JPH06104860B2 - Manufacturing method of high heat input welding steel with excellent low temperature toughness - Google Patents

Manufacturing method of high heat input welding steel with excellent low temperature toughness

Info

Publication number
JPH06104860B2
JPH06104860B2 JP1073549A JP7354989A JPH06104860B2 JP H06104860 B2 JPH06104860 B2 JP H06104860B2 JP 1073549 A JP1073549 A JP 1073549A JP 7354989 A JP7354989 A JP 7354989A JP H06104860 B2 JPH06104860 B2 JP H06104860B2
Authority
JP
Japan
Prior art keywords
toughness
steel
affected zone
less
heat input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1073549A
Other languages
Japanese (ja)
Other versions
JPH02254118A (en
Inventor
直樹 斉藤
幸男 冨田
良太 山場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP1073549A priority Critical patent/JPH06104860B2/en
Publication of JPH02254118A publication Critical patent/JPH02254118A/en
Publication of JPH06104860B2 publication Critical patent/JPH06104860B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、低温靭性の優れた大入熱用鋼材の製造法に関
するものである。
TECHNICAL FIELD The present invention relates to a method for producing a steel material for large heat input having excellent low temperature toughness.

(従来の技術) 近年エネルギー需要の増大から、海洋における石油、天
然ガス等の開発が精力的に行なわれており、特に、より
豊富な石油資源を求めて、最近では、北海、北極海等の
寒冷地で巨大な海洋構造物が建設されている。
(Prior Art) In recent years, due to the increase in energy demand, development of oil, natural gas, etc. in the ocean has been vigorously carried out, and in particular, in search of abundant oil resources, recently, the North Sea, Arctic Ocean, etc. Huge marine structures are being built in cold regions.

このような海洋構造物は、−30℃以下の低温にさらされ
るとともに、波浪の影響等による複雑な負荷応力条件の
もとで操業されるため、それに使用される鋼材に対して
は、優れた脆性破壊特性が要求される。
Since such an offshore structure is exposed to a low temperature of −30 ° C. or lower and is operated under a complicated load stress condition due to the influence of waves, it is superior to the steel materials used for it. Brittle fracture characteristics are required.

特に、母材よりも靭性が低下する溶接熱影響部の靭性
は、構造物の安全性に直接影響してくるため、衝撃試験
等により評価され、例えば、−60℃で3.5kg f・m以上
の衝撃値が要求される場合がある。
In particular, the toughness of the heat-affected zone of the weld, which has a lower toughness than the base metal, directly affects the safety of the structure, so it is evaluated by impact tests, for example, at −60 ° C, 3.5 kg f ・ m or more. The impact value may be required.

また、構造物の巨大化は、建設コストの増加をもたらす
ため、使用鋼材の高張力鋼化、例えば、降伏点が36kg/m
m2以上の鋼材を用いることにより、上部構造物の軽量化
や大入熱溶接法の採用による溶接コストの削減等が図ら
れている。
In addition, the enormous size of the structure causes an increase in construction cost.Therefore, use of high-strength steel in the steel material used, for example, a yield point of 36 kg / m
By using steel materials of m 2 or more, the weight of the upper structure is reduced and the welding cost is reduced by adopting the large heat input welding method.

このような鋼材を製造する方法として、例えば、特開昭
63−103021号公報で述べているように、成分元素を限定
した制御圧延、加速冷却法による製造が公知である。こ
のような従来技術は、通常の溶接入熱(50kJ/cm以下)
では、確かに溶接熱影響部の靭性が優れた鋼材を提供す
るものであるが、大入熱溶接においては、その効果は期
待できない。
As a method for producing such a steel material, for example, Japanese Patent Laid-Open No.
As described in Japanese Patent Laid-Open No. 63-103021, controlled rolling in which constituent elements are limited and production by an accelerated cooling method are known. This kind of conventional technology uses normal welding heat input (50 kJ / cm or less)
Does provide a steel material having excellent toughness in the heat-affected zone of welding, but its effect cannot be expected in high heat input welding.

