JPH06105314B2 - Reactor coolant purification system - Google Patents

Reactor coolant purification system

Info

Publication number
JPH06105314B2
JPH06105314B2 JP60232199A JP23219985A JPH06105314B2 JP H06105314 B2 JPH06105314 B2 JP H06105314B2 JP 60232199 A JP60232199 A JP 60232199A JP 23219985 A JP23219985 A JP 23219985A JP H06105314 B2 JPH06105314 B2 JP H06105314B2
Authority
JP
Japan
Prior art keywords
heat exchanger
water
reactor
water supply
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60232199A
Other languages
Japanese (ja)
Other versions
JPS6291897A (en
Inventor
詳一郎 木下
実 秋田
章 水谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60232199A priority Critical patent/JPH06105314B2/en
Publication of JPS6291897A publication Critical patent/JPS6291897A/en
Publication of JPH06105314B2 publication Critical patent/JPH06105314B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は軽水炉の原子炉起動時に給水配管において発生
する可能性のある過度の熱応力の発生を防止するのに有
効な原子炉冷却材浄化系に関する。
Description: FIELD OF APPLICATION OF THE INVENTION The present invention relates to a reactor coolant purification system effective for preventing the generation of excessive thermal stress that may occur in the feedwater piping at the time of reactor startup of a light water reactor. Regarding

〔発明の背景〕[Background of the Invention]

第6図は従来技術による原子炉冷却材の浄化系の系統図
を示す。浄化系は、原子炉冷温停止中に既に運転を開始
し、 原子炉1→浄化系ポンプ4→再生熱交換器5→非再生熱
交換器6→ろ過脱塩装置7→再生熱交換器5→給水配管
10→原子炉1 の経路で原子炉冷却材を循環させる。
FIG. 6 shows a system diagram of a reactor coolant purification system according to the prior art. The purification system has already started operation during the reactor cold shutdown, and the reactor 1 → purification system pump 4 → regenerated heat exchanger 5 → non-regenerated heat exchanger 6 → filtration desalination device 7 → regenerated heat exchanger 5 → Water supply piping
Circulate the reactor coolant through the route of 10 → Reactor 1.

その後、制御棒引抜後の原子炉昇温昇圧過程では、原子
炉1の昇温昇圧に伴って浄化系の入口出口温度もしだい
に上昇する。浄化系に流入した冷却材は、再生熱交換器
5の管側、非再生熱交換器6により所定温度まで冷却さ
れ、ろ過脱塩装置7による浄化工程を経て、再び再生熱
交換器5の胴側で加熱され、高温水となって給水配管10
に合流する。
After that, in the reactor temperature raising / pressurizing process after pulling out the control rods, the inlet / outlet temperature of the purification system gradually rises as the reactor 1 temperature raising / pressurizing. The coolant that has flowed into the purification system is cooled to a predetermined temperature by the non-regeneration heat exchanger 6 on the tube side of the regenerative heat exchanger 5, passes through the purification process by the filter desalting device 7, and then the body of the regenerative heat exchanger 5 again. Side is heated and becomes high temperature water
To join.

一方、給水系の運転状態は、原子炉1が昇温昇圧過程に
あって主蒸気配管9を通してタービン11に供給される蒸
気発生量が少ないタービン起動前では、給水ポンプ14を
介して復水器13から給水される給水流量は蒸気発生量程
度に少なく、給水温度は約30℃である。
On the other hand, the operating condition of the water supply system is that the reactor 1 is in the temperature rising / pressurizing process and the amount of steam supplied to the turbine 11 through the main steam pipe 9 is small before the turbine is started. The flow rate of the water supplied from 13 is as small as the amount of steam generated, and the temperature of the water supply is approximately 30 ° C.

又、原子炉の昇温昇圧中における冷却材の膨張によって
発生する浄化系の余剰水は原子炉水位を一定に保つため
に、必要に応じて浄化系ブローダウン弁28を介して復水
器13に放出する。15は給水流量制御弁で、主蒸気流量計
16、給水流量計17、給水流量制御ユニット18からの信号
に基づいて給水流量を制御する。8は非再生熱交換器6
の冷却系、12は発電機を示している。
In addition, excess water in the purification system generated by expansion of the coolant during temperature rise and pressure rise in the reactor is maintained through the purification system blowdown valve 28 as necessary to keep the reactor water level constant. To release. 15 is a feed water flow control valve, which is a main steam flow meter
The water supply flow rate is controlled based on the signals from the 16, water supply flow meter 17, and the water supply flow rate control unit 18. 8 is a non-regenerative heat exchanger 6
Cooling system, 12 is a generator.

