器内への前記液体金属の汲み上げを再開
し、 前記汲み上げ配管による前記炉容器内の基準高さまでの
冷却用液体金属の注入が完了しかつ前記原子炉の緊急停
止の原因が排除された状態で前記原子炉の再起動を開始
する ことを特徴とする液体金属冷却型原子炉の緊急停止時の
再起動方法。
1. A return pipe for returning excess liquid metal for cooling in a reactor vessel of a nuclear reactor to an overflow tank, and a pumping pipe for replenishing the liquid metal for cooling shortage in the reactor vessel from the overflow tank. In the restart method at the time of an emergency stop of the liquid metal cooling reactor to restart the operation after injecting the cooling liquid metal in the overflow tank to the reference height in the reactor vessel by the pumping pipe when stopping the above, During the emergency shutdown of the reactor, the inside of the reactor vessel is temporarily held at a temperature higher than the pumping restart temperature at the time of the normal shutdown of the reactor, and the return pipe and the pumping pipe are temporarily raised in the reactor vessel. The temperature of the liquid metal in the overflow tank is gradually reduced by maintaining the temperature within a predetermined range around the holding temperature. For restarting the pumping of the liquid metal from the overflow tank into the furnace vessel in the state of approaching the allowable temperature difference or less with respect to the high holding temperature, for cooling to the reference height in the furnace vessel by the pumping pipe. A method of restarting an emergency shutdown of a liquid metal cooled reactor, characterized in that the restart of the reactor is started in a state where the injection of the liquid metal is completed and the cause of the emergency shutdown of the reactor is eliminated. .
JP58122192A 1983-07-05 1983-07-05 Method of restarting liquid metal cooled reactor in case of emergency shutdown Expired - Lifetime JPH06105315B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58122192A JPH06105315B2 (en) 1983-07-05 1983-07-05 Method of restarting liquid metal cooled reactor in case of emergency shutdown

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58122192A JPH06105315B2 (en) 1983-07-05 1983-07-05 Method of restarting liquid metal cooled reactor in case of emergency shutdown

Publications (2)

Publication Number Publication Date
JPS6014200A JPS6014200A (en) 1985-01-24
JPH06105315B2 true JPH06105315B2 (en) 1994-12-21

Family

ID=14829846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58122192A Expired - Lifetime JPH06105315B2 (en) 1983-07-05 1983-07-05 Method of restarting liquid metal cooled reactor in case of emergency shutdown

Country Status (1)

Country Link
JP (1) JPH06105315B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS646500A (en) * 1987-06-25 1989-01-11 Mitsui Constr Method of repairing existing tunnel
JP2754775B2 (en) * 1989-08-30 1998-05-20 株式会社デンソー Scroll compressor
JP4730912B2 (en) * 2006-06-14 2011-07-20 三重重工業株式会社 Leakage receiving plate with transparent part

Also Published As

Publication number Publication date
JPS6014200A (en) 1985-01-24

Similar Documents

Publication Publication Date Title
KR20220037239A (en) Molten Salt Reactor
JPH06105315B2 (en) Method of restarting liquid metal cooled reactor in case of emergency shutdown
US5271044A (en) Boiling water nuclear reactor and start-up process thereof
US3200042A (en) Method for operating fuel elements of an atomic reactor and for manufacturing such elements
US3475596A (en) Electrical apparatus for storing and releasing heat
JPS606886B2 (en) Molten glass supply device
JPS5916237B2 (en) Methods for shutting off high temperature reactors
JP2894756B2 (en) Sodium remelting method
JPS62168887A (en) Tank for liquid metal
JPH0312280B2 (en)
JPH0656436B2 (en) Overflow tank cooling system for nuclear reactor
US3558856A (en) Use of heated leg
JP3136786B2 (en) Reactor water level control method and apparatus
JPS6360878B2 (en)
JP3056483B1 (en) Heat storage device
JPH0650609A (en) Automatic electric bath water warmer
JPS5952794A (en) Pump driving device
JPS6359788B2 (en)
JPS6058762B2 (en) Method and device for circulating cooling liquid for quenching
Skelly et al. Computer control of the TFTR motor generator sets
JPS5914293A (en) Temperature controller for induction heating vacuum melting furnace
JPS6157899A (en) Feedwater controller for nuclear reactor
JPS6238680B2 (en)
JPS5557385A (en) Control method of resistance welding machine
JPS62112099A (en) Nuclear reactor isolation cooling system controller