溶接熱影響部の靭性を改善する技術としては、例えば、
特開昭60−245768号公報および特開昭60−152626号公報
に記載されているごとく、酸化物をフェライト変態核と
して粒内フェライトを生成させることにより、溶接熱影
響部の靭性を向上せしめる技術などが提案されている。
As a technique for improving the toughness of the weld heat affected zone, for example,
As described in JP-A-60-245768 and JP-A-60-152626, a technique for improving the toughness of a heat-affected zone of a weld by forming an intragranular ferrite by using an oxide as a ferrite transformation nucleus Have been proposed.

しかしながら、これらの鋼では、鋳造工程で酸化物を均
一分散させるのが難かしく、安定した溶接熱影響部の靭
性を確保できない欠点があった。
However, these steels have a drawback that it is difficult to uniformly disperse the oxide in the casting process, and stable toughness of the weld heat affected zone cannot be ensured.

(発明が解決しようとする課題) 本発明の目的は、寒冷地、極地で使用される高強度で優
れた溶接熱影響部の靭性を有する海洋構造物用鋼材の製
造方法を提供するものである。
(Problems to be Solved by the Invention) An object of the present invention is to provide a method for producing a steel material for an offshore structure having high strength and excellent toughness of a weld heat affected zone used in cold regions and polar regions. .

(課題を解決するための手段) 本発明は、以上の問題点を解決するためになされたもの
であって、その要旨は、(1)重量%として、C:0.02〜
0.3%、Si:0.3%以下、Mn:0.50〜2.50%、Ni:0.2〜4.5
%、Nb:0.003〜0.010%、Cu:0.2〜2.0%、N:0.01%以下
および重量%で、TiとNの比(Ti/N)が2.0〜4.0である
Tiを含有し、かつ、S:0.003〜0.004%、Al:0.001〜0.1
%、を含有し、(2)更に上記成分に加えて、V:0.2%
以下、Mo:1.0%以下、Cr:1.0%以下からなる強度改善元
素群のうち1種または2種以上を更に含有し、残部がFe
および不可避的不純物からなる鋼を連続鋳造機により鋳
造し、その後、1150℃〜1250℃に加熱し、3時間以上10
時間以下に保定する前処理を施した後、500℃以下まで
冷却し、その後、1150℃以下に加熱し、熱間圧延するこ
とを特徴とする低温靭性の優れた大入熱溶接用鋼の製造
法に関するものである。
(Means for Solving the Problems) The present invention has been made to solve the above problems, and its gist is (1)% by weight, as C: 0.02 to
0.3%, Si: 0.3% or less, Mn: 0.50 to 2.50%, Ni: 0.2 to 4.5
%, Nb: 0.003 to 0.010%, Cu: 0.2 to 2.0%, N: 0.01% or less and weight%, and the Ti to N ratio (Ti / N) is 2.0 to 4.0.
Contains Ti, S: 0.003 to 0.004%, Al: 0.001 to 0.1
%, (2) In addition to the above components, V: 0.2%
Hereinafter, one or more of the strength improving element group consisting of Mo: 1.0% or less and Cr: 1.0% or less is further contained, and the balance is Fe.
And steel containing unavoidable impurities are cast by a continuous casting machine and then heated to 1150 ° C to 1250 ° C for 3 hours or more 10
Manufacture of steel for high heat input welding with excellent low temperature toughness, characterized by cooling to 500 ° C or less, then heating to 1150 ° C or less, after pretreatment to retain for less than time, and then heating to 1150 ° C or less It is about law.

(作用) 本発明者らは数多くの実験に基づき、溶接時の冷却過
程で生成する粒内フェライトは、酸化物だけでなく、Ti
NとMnSの複合析出物(以下、TiN−MnS析出物と呼ぶ)か
らでも生成し、溶接熱影響部の靭性を向上させる、溶
接熱影響部の靭性の向上に寄与するTiN−MnS析出物の大
きさは、一定以上の大きさである必要があり、それを達
成するためには、高温でMnSを凝集させる処理が必要で
あることを知見した。
(Function) Based on a number of experiments, the present inventors found that the intragranular ferrite generated in the cooling process during welding was
TiN-MnS precipitates that contribute to the improvement of the toughness of the weld heat affected zone, which is generated even from the composite precipitate of N and MnS (hereinafter referred to as TiN-MnS precipitate) and improve the toughness of the weld heat affected zone It was found that the size needs to be a certain size or more, and in order to achieve it, a treatment for aggregating MnS at high temperature is necessary.