ところで、このような浄化系において、ろ過脱塩装置7
を経た冷却材(以下浄化水と称す)は、給水流量に関係
なく再生熱交換器5に通水され、約200℃に昇温されて
給水配管10に戻される。そのため、タービン起動前のあ
る期間、給水配管10内に、約200℃の浄化系戻り水と約3
0℃の給水が合流して流れることになるが、この時、給
水流量が少なく、合流部での両者の混合が不完全である
ために、給水配管内上部に高温の浄化系戻り水が、下部
に低温の給水が流れる現象(以下層化流動現象と称す
る)が発生する可能性があった。
By the way, in such a purification system, the filter desalting device 7
The coolant (hereinafter referred to as purified water) that has passed through is passed through the regenerative heat exchanger 5 regardless of the feed water flow rate, heated to about 200 ° C., and returned to the feed water pipe 10. Therefore, for a certain period before the turbine is started, about 200 ° C of purification system return water and about 3
The 0 ° C feed water will join together and flow, but at this time, since the feed water flow rate is small and the mixing of both at the joining part is incomplete, high temperature purification system return water is present in the upper part of the water supply pipe. There was a possibility that a low-temperature water supply flowed to the lower part (hereinafter referred to as stratified flow phenomenon).

万一、この層化流動現象が発生した場合、配管上部と下
部に温度差がつくため配管に過度の熱応力が生ずること
になる。
Should this stratified flow phenomenon occur, there will be a temperature difference between the upper part and the lower part of the pipe, resulting in excessive thermal stress in the pipe.

層化流動現象は、給水配管に流入する浄化系戻り水温度
が高く(約200℃)、かつ、給水が低温(約30℃)で、
流量小の時に生ずる可能性がある。つまり、給水流量が
小さい場合、給水とこれに合流した浄化系水が十分に混
合しないため、管内に低温水部分と高温水部分が混在
し、低温水と高温水が混在すると、両者の密度差によっ
て高温水に浮力が働らき、管内上部に高温水が上昇し、
管内下部に低温水が沈むので、高温水と低温水の層状の
流れが発するのである。この様な層化流動現象は、給水
流量が増大し給水配管内の流れが十分に乱れ、給水と浄
化系水が十分に混合した状態に至ったときには消失す
る。
The stratified flow phenomenon is because the temperature of the purification system return water flowing into the water supply pipe is high (about 200 ° C) and the supply water is low (about 30 ° C).
May occur at low flow rates. In other words, when the feed water flow rate is small, the feed water and the purified water that joins the feed water do not mix sufficiently, so if the low-temperature water part and the high-temperature water part are mixed in the pipe, and if the low-temperature water and the high-temperature water are mixed, the density difference between the two As a result, buoyancy acts on the hot water, and the hot water rises in the upper part of the pipe,
Since the low temperature water sinks in the lower part of the pipe, a laminar flow of high temperature water and low temperature water is generated. Such a stratified flow phenomenon disappears when the feed water flow rate increases, the flow in the feed water pipe is sufficiently disturbed, and the feed water and the purified water are sufficiently mixed.

すなわち第7図に示す如く、給水流量が極端に少ない領
域においては〔第7図(ロ)参照〕、浄化系戻り水(高
温)により給水配管内の温度は高温状態ではほぼ均一と
なっているが〔第7図(イ)参照〕、給水流量の増大に
伴ない高温水は配管上部を低温水は配管下部を流れ層化
流動現象を生じる。そこで更に給水流量を増大させてい
くと給水配管内流速が増大し所定の給水流量以上になる
と高温水と低温水が混合され層化流動現象は消失する。
That is, as shown in FIG. 7, in the region where the feed water flow rate is extremely low [see FIG. 7 (b)], the temperature in the feed water pipe is almost uniform in the high temperature state due to the purification system return water (high temperature). However, as shown in FIG. 7 (a), high temperature water flows in the upper part of the pipe and low temperature water flows in the lower part of the pipe, and a stratified flow phenomenon occurs. Therefore, when the flow rate of the water supply is further increased, the flow velocity in the water supply pipe increases, and when the flow rate exceeds the predetermined water supply flow rate, the high temperature water and the low temperature water are mixed and the stratified flow phenomenon disappears.

