JPH06104799A - Submarine branching device - Google Patents

Submarine branching device

Info

Publication number
JPH06104799A
JPH06104799A JP4274919A JP27491992A JPH06104799A JP H06104799 A JPH06104799 A JP H06104799A JP 4274919 A JP4274919 A JP 4274919A JP 27491992 A JP27491992 A JP 27491992A JP H06104799 A JPH06104799 A JP H06104799A
Authority
JP
Japan
Prior art keywords
relay
current
feeding
contact
optical submarine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4274919A
Other languages
Japanese (ja)
Other versions
JP3063425B2 (en
Inventor
Yoshiichi Kogure
芳一 小榑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP4274919A priority Critical patent/JP3063425B2/en
Publication of JPH06104799A publication Critical patent/JPH06104799A/en
Application granted granted Critical
Publication of JP3063425B2 publication Critical patent/JP3063425B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Cable Accessories (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
  • Optical Communication System (AREA)

Abstract

PURPOSE:To suppress serge currents generated at the time of the start and stoppage of a power source feeding to an optical submarine cable communication system. CONSTITUTION:A relay driving coil 2 detects the values of the feeding currents of the feeding paths of the both edge feeding. Relay driving coils 3 and 5 have the smaller values of minimum induced currents and driving release currents than the minimum induced currents and driving release currents of the relay driving coil 2, and detect the values of the feeding currents of the feeding paths of the both edge feeding. A relay contact 7 corresponding to the relay driving coil 2 has a make contact in the feeding path of one station feeding. Relay contacts 6 and 4 corresponding to the relay driving coils 3 and 5 have a common contact connected with branched optical submarine cables (optical submarine cables 13 and 10), make contact connected with the relay contact 7, and break contacts inserted into the feeding paths of the both edge feeding. A resistance 8 connected with the relay contact 7 in parallel has a resistance value which is sufficiently large for the suppression of the surge currents.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は海底分岐装置(海中分岐
装置ともいう)に関し、特に光海底中継器を含む光海底
ケーブル通信システムに適用される海底分岐装置の給電
制御(給電電流の立上げおよび立下げの制御等)に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a submarine branching device (also referred to as a submarine branching device), and particularly to power supply control of a submarine branching device applied to an optical submarine cable communication system including an optical submarine repeater (rise of a feeding current). And control of the fall).

【0002】[0002]

【従来の技術】海底分岐装置は、光海底ケーブルを介し
て通信される信号を海中で分岐する装置であり、一般
に、1本の幹線光海底ケーブル(主ケーブル)と2本の
分岐光海底ケーブルとを接続している(図1および図2
参照)。
2. Description of the Related Art A submarine branching device is a device for branching a signal communicated via an optical submarine cable in the sea. Generally, one trunk optical submarine cable (main cable) and two branch optical submarine cables are used. And are connected (see FIGS. 1 and 2).
reference).

【0003】海底分岐装置は、光海底中継器や自己(海
底分岐装置)等を駆動するための電力を供給する制御を
も行っている。すなわち、海底分岐装置には、地上の端
局における給電装置から供給される電力を各光海底中継
器等に供給する給電制御を行う機能が設けられている。
The submarine branching device also controls the supply of electric power for driving the optical submarine repeater, self (submarine branching device) and the like. That is, the submarine branching device is provided with a function of performing power feeding control for supplying the power supplied from the power feeding device at the terminal station on the ground to each optical submarine repeater or the like.

【0004】本発明は、図1および図2に示すような光
海底ケーブル通信システムに適用される海底分岐装置を
対象とする。この光海底ケーブル通信システムは、海中
接地用電極9と、B局側の光海底ケーブル10(分岐光
海底ケーブル)と、光海底ケーブル10における中継を
行う光海底中継器11(複数の光海底中継器11が存在
しうる。光海底中継器14や光海底中継器17について
も同様)と、B局における給電装置12と、C局側の光
海底ケーブル13(分岐光海底ケーブル)と、光海底ケ
ーブル13における中継を行う光海底中継器14と、C
局における給電装置15と、A局側の光海底ケーブル1
6(幹線光海底ケーブル)と、光海底ケーブル16にお
ける中継を行う光海底中継器17と、A局における給電
装置18と、海底分岐装置(図1では海底分岐装置1で
あり、図2では海底分岐装置19である)とを含んで構
成されている。なお、A局,B局およびC局は陸揚局
(地上の端局)であり、B局とC局とは互換的である。
The present invention is directed to a submarine branching device applied to an optical submarine cable communication system as shown in FIGS. 1 and 2. This optical submarine cable communication system comprises an undersea grounding electrode 9, an optical submarine cable 10 (branch optical submarine cable) on the B station side, and an optical submarine repeater 11 (a plurality of optical submarine relays) for relaying in the optical submarine cable 10. Optical submarine repeater 14 and optical submarine repeater 17 as well), power supply device 12 at station B, optical submarine cable 13 (branch optical submarine cable) at station C, and optical submarine An optical submarine repeater 14 for relaying on the cable 13, and C
Power supply device 15 at the station and optical submarine cable 1 at station A
6 (main line optical submarine cable), an optical submarine repeater 17 for relaying in the optical submarine cable 16, a power feeding device 18 in the A station, and a submarine branching device (the submarine branching device 1 in FIG. 1, and the submarine in FIG. 2). And a branching device 19). Stations A, B and C are landing stations (terrestrial terminals), and stations B and C are interchangeable.