以下、上記の知見に基づき、本発明の骨子を説明する。Hereinafter, the essence of the present invention will be described based on the above findings.

第1図は溶接熱サイクルを付加した後の靭性変化であ
る。
FIG. 1 shows the change in toughness after the addition of the welding heat cycle.

この時の試料の化学成分は以下の通りである。The chemical components of the sample at this time are as follows.

この図からTiN-MnSの複合析出物の増加と共に、溶接熱
影響部の靭性が向上しており、TiN−MnS複合析出部が溶
接熱影響部の靭性向上に効果があることが分かる。
From this figure, it is understood that the toughness of the weld heat affected zone is improved as the TiN-MnS composite precipitate increases, and that the TiN-MnS composite precipitated zone is effective in improving the toughness of the weld heat affected zone.

第2図はTiN−MnS析出物の析出状態を圧延前の前処理温
度とその保持時間に対して表わしたものである。
Fig. 2 shows the precipitation state of TiN-MnS precipitates with respect to the pretreatment temperature before rolling and the holding time thereof.

前処理条件において、TiN−MnS複合析出物の析出促進に
は最適な領域が存在し、1150〜1250℃の温度範囲で3〜
10時間保持することが必要である。なお、この時のTiN
−MnS複合析出物の大きさは、0.4μm以上が好ましい。
Under the pretreatment conditions, there is an optimum region for promoting the precipitation of TiN-MnS composite precipitates, and the temperature range of 1150 to 1250 ° C is 3 to
It is necessary to hold for 10 hours. In addition, TiN at this time
The size of the —MnS composite precipitate is preferably 0.4 μm or more.

また、この熱処理は、通常行なわれる熱間圧延時のスラ
ブ加熱処理と兼ねて実施することも考えられるが、圧延
前の加熱温度を1150℃超の温度にすると、母材の強度、
靭性の低下を招くため、本発明における熱処理は熱間圧
延時の加熱に先立ち行なわれるべきである。
Further, this heat treatment may be performed in combination with the slab heat treatment during hot rolling that is usually performed, but if the heating temperature before rolling is set to a temperature higher than 1150 ° C, the strength of the base metal,
The heat treatment in the present invention should be performed prior to heating during hot rolling because it causes a decrease in toughness.

以上の実験事実から、熱間圧延前に1150〜1250℃3〜10
時間の前処理を施すことで、粒内フェライトの変態核と
なるTiN−MnS複合析出物を析出させ、その結果、溶接熱
影響部の靭性を顕著に改善することが可能である。
From the above experimental facts, 1150 ~ 1250 ℃ 3 ~ 10 before hot rolling
By performing the pretreatment for a time, TiN-MnS composite precipitates, which become the transformation nuclei of intragranular ferrite, are precipitated, and as a result, the toughness of the weld heat affected zone can be significantly improved.

なお、熱処理後の冷却速度はAlNの粗大化などの靭性を
阻害する析出物の生成を防ぐ観点から、空冷以上の冷却
速度が望ましく、その冷却はMnSの形態が変化しない500
℃以下までとする。
Incidentally, the cooling rate after the heat treatment is preferably a cooling rate of air cooling or higher from the viewpoint of preventing the formation of precipitates that hinder the toughness such as coarsening of AlN, and the cooling does not change the morphology of MnS 500
Up to ℃ or less.

また、熱間圧延のためのスラブの加熱温度は、一度生成
したTiN−MnS析出物の形態を変化させないためと、母材
の強度、靭性を確保する理由から、1150℃以下にする必
要がある。
Further, the heating temperature of the slab for hot rolling needs to be 1150 ° C. or lower in order not to change the morphology of the TiN-MnS precipitate that has been generated once and for the reason of securing the strength and toughness of the base material. .

次に、本発明における成分の限定理由について述べる。Next, the reasons for limiting the components in the present invention will be described.