そこで、層化流動現象を防止するためには、再生熱交換
器にバイパスを設け、所定の給水流量以下において浄化
系水をバイパスに導けば原子炉給水温度と浄化系戻り水
との温度差をなくすことで層化流動現象を避けることが
可能となる。
Therefore, in order to prevent the stratified flow phenomenon, if a bypass is provided in the regenerative heat exchanger and the purification system water is guided to the bypass at a predetermined feed water flow rate or less, the temperature difference between the reactor feed water temperature and the purification system return water is reduced. By eliminating it, it becomes possible to avoid the stratified flow phenomenon.

ところで、再生熱交換器にバイパスを設けた浄化装置と
しては、特開昭56-66799号公報,特開昭56-164997号公
報がある。
By the way, as a purification device in which a regenerative heat exchanger is provided with a bypass, there are JP-A-56-66799 and JP-A-56-164997.

双方の公報に記載された浄化装置はいずれも原子炉の残
留熱を除去するために、浄化水を再生熱交換器に再通水
せず、バイパスを通して給水配管に流入させ、高温の給
水を冷却させるようにしたものである。
In order to remove the residual heat of the reactor, the purification devices described in both publications do not re-pass the purified water to the regenerative heat exchanger, but let it flow through the bypass into the feed water pipe to cool the hot feed water. It was made to let.

〔発明の目的〕[Object of the Invention]

本発明の目的は、原子炉の起動時期に、浄化装置から給
水配管に低温の浄化水を流入させ、層化流動現象を防ぐ
ことができる原子炉冷却材の浄化系を提供することにあ
る。
An object of the present invention is to provide a reactor coolant purification system that can prevent stratified flow phenomenon by allowing low-temperature purified water to flow from a purification device into a water supply pipe at the time of starting the reactor.

〔発明の概要〕[Outline of Invention]

本発明の要旨とするところは、原子炉冷却材を冷却する
再生熱交換器および非再生熱交換器と、該非再生熱交換
器を通過した冷却材を浄化する脱塩装置とを備え、該脱
塩装置で浄化された冷却材を前記再生熱交換器を通過さ
せた後、前記原子炉の給水配管系に合流させて原子炉圧
力容器内に戻すようにしてなる原子炉冷却材浄化系にお
いて、前記再生熱交換器にバイパス配管系を設けるとと
もに、該給水配管系の合流点の下流側における配管内上
下の温度差と該給水配管系の給水流量とを検出情報とし
て入力する制御回路に接続され、かつ該制御回路の出力
信号に基づいて冷却材の流れを前記バイパス配管系に切
換える切換え手段を設け、前記制御回路は原子炉起動時
における浄化系と給水配管系との合流点での層化流動現
象の現出範囲に相当する設定値と該検出情報とを比較し
て前記切換え手段を作動させるように構成したことにあ
り、再生熱交換器をバイパスすることで冷却材の再熱工
程を省略し、冷却状態にある低温の浄化戻り冷却材を給
水配管系に流入させるようにしたものである。
The gist of the present invention is to provide a regenerative heat exchanger and a non-regenerative heat exchanger for cooling a reactor coolant, and a desalination device for purifying the coolant that has passed through the non-regenerative heat exchanger. After passing the coolant purified by a salt device through the regenerative heat exchanger, in a reactor coolant purification system to be joined into the feedwater piping system of the reactor and returned to the reactor pressure vessel, The regeneration heat exchanger is provided with a bypass piping system, and is connected to a control circuit for inputting, as detection information, a temperature difference between the upper and lower sides of the inside of the piping on the downstream side of the confluence point of the water supply piping system and the feed water flow rate of the water supply piping system. And switching means for switching the flow of the coolant to the bypass piping system based on the output signal of the control circuit, and the control circuit stratifies at the confluence of the purification system and the water supply piping system at the time of reactor startup. Corresponds to the appearance range of flow It is configured to operate the switching means by comparing the set value to be detected with the detection information. By bypassing the regenerative heat exchanger, the reheating process of the coolant is omitted, and the low temperature in the cooling state is eliminated. The purified return coolant of (3) is made to flow into the water supply piping system.

〔発明の実施例〕Example of Invention

以下本発明を図面に示す実施例に基づいて詳細に説明す
る。
Hereinafter, the present invention will be described in detail based on the embodiments shown in the drawings.