Cは、強度を確保するために必要な元素であり、強度確
保のために、0.02%以上の添加が必要であるが、多量の
添加は溶接熱影響部の靭性の低下をまねくためその上限
を0.3%とする。
C is an element necessary to secure the strength, and 0.02% or more is required to secure the strength. However, a large amount of addition causes a decrease in the toughness of the weld heat affected zone, so its upper limit is set. 0.3%

Siは多量に添加すると溶接熱影響部の靭性を阻害するた
め、その上限を0.3%とする。
When Si is added in a large amount, it impairs the toughness of the weld heat affected zone, so its upper limit is made 0.3%.

Mnは強度確保のために0.5%以上添加する必要がある
が、多量に添加すると靭性の低下をきたすため、その上
限を2.5%とする。
Mn needs to be added in an amount of 0.5% or more to secure the strength, but if it is added in a large amount, the toughness decreases, so the upper limit is made 2.5%.

Niは靭性、焼入れ性に有効な元素であると同時に、Cu添
加の際に問題となる熱間割れの軽減にも効果があり、0.
2%未満の添加ではその効果が認められず、また多量の
添加はNiが高価であるため、4.5%以下と限定する。
Ni is an element effective in toughness and hardenability, and at the same time, it is effective in reducing hot cracking, which is a problem when adding Cu.
If less than 2% is added, the effect is not recognized, and if a large amount is added, Ni is expensive, so the content is limited to 4.5% or less.

NはTiと化合して析出物を形成する重要な元素である
が、鋼中でフリーに存在すると溶接熱影響部の靭性低下
を招くため、その上限を0.010%とする。
N is an important element that combines with Ti to form precipitates, but if it exists free in the steel, it causes a decrease in the toughness of the weld heat affected zone, so its upper limit is made 0.010%.

Tiは本発明鋼にとって必須の元素であり、Nと化合して
TiNを析出し、MnSの析出核として働く。したがって、最
適なTINを得るために、TiとNの量を制御する必要があ
る。すなわち、TiとNの重量比で2.0未満になるとN過
剰になり、溶接熱影響部の靭性の低下を招き、4.0を超
えるTi/Nでは、逆にTi過剰になりTiCが析出し、母材靭
性が低下する。
Ti is an essential element for the steel of the present invention, and when combined with N,
Precipitates TiN and acts as a precipitation nucleus for MnS. Therefore, it is necessary to control the amounts of Ti and N in order to obtain the optimum TIN. That is, when the weight ratio of Ti and N is less than 2.0, N becomes excessive, leading to a decrease in the toughness of the weld heat affected zone. At Ti / N exceeding 4.0, on the contrary, Ti becomes excessive and TiC precipitates. Toughness decreases.

Nbは母材の強度、靭性を確保するために必要な元素であ
り、0.003%以下の添加では再結晶抑制効果がなくな
り、母材の靭性が低下し、逆に0.015%を超える添加で
は溶接熱影響部の靭性低下を招くため、上記の範囲に限
定する。
Nb is an element necessary to secure the strength and toughness of the base metal, and when 0.003% or less is added, the effect of suppressing recrystallization is lost, and the toughness of the base metal is reduced. Since the toughness of the affected zone is reduced, it is limited to the above range.

Cuは強度の上昇に有効な元素であり、0.2%以下ではそ
の効果がなく、2.0%を超える添加では熱間加工の際に
割れを発生しかつ溶接性を阻害するため、0.2〜2.0%の
範囲に限定する。
Cu is an effective element for increasing the strength. If it is less than 0.2%, it has no effect. If it exceeds 2.0%, it causes cracking during hot working and impairs weldability. Limited to the range.

SはMnSの析出に重要な元素であって、第3図に示すよ
うに、0.002%以下の添ではその析出が不十になるとと
もに、0.008%を超えて添加すると、MnSが多量に析出
し、かえって靭性を阻害するために、0.003〜0.008%の
範囲に限定するが、好ましくは0.003〜0.005%の範囲に
添加されるべきである。
S is an important element for the precipitation of MnS. As shown in Fig. 3, when the addition amount is 0.002% or less, the precipitation becomes insufficient, and when it exceeds 0.008%, a large amount of MnS is precipitated. On the contrary, in order to inhibit the toughness, the content is limited to the range of 0.003 to 0.008%, but preferably it should be added to the range of 0.003 to 0.005%.

第3図のベース成分は0.05C−0.11Si−1.57Mn−0.005P
−0.30Cu−0.30Ni−0.010Nb−0.008Ti−0.0030Nであ
る。
The base component in Fig. 3 is 0.05C-0.11Si-1.57Mn-0.005P.
It is -0.30Cu-0.30Ni-0.010Nb-0.008Ti-0.0030N.

Alは脱酸のために必要な元素であって、0.005%以上の
添加が必要であるが、多量に添加すると靭性が著しく低
下するため、0.1%を上限とする。
Al is an element necessary for deoxidation, and it is necessary to add 0.005% or more. However, if added in a large amount, the toughness significantly decreases, so 0.1% is made the upper limit.

本発明では、上記の基本成分系の他に、Cr,V,Moを1種
または2種以上添加する。これらの成分は鋼の強度を向
上させるという均等的作用を持つもので、所望の効果を
確保するためには、それぞれ含有下限量をCr:0.1%、V:
0.01%、Mo:0.1%とする必要がある。しかし、それぞれ
Cr:1.0%、V:0.2%、Mo:1.0%を超えて含有させると溶
接性、母材靭性を低下させるようになるため、上記の通
り限定する。
In the present invention, one, two or more kinds of Cr, V and Mo are added in addition to the above basic component system. These components have an equal effect of improving the strength of steel, and in order to secure the desired effect, the lower limit of the content is Cr: 0.1%, V:
It is necessary to set 0.01% and Mo: 0.1%. But each
If the content of Cr: 1.0%, V: 0.2%, and Mo: 1.0% is exceeded, the weldability and base material toughness will be reduced, so the above limits are set.

以上述べた成分を有する鋼を電気炉、転炉で溶製した
後、連続鋳造機により鋳造する。これは従来の造塊分塊
法だと凝固時の冷却速度が遅く、TiNが微細に析出しな
いため、溶接熱影響部の靭性に対し好ましくない。
Steel having the components described above is melted in an electric furnace and a converter, and then cast by a continuous casting machine. This is not preferable for the toughness of the weld heat affected zone because the conventional ingot-agglomeration method has a slow cooling rate during solidification and does not cause fine precipitation of TiN.

このスラブを熱間圧延の加熱に先立ち、1150〜1250℃で
3〜10時間保持し、その後空冷以上の冷却速度で500℃
以下まで冷却する。
This slab is held at 1150 to 1250 ° C for 3 to 10 hours before heating in hot rolling, and then 500 ° C at a cooling rate of air cooling or higher.
Cool to below.

この前処理は前述したように、溶接時の冷却途中に変態
して生成する粒内フェライトの析出核として、最適なTi
N−MnS複合析出物を析出させるために必要な処理であ
る。
As described above, this pretreatment is performed with the optimum Ti as the precipitation nuclei for the intragranular ferrite that is formed by transformation during cooling during welding.
This is a necessary treatment for precipitating N-MnS composite precipitates.

第2図に示すように、1250℃を超える温度では、MnSが
溶解するために適切な複合析出物がえられず、1150℃未
満の温度ではMnSの凝集が不十分である。また、1150〜1
250℃の温度範囲でも、保持が3時間未満であるとやは
りMnSの凝集する時間が不十分であるため、その保持時
間の下限は3時間とする。
As shown in FIG. 2, at a temperature higher than 1250 ° C., MnS is dissolved, so that an appropriate composite precipitate cannot be obtained, and at a temperature lower than 1150 ° C., the aggregation of MnS is insufficient. Also, 1150-1
Even in the temperature range of 250 ° C., if the holding time is less than 3 hours, the MnS aggregation time is still insufficient, so the lower limit of the holding time is 3 hours.

しかしながら、10時間を超える保持は、MnSの粗大化に
より、粒内フェライトの変態核としての複合析出物の適
切な個数密度が低下すると同時に、熱処理コストも増大
するために、その上限は10時間とする。
However, holding for more than 10 hours, due to the coarsening of MnS, the appropriate number density of the composite precipitates as transformation nuclei of intragranular ferrite decreases, and at the same time, the heat treatment cost also increases, so the upper limit is 10 hours. To do.

また、この前処理後に場合によっては分塊圧延を加えて
も何らさしつかえない。
In addition, slump rolling may be added in some cases after this pretreatment.