第1図は本発明の原子炉冷却材の浄化系の一実施例を示
す系統図で、低圧型原子炉用のものを示してある。ただ
し、従来例で説明した第6図中の構造と同一部分又は同
一作用をするものは同じ符号で示し説明は省略する。第
1図において、第6図と異なるところは、再生熱交換器
5の被再熱側にバイパス弁20を備えたバイパス管30を設
け、ろ過脱塩装置7にて浄化された浄化水をこのバイパ
ス管30を通して給水配管10に流入させるようにし、さら
に該再生熱交換器5の被再熱側の浄化水入口側に再生熱
交換器入口弁21を設け、また給水配管10の給水流量計17
からの信号によって該バイパス弁20および該再生熱交換
器入口弁21の開閉を制御する流量スイッチ19を設けた点
にある。この流量スイッチ19は、給水流量が少ない場合
には再生熱交換器入口弁21を閉とするとともに、再生熱
交換器バイパス弁20を開とする信号を出力し、一方給水
流量が増加した場合には逆に再生熱交換器入口弁21を開
とし、再生熱交換器バイパス弁20を閉とする信号を出力
する。
FIG. 1 is a system diagram showing an embodiment of a reactor coolant purification system of the present invention, which is for a low pressure reactor. However, the same parts or those having the same functions as those of the structure shown in FIG. 1 is different from FIG. 6 in that a bypass pipe 30 equipped with a bypass valve 20 is provided on the reheated side of the regenerative heat exchanger 5, and the purified water purified by the filter desalination device 7 is It is made to flow into the water supply pipe 10 through the bypass pipe 30, and a regenerative heat exchanger inlet valve 21 is provided on the purified water inlet side of the reheated side of the regenerative heat exchanger 5, and the water supply flow meter 17 of the water supply pipe 10 is provided.
A flow rate switch 19 for controlling the opening and closing of the bypass valve 20 and the regenerative heat exchanger inlet valve 21 in response to a signal from is provided. This flow rate switch 19 outputs a signal that closes the regenerative heat exchanger inlet valve 21 when the feed water flow rate is low, and opens the regenerative heat exchanger bypass valve 20, and when the feed water flow rate increases. On the contrary, the regenerative heat exchanger inlet valve 21 is opened and a signal for closing the regenerative heat exchanger bypass valve 20 is output.

すなわち、給水流量が少ない場合、給水配管10に流入す
る浄化水の温度は、ろ過脱塩装置7を経た浄化水が再生
熱交換器の被再熱側を通らずにバイパス管30を通過する
ため、ろ過脱塩装置7の運転温度、例えば約50℃の低温
度となっている。
That is, when the feed water flow rate is small, the temperature of the purified water flowing into the feed water pipe 10 is such that the purified water passing through the filter desalting device 7 passes through the bypass pipe 30 without passing through the reheated side of the regenerative heat exchanger. The operating temperature of the filter desalting device 7 is low, for example, about 50 ° C.

したがって、第5図に示す如く、給水流量が少ない時期
における給水温度(約30℃)と浄化系戻り水の温度(約
50℃)とに大きな差がないので、給水配管10に流入した
浄化水が給水と混り合うことに伴う層化流動現象の発生
を防止される。そして、給水流量が増加すると、ろ過脱
塩装置7を経た浄化水は、再生熱交換器5の被再熱側に
導かれ、昇温されて給水配管10に流入し、通常の浄化工
程が行なわれる。
Therefore, as shown in Fig. 5, the temperature of the supply water (about 30 ° C) and the temperature of the return water of the purification system (about
(50 ° C.), there is no big difference, so that the stratified flow phenomenon caused by the purified water flowing into the water supply pipe 10 being mixed with the water supply can be prevented. Then, when the flow rate of the supplied water increases, the purified water that has passed through the filter desalination device 7 is guided to the reheated side of the regenerative heat exchanger 5, is heated and flows into the water supply pipe 10, and the normal purification process is performed. Be done.

ところで再生熱交換器をバイパスする場合、原子炉1よ
り取水した高温(約270℃)の原子炉水をろ過脱塩装置
7の運転温度(約50℃)まで冷却するための熱負荷は被
再生熱交換器6に荷せられる。この場合の非再生熱交換
器6の冷却能力を増大させるためには、非再生熱交換器
6の冷却水系8の流量を増加させることにより対処可能
である。その際、冷却水系8の流量が配管構成上増加で
きない場合は、冷却材浄化流量を低減(例えば定格値に
対し50%容量で運転する)し、非再生熱交換器6の熱負
荷増加を抑制することも可能である。また、再生熱交換
器5をバイパスした場合非再生熱交換器6には直接高温
の原子炉水が流入することになり、熱交換器出入己温度
差が大きくなり熱応力上厳しい条件となるが、この場合
でも熱交換器設計上の許容限界内に収まる為熱交換器構
造健全性上は問題ない。
By the way, when bypassing the regenerative heat exchanger, the heat load for cooling the high-temperature (about 270 ° C) reactor water taken from the reactor 1 to the operating temperature (about 50 ° C) of the filter desalination device 7 is regenerated. The heat exchanger 6 is loaded. In order to increase the cooling capacity of the non-regenerative heat exchanger 6 in this case, it can be dealt with by increasing the flow rate of the cooling water system 8 of the non-regenerative heat exchanger 6. At that time, if the flow rate of the cooling water system 8 cannot be increased due to the piping configuration, the coolant purification flow rate is reduced (for example, the capacity is operated at 50% of the rated value) to suppress an increase in the heat load of the non-regenerative heat exchanger 6. It is also possible to do so. Further, when the regenerative heat exchanger 5 is bypassed, the high-temperature reactor water directly flows into the non-regenerated heat exchanger 6, resulting in a large temperature difference between the inlet and outlet of the heat exchanger, which is a severe condition in terms of thermal stress. Even in this case, there is no problem in soundness of the heat exchanger structure because it falls within the allowable limit in heat exchanger design.

なお浄化系の流量は、バイパス管30への浄化水バイパス
時および再生熱交換器5への浄化水導水時とも一定とな
るように設定されており、原子炉を出入りする水のマス
バランスはバイパス時および通常時とも同等であり原子
炉水位制御上の問題が発生することはない。
The flow rate of the purification system is set to be constant both when the purified water is bypassed to the bypass pipe 30 and when the purified water is introduced to the regenerative heat exchanger 5, and the mass balance of water entering and leaving the reactor is bypassed. It is the same both in normal time and normal time, and no problems in reactor water level control will occur.

また、原子炉の起動時において、浄化系は再生熱交換器
をバイパスにするため、抽出された原子炉水の熱回収が
行われず原子炉の熱バランス上は熱損失が大きくなるこ
とになる。しかしながら再生熱交換器をバイパスにする
のは給水流量が少ない原子炉起動時のある限定された時
期であるためプラント熱効率等に問題は生じない。
Further, at the time of startup of the reactor, the purification system bypasses the regenerative heat exchanger, so that the heat recovery of the extracted reactor water is not performed, resulting in a large heat loss in the heat balance of the reactor. However, the bypass of the regenerative heat exchanger does not cause a problem in the thermal efficiency of the plant, etc. because it is at a limited time when the reactor is started with a small amount of feed water.

第2図は本発明の原子炉冷却材の浄化系のもう一つの実
施例を示す系統図である。
FIG. 2 is a system diagram showing another embodiment of the reactor coolant purification system of the present invention.

本実施例は再生熱交換器5の再熱側にバイパス弁20を備
えたバイパス管30と、再生熱交換器入口弁21を設置して
いる。
In this embodiment, a bypass pipe 30 equipped with a bypass valve 20 and a regenerative heat exchanger inlet valve 21 are installed on the reheat side of the regenerative heat exchanger 5.

再生熱交換器5の入口弁21及びバイパス弁20の開閉制御
方法は前記実施例1と同様であり、バイパスを行なう箇
所を変えたものであり、バイパス時には低温の浄化戻り
水が給水配管10に流入する。
The method for controlling the opening and closing of the inlet valve 21 and the bypass valve 20 of the regenerative heat exchanger 5 is the same as that of the first embodiment, and the place where the bypass is performed is changed, and the low temperature purified return water is supplied to the water supply pipe 10 during the bypass. Inflow.

第3図は本発明の実施例を示す系統図である。FIG. 3 is a system diagram showing an embodiment of the present invention.