その後、熱間圧延のために再加熱を施すが、その時の温
度は、母材の強度、靭性を確保するためと前述した熱処
理により、TiN−MnS析出物の形態を変化させないために
1150℃以下にする必要がある。
After that, reheating is performed for hot rolling, but the temperature at that time is in order to secure the strength and toughness of the base metal and to prevent the morphology of TiN-MnS precipitates from changing by the above-mentioned heat treatment.
It must be below 1150 ℃.

なお、加熱後の圧延については、母材の強度、靭性の向
上を計るために、制御圧延を施したり、制御圧延後、水
冷しても何等TiN−MnS複合析出物に変化を与えることが
ないため、現在公知である製造方法を適宜選択して採用
できる。
Regarding the rolling after heating, in order to improve the strength and toughness of the base metal, there is no change in TiN-MnS composite precipitate even if controlled rolling is performed or water cooling is performed after controlled rolling. Therefore, currently known manufacturing methods can be appropriately selected and adopted.

(実施例) 供試材の化学成分を第2表に示す。(Example) Table 2 shows the chemical composition of the test material.

ここで、鋼A〜鋼Gは本発明に該当する成分系であり、
鋼H〜鋼Jは本発明から逸脱している鋼である。
Here, Steel A to Steel G are component systems corresponding to the present invention,
Steels H to J are steels that deviate from the present invention.

また、第3表には供試材の製造条件および母材、溶接熱
影響部の靭性値を合わせて示している。
Further, Table 3 also shows the manufacturing conditions of the test material, the base metal, and the toughness value of the weld heat affected zone.

これらの鋼板は転炉で溶製、連続鋳造機により、厚み24
0mm、幅1600mに鋳造された後、前処理および圧延のため
の加熱圧延を経て32mmの鋼板として製造された。なお、
溶接熱影響部の靭性は、片面1層の潜弧溶接(入熱:200
kJ/cm)後の衝撃試験により評価した。
These steel plates are melted in a converter and made to a thickness of 24 by a continuous casting machine.
After being cast to a width of 0 mm and a width of 1600 m, it was subjected to heat treatment for pretreatment and rolling to produce a steel plate of 32 mm. In addition,
The toughness of the heat-affected zone is determined by latent arc welding (heat input: 200
kJ / cm) was evaluated by an impact test.

本発明により製造された鋼板(板番:1,4,6,7,9,10,11)
は、母材、溶接熱影響部共に優れた靭性を示している。
Steel plate manufactured by the present invention (plate number: 1,4,6,7,9,10,11)
Shows excellent toughness in both the base metal and the weld heat affected zone.

これに対し、板番2は前処理温度が高いため溶接熱影響
部の靭性が低下し、板番3は圧延前のスラブ加熱温度が
高いために母材の靭性が低下している。板番5は前処理
後の冷却が徐冷であるために溶接熱影響部の靭性の低下
が見られ、板番8は前処理温度が低いために同じく溶接
熱影響部の靭性が低下している。
On the other hand, the plate No. 2 has a high pretreatment temperature, which lowers the toughness of the heat-affected zone of welding, and the plate No. 3 has a high slab heating temperature before rolling, which reduces the toughness of the base metal. Plate No. 5 showed a decrease in toughness of the weld heat affected zone because the cooling after pretreatment was slow cooling, and plate No. 8 also showed a decrease in toughness of the weld heat affected zone due to the low pretreatment temperature. There is.

さらに板番12,13,14は成分範囲が本発明から逸脱してい
るものである。すなわち板番12はNb含有量が多いために
母材強度は高いものの、溶接熱影響部の靭性が低下し、
板番13はTi/Nが本発明条件から逸脱しているために、同
じく溶接部の靭性が低下している。また、板番14はS量
が高いためにやはり、溶接熱影響部の靭性低下が認めら
れる。
Further, the plate numbers 12, 13 and 14 are those in which the composition range deviates from the present invention. In other words, plate No. 12 has a high Nb content, so the base metal strength is high, but the toughness of the weld heat affected zone decreases,
Since the Ti / N of plate No. 13 deviates from the conditions of the present invention, the toughness of the welded portion also deteriorates. Further, since plate No. 14 has a high S content, the toughness of the weld heat affected zone is also reduced.