本実施例では再生熱交換器入口弁21とバイパス弁20の開
閉制御を給水流量計17を用いて行なうことに加えて、給
水配管10における浄化系との合流部下流に配管上部温度
計22と配管下部温度計23を設置するとともに双方の温度
計22,23からの信号を温度差スイッチ24に入力し、これ
らの温度差が大きい場合に再生熱交換器5をバイパスさ
せるようにしたものである。
In this embodiment, in addition to controlling the opening / closing of the regenerative heat exchanger inlet valve 21 and the bypass valve 20 by using the feed water flow meter 17, a pipe upper temperature meter 22 and a pipe upper temperature meter 22 are provided downstream of the confluence portion of the water supply pipe 10 with the purification system. A lower pipe thermometer 23 is installed and signals from both thermometers 22 and 23 are input to a temperature difference switch 24, and when the temperature difference between them is large, the regenerative heat exchanger 5 is bypassed. .

すなわち、給水流量低と給水配管上部下部温度差大のOR
(論理和)信号により再生熱交換器入口弁21を閉とし、
バイパス弁20を開とするインターロックを設置したもの
である。
In other words, the OR of the low water supply flow rate and the large temperature difference between the upper and lower parts of the water supply pipe
The regeneration heat exchanger inlet valve 21 is closed by the (logical sum) signal,
An interlock for opening the bypass valve 20 is installed.

これは給水配管における層化流動現象の消失に関し、給
水流量に対するしきい値が、例えば定格流量の約20%以
上であるという不確定性に対する保証を与えるものであ
り、配管形状、定格給水流量が異なることによるしきい
値のばらつきに対しても確実に層化流動現象を未然に防
止することができる。
This guarantees the uncertainty regarding the disappearance of the stratified flow phenomenon in the water supply pipe, that is, the threshold for the water supply flow rate is, for example, about 20% or more of the rated flow rate. The stratified flow phenomenon can be surely prevented even if the threshold value varies due to the difference.

第4図は参考例の系統図を示す。FIG. 4 shows a system diagram of the reference example.

本参考例では本発明の実施例で示した給水配管上部温度
計と下部温度計の代りに浄化系合流前温度計25と給水系
合流前温度計26を図示の如く設置するとともに双方の温
度計25,26からの信号を温度差スイッチ27に入力し、こ
れらの温度差が大きくかつ給水流量が少ない場合に再生
熱交換器をバイパスする様な制御設備を設置したもので
ある。即ち給水流量の大小にかかわらず給水配管で合流
する流体の温度差が小さい場合は流体の密度差が小さく
合流部下流において層化流動現象は発生することはない
ため、原子炉から発生した熱を不必要に外部へ放出せず
熱効率の向上を計ることができるようにしたものであ
る。
In this reference example, instead of the water supply pipe upper thermometer and lower water thermometer shown in the embodiment of the present invention, a purification system pre-merging thermometer 25 and a water supply system pre-merging thermometer 26 are installed as shown and both thermometers are installed. Signals from 25 and 26 are input to the temperature difference switch 27, and control equipment is installed to bypass the regenerative heat exchanger when the temperature difference between them is large and the feed water flow rate is small. That is, when the temperature difference between the fluids that merge in the water supply pipe is small, regardless of the magnitude of the feedwater flow rate, the difference in density of the fluids is small and stratified flow phenomenon does not occur downstream of the junction, so the heat generated from the reactor is It is designed so that the thermal efficiency can be improved without unnecessary release to the outside.

〔発明の効果〕〔The invention's effect〕

本発明によれば、給水配管系の給水流量が小量の原子炉
起動時期に、給水配管系に低温度の浄化戻り冷却材を流
入させることができるので、給水温度と浄化戻り冷却材
との温度差がなくなり、層化流動現象を防止できるとい
う効果が得られる。
According to the present invention, since the low-temperature purified return coolant can be made to flow into the feedwater pipe system during the reactor start-up time when the feedwater flow rate of the feedwater pipe system is small, the supply water temperature and the purified return coolant are There is an effect that the temperature difference is eliminated and the stratified flow phenomenon can be prevented.

特に、給水配管系の合流点の下流側における配管内上下
の温度差をも検出情報とすることにより、給水流量のみ
による層化流動現象の消失に不確定さがあっても、該温
度差が大きくなるとバイパスさせることができるので、
原子炉から発生した熱を不必要に外部に放出することが
なくなり、熱効率の向上を図ることができる。
In particular, by using the temperature difference between the upper and lower temperature inside the pipe on the downstream side of the confluence point of the water supply pipe system as detection information, even if there is uncertainty in the disappearance of the stratified flow phenomenon due to only the water supply flow rate, the temperature difference is Since it can be bypassed when it gets bigger,
The heat generated from the nuclear reactor is not unnecessarily released to the outside, and the thermal efficiency can be improved.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の第1実施例を示す系統図、第2図は第
2実施例を示す系統図、第3図は第3実施例を示す系統
図、第4図は第5実施例を示す系統図、第5図は本発明
による給水配管内の層化流動現象の消失を示す図表で、
第5図(イ)は給水配管の温度と時間の関係を示し、第
5図(ロ)は給水系流量および浄化系流量の定格給水流
量に対する割合と時間の関係を示し、第5図(ハ)は給
水温度および浄化系温度と時間の関係を示している。第
6図は従来の浄化装置の系統図、第7図は従来の浄化装
置における給水配管内の層化流動現像を示す図表で、第
7図(イ)は給水配管温度と時間の関係を示し、第7図
(ロ)は給水および浄化水の定格流量に対する割合と時
間の関係を示し、第7図(ハ)は給水および浄化水温度
と時間の関係を示している。 1……原子炉、2……再循環ポンプ 3……再循環配管器、4……浄化系ポンプ 5……再生熱交換器、6……非再生熱交換器 7……ろ過脱塩装置 8……非再生熱交換器冷却系 9……主蒸気配管、10……給水配管 11……タービン、12……発電機 13……復水器、14……給水ポンプ 15……給水流量制御弁、16……主蒸気流量計 17……給水流量計 18……給水流量制御ユニット 19……給水流量スイッチ 20……再生熱交換器バイパス弁 21……再生熱交換器入口弁 22……給水配管上部温度計 23……給水配管下部温度計 24……温度差スイッチ 25……浄化系合流前温度計 26……給水系合流前温度計 27……温度差スイッチ 28……復水器ブローダウン弁 30……バイパス管
FIG. 1 is a system diagram showing a first embodiment of the present invention, FIG. 2 is a system diagram showing a second embodiment, FIG. 3 is a system diagram showing a third embodiment, and FIG. 4 is a fifth embodiment. Fig. 5 is a diagram showing the disappearance of the stratified flow phenomenon in the water supply pipe according to the present invention.
FIG. 5 (a) shows the relationship between the temperature of the water supply pipe and time, FIG. 5 (b) shows the relationship between the ratio of the water supply system flow rate and the purification system flow rate to the rated water supply flow rate and the time, and FIG. ) Indicates the relationship between the feed water temperature and the purification system temperature and time. FIG. 6 is a system diagram of a conventional purification device, FIG. 7 is a chart showing stratified flow development in a water supply pipe in the conventional purification device, and FIG. 7 (a) shows a relationship between the temperature of the water supply pipe and time. , FIG. 7 (b) shows the relationship between the ratio of the feed water and purified water to the rated flow rate and time, and FIG. 7 (c) shows the relationship between the feed water and purified water temperature and time. 1 ... Reactor, 2 ... Recirculation pump 3 ... Recirculation piping device, 4 ... Purification system pump 5 ... Regenerative heat exchanger, 6 ... Non-regenerative heat exchanger 7 ... Filtration desalination device 8 …… Non-regenerative heat exchanger cooling system 9 …… Main steam piping, 10 …… Water supply piping 11 …… Turbine, 12 …… Generator 13 …… Condenser, 14 …… Water pump 15 …… Water supply flow control valve , 16 …… Main steam flow meter 17 …… Supply water flow meter 18 …… Supply water flow control unit 19 …… Supply water flow switch 20 …… Regeneration heat exchanger bypass valve 21 …… Regeneration heat exchanger inlet valve 22 …… Water supply piping Upper thermometer 23 …… Water supply pipe lower thermometer 24 …… Temperature difference switch 25 …… Purification system before confluence thermometer 26 …… Water supply system before confluence thermometer 27 …… Temperature difference switch 28 …… Condenser blowdown valve 30 ... Bypass pipe