(発明の効果) 以上述べたように、本発明によれば、大入熱溶接によっ
ても溶接熱影響部の低温靭性が安定して高水準の鋼材が
得られるため、産業上極めて有用なものである。
(Effects of the Invention) As described above, according to the present invention, since the low temperature toughness of the weld heat affected zone is stable and a high level steel material can be obtained even by high heat input welding, it is extremely useful industrially. is there.

【図面の簡単な説明】[Brief description of drawings]

第1図はTiN−MnS複合物と溶接熱サイクル後の靭性の変
化を示す図表、第2図はTiN−MnS複合析出物の析出状態
を前処理温度とその保定時間に対して表した図表、第3
図は片面1層潜弧溶接(入熱:200kJ/cm)後の溶接熱影
響部の靭性に及ぼすS量の影響を示した図表である。
Fig. 1 is a chart showing the change in toughness after the TiN-MnS composite and welding heat cycle, and Fig. 2 is a chart showing the precipitation state of the TiN-MnS composite precipitate with respect to the pretreatment temperature and its holding time, Third
The figure is a chart showing the effect of S content on the toughness of the heat-affected zone of the weld after single-sided single-layer latent arc welding (heat input: 200 kJ / cm).

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】重量%として、 C:0.02〜0.3% Si:0.3%以下 Mn:0.50〜2.50% Ni:0.2〜4.5% Nb:0.003〜0.015% Cu:0.2〜2.0% N:0.01%以下 重量%で、TiとNの比(Ti/N)が2.0〜4.0になるTi、 Al:0.005〜0.1% S:0.003〜0.008% 残部がFeおよび不可避的不純物よりなる鋼を連続鋳造
し、熱間圧延に先立ち、1150℃〜1250℃に加熱し、3時
間以上10時間以下に保定する前処理を施した後、500℃
以下まで冷却し、その後1150℃以下に加熱し、熱間圧延
することを特徴とする低温靭性の優れた大入熱溶接用鋼
の製造法。
[Claim 1] C: 0.02 to 0.3% Si: 0.3% or less Mn: 0.50 to 2.50% Ni: 0.2 to 4.5% Nb: 0.003 to 0.015% Cu: 0.2 to 2.0% N: 0.01% or less %, Ti: N ratio (Ti / N) becomes 2.0 to 4.0, Al: 0.005 to 0.1% S: 0.003 to 0.008% Continuous casting of steel with the balance being Fe and unavoidable impurities Prior to rolling, it is heated to 1150 ° C to 1250 ° C and subjected to a pretreatment of holding for 3 hours to 10 hours, then 500 ° C.
A method for producing a steel for high heat input welding with excellent low temperature toughness, which comprises cooling to the following, then heating to 1150 ° C or less, and hot rolling.
【請求項2】重量%として、 Cr:0.1〜1.0% V:0.01〜0.2% Mo:0.1〜1.0% からなる強度改善元素群のうちの1種または2種以上を
更に含有し、残部がFeおよび不可避的不純物からなる鋼
である請求項1記載の低温靭性の優れた大入熱溶接用鋼
の製造法。
2. The composition further comprises, as a weight%, one or more elements selected from the group of strength improving elements consisting of Cr: 0.1-1.0% V: 0.01-0.2% Mo: 0.1-1.0%, with the balance being Fe. The method for producing a steel for high heat input welding having excellent low temperature toughness according to claim 1, wherein the steel is composed of unavoidable impurities.
JP1073549A 1989-03-25 1989-03-25 Manufacturing method of high heat input welding steel with excellent low temperature toughness Expired - Lifetime JPH06104860B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1073549A JPH06104860B2 (en) 1989-03-25 1989-03-25 Manufacturing method of high heat input welding steel with excellent low temperature toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1073549A JPH06104860B2 (en) 1989-03-25 1989-03-25 Manufacturing method of high heat input welding steel with excellent low temperature toughness

Publications (2)

Publication Number Publication Date
JPH02254118A JPH02254118A (en) 1990-10-12
JPH06104860B2 true JPH06104860B2 (en) 1994-12-21