───────────────────────────────────────────────────── フロントページの続き (72)発明者 水谷 章 茨城県日立市幸町3丁目2番1号 日立エ ンジニアリング株式会社内 (56)参考文献 特開 昭60−100095(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Akira Mizutani 3-2-1, Sachimachi, Hitachi City, Ibaraki Hitachi Engineering Co., Ltd. (56) References JP-A-60-100095 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】原子炉冷却材を冷却する再生熱交換器およ
び非再生熱交換器と、該非再生熱交換器を通過した冷却
材を浄化する脱塩装置とを備え、該脱塩装置で浄化され
た冷却材を前記再生熱交換器を通過させた後、前記原子
炉の給水配管系に合流させて原子炉圧力容器内に戻すよ
うにしてなる原子炉冷却材浄化系において、前記再生熱
交換器にバイパス配管系を設けるとともに、該給水配管
系の合流点の下流側における配管上下の温度差と該給水
配管系の給水流量とを検出情報として入力する制御回路
に接続され、かつ該制御回路の出力信号に基づいて冷却
材の流れを前記バイパス配管系に切換える切換手段を設
け、前記制御回路は原子炉起動時における浄化系と給水
配管系との合流点での層化流動現象の現出範囲に相当す
る設定値と該検出情報とを比較して前記切換え手段を作
動させるように構成したことを特徴とする原子炉冷却材
浄化系。
1. A regenerative heat exchanger and a non-regenerative heat exchanger for cooling a reactor coolant, and a desalination device for purifying the coolant that has passed through the non-regeneration heat exchanger. After passing through the regenerated heat exchanger through the regenerated heat exchanger, the regenerated heat exchange is performed in the reactor coolant purification system that joins the feedwater piping system of the reactor and returns it into the reactor pressure vessel. Is provided with a bypass piping system, and is connected to a control circuit for inputting, as detection information, the temperature difference between the upper and lower sides of the piping downstream of the confluence point of the water supply piping system and the feed water flow rate of the water supply piping system, and the control circuit Is provided with switching means for switching the flow of the coolant to the bypass piping system based on the output signal from the control circuit, and the control circuit causes the stratified flow phenomenon to appear at the confluence of the purification system and the water supply piping system at the time of reactor startup. Setting value corresponding to range and detection Reactor coolant cleanup system for comparing the distribution is characterized by being configured to actuate said switching means.
JP60232199A 1985-10-17 1985-10-17 Reactor coolant purification system Expired - Lifetime JPH06105314B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60232199A JPH06105314B2 (en) 1985-10-17 1985-10-17 Reactor coolant purification system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60232199A JPH06105314B2 (en) 1985-10-17 1985-10-17 Reactor coolant purification system

Publications (2)

Publication Number Publication Date
JPS6291897A JPS6291897A (en) 1987-04-27
JPH06105314B2 true JPH06105314B2 (en) 1994-12-21

Family

ID=16935539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60232199A Expired - Lifetime JPH06105314B2 (en) 1985-10-17 1985-10-17 Reactor coolant purification system

Country Status (1)

Country Link
JP (1) JPH06105314B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105006264B (en) * 2015-07-15 2017-07-07 清华大学 A kind of HTGR helium purification regenerative system and renovation process

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60100095A (en) * 1983-11-04 1985-06-03 株式会社日立製作所 Supply facility for refrigerant for nuclear reactor

Also Published As

Publication number Publication date
JPS6291897A (en) 1987-04-27

Similar Documents

Publication Publication Date Title
CA2257292C (en) Combined cycle power plant and cooling steam supply method for gas turbine therein
JPH06105314B2 (en) Reactor coolant purification system
JPS6228692A (en) Method of operating nuclear-reactor coolant purification system
JPS60113190A (en) Cooling system of boiling-water type reactor
JPS60100095A (en) Supply facility for refrigerant for nuclear reactor
JP2001091689A (en) Starting method for supercritical pressure light water- cooled reactor
JPS6010597B2 (en) Reactor coolant purification system
JPS58201094A (en) Reactor coolant cleanup system
JPS62123396A (en) Feed water supply system for nuclear reactor
JPH0679069B2 (en) Reactor residual heat removal device
JP3759083B2 (en) Steam turbine plant
JPS5967497A (en) Reactor coolant clean-up device
JPS60116998A (en) Piping joint
JPH0922718A (en) Fuel cell device
JPS6264996A (en) Coolant purifier for fast reactor
JPH0347478B2 (en)
JPS604439B2 (en) How to operate a nuclear reactor plant
JPH01311298A (en) Preheating device for fast breeder reactor
JPH06174885A (en) Accessory cooling system facility
JPS61277093A (en) Nuclear reactor plant
JP3044159B2 (en) High-speed standby operation device of fast reactor
JPH08101297A (en) Water supply system for nuclear reactor
JPH0431558B2 (en)
JPS6149969A (en) Absorption heat pump device
JPS585000B2 (en) Nuclear plant cooling system