Family

ID=13521428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1073549A Expired - Lifetime JPH06104860B2 (en) 1989-03-25 1989-03-25 Manufacturing method of high heat input welding steel with excellent low temperature toughness

Country Status (1)

Country Link
JP (1) JPH06104860B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11323434A (en) * 1998-05-14 1999-11-26 Nippon Steel Corp Production of thick high tensile strength steel excellent in low temperature toughness

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1078912C (en) * 1996-09-27 2002-02-06 川崎制铁株式会社 High strength and high tenacity non-heat-treated steel having excellent machinability
EP2860276B1 (en) 2013-08-13 2018-05-02 Nippon Steel & Sumitomo Metal Corporation Steel plate
CN112322979B (en) * 2020-11-05 2022-12-16 宝武集团马钢轨交材料科技有限公司 Steel for subway wheels and wheel production method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5141621A (en) * 1974-10-07 1976-04-08 Kobe Steel Ltd DAINYUNETSUYO SETSUKO ZOYOKO
JPS62170459A (en) * 1986-01-22 1987-07-27 Sumitomo Metal Ind Ltd High tension steel plate for high heat input welding

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5141621A (en) * 1974-10-07 1976-04-08 Kobe Steel Ltd DAINYUNETSUYO SETSUKO ZOYOKO
JPS62170459A (en) * 1986-01-22 1987-07-27 Sumitomo Metal Ind Ltd High tension steel plate for high heat input welding

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11323434A (en) * 1998-05-14 1999-11-26 Nippon Steel Corp Production of thick high tensile strength steel excellent in low temperature toughness

Also Published As

Publication number Publication date
JPH02254118A (en) 1990-10-12

Similar Documents

Publication Publication Date Title
JP4660250B2 (en) Thick high-strength steel sheet with excellent low-temperature toughness in the heat affected zone by high heat input welding
CN100455692C (en) High-strength weathering steel and method of manufacturing same
JP5397363B2 (en) Thick high-strength steel sheet with excellent low-temperature toughness in the heat affected zone by high heat input welding
CN106319380A (en) Low compression ratio 690MPa grade extra thick steel plate and production method thereof
CN103147017A (en) Steel plate with high strength and excellent low-temperature toughness and manufacturing method thereof
CN108374119B (en) Non-magnetic stainless steel hot rolled plate with tensile strength of 1100MPa and manufacturing method thereof
CN102367540B (en) Deep sea pipeline steel produced based on steckel mill and preparation method thereof
CN110079737B (en) Twin crystal strengthened aluminum-containing austenitic heat-resistant stainless steel and preparation method and application thereof
JP4041201B2 (en) High-strength steel for welding with excellent toughness of heat affected zone
JP2837732B2 (en) Manufacturing method of large heat input welding steel with excellent low temperature toughness
JPH0114305B2 (en)
JPH01159356A (en) High tension steel having superior tougeness at weld heat-affected zone
JPH06104860B2 (en) Manufacturing method of high heat input welding steel with excellent low temperature toughness
CN115261737A (en) Air-cooled high-strength-toughness light austenitic steel and preparation method thereof
JPH0694569B2 (en) Manufacturing method of steel with excellent low temperature toughness in the heat affected zone
JPH0768577B2 (en) Method for producing high heat input welding steel with excellent low temperature toughness
JP3464567B2 (en) Welded structural steel with excellent toughness in the heat affected zone
CN104018076B (en) A kind of high temperature resistant reinforcing bar and production method
JPH11131177A (en) Steel plate for medium-or ordinary-temperature pressure vessel, capable of omitting post weld heat treatment, and its production
JPH04157117A (en) Production of rolled shape steel having excellent toughness of base metal and weld zone
JP2837733B2 (en) Manufacturing method of high heat input welding steel with excellent low temperature toughness
CN110317994A (en) A kind of high heat input welding unimach and its manufacturing method
WO2024088380A1 (en) High-strength corrosion-resistant steel for photovoltaic pile foundation and manufacturing method therefor
JPH07252586A (en) Steel for welding structure excellent in ctod in multilayer build-up weld heat-affected zone and toughness in high heat input weld heat-affected zone
WO2024088378A1 (en) Corrosion-resistant steel for photovoltaic pile foundation, and manufacturing method therefor