【0005】従来の海底分岐装置(ここでは、図2中の
海底分岐装置19で説明する)は、給電制御を実現する
ために、リレー駆動巻線3と、リレー駆動巻線5に対応
するリレー接点4(1×2のリレー接点であり、共通接
点とブレーク接点(a)とメーク接点(b)とを有する
リレー接点)と、リレー駆動巻線5と、リレー駆動巻線
3に対応するリレー接点6(1×2のリレー接点であ
り、共通接点とブレーク接点(a)とメーク接点(b)
とを有するリレー接点)とを含んで構成されていた。
A conventional submarine branching device (herein, described as a submarine branching device 19 in FIG. 2) is a relay corresponding to the relay drive winding 3 and the relay drive winding 5 in order to realize power supply control. Contact 4 (1 × 2 relay contact, which has a common contact, a break contact (a), and a make contact (b)), a relay drive winding 5, and a relay corresponding to the relay drive winding 3. Contact 6 (1 × 2 relay contact, common contact, break contact (a), and make contact (b))
And a relay contact with).

【0006】従来、このように構成された海底分岐装置
19では、給電の開始および停止(給電電流の立上げお
よび立下げ)の制御は次のようにして行われていた(図
2参照)。なお、ここでは、A局の給電装置18とB局
の給電装置12との間で両端給電(2局間給電)が行わ
れており、C局の給電装置15と海中アース(海中接地
用電極9に係るアース)との間で片局給電が行われてい
るものとする(B局とC局とは互換的であるので、A局
の給電装置18とC局の給電装置15との間で両端給電
を行いB局の給電装置12と海中アースとの間で片局給
電を行うことも可能である)。
Conventionally, in the submarine branching device 19 thus configured, the control of starting and stopping the power supply (starting and stopping of the power supply current) has been performed as follows (see FIG. 2). In addition, here, both-end power feeding (power feeding between two stations) is performed between the power feeding device 18 of the A station and the power feeding device 12 of the B station, and the power feeding device 15 of the C station and the underwater earth (underwater grounding electrode). It is assumed that single-station power supply is performed between the power supply device 18 of the A station and the power supply device 15 of the C station because the B station and the C station are compatible with each other. It is also possible to supply power at both ends and supply power to one station between the power supply device 12 of station B and the undersea ground).

【0007】第1に、給電の開始時における制御につい
て説明する。
First, the control at the start of power feeding will be described.

【0008】C局の給電装置15が給電を開始する前
に、A局の給電装置18およびB局の給電装置12が給
電を開始する。
Before the power feeding device 15 of the C station starts power feeding, the power feeding device 18 of the A station and the power feeding device 12 of the B station start power feeding.

【0009】A局とB局との間の給電電流は、光海底ケ
ーブル16,光海底中継器17,リレー駆動巻線3,リ
レー接点4,光海底ケーブル10および光海底中継器1
1を介して、給電装置18から給電装置12に流れ込
む。この給電電流がリレー駆動巻線3を流れることによ
り、リレー接点6は(a)側(ブレーク接点側)から
(b)側(メーク接点側)に切り替わる。
The power supply current between the stations A and B is supplied to the optical submarine cable 16, the optical submarine repeater 17, the relay drive winding 3, the relay contact 4, the optical submarine cable 10 and the optical submarine repeater 1.
1 through the power feeding device 18 into the power feeding device 12. When the power supply current flows through the relay drive winding 3, the relay contact 6 is switched from the (a) side (break contact side) to the (b) side (make contact side).

【0010】このリレー接点6の切替わりが確認される
と、C局の給電装置15が給電を開始する(リレー接点
6が(b)側に切り替わるまで給電装置15による給電
は行われないので、リレー駆動巻線5の駆動に基づくリ
レー接点4の切替わりは生じない)。
When the switching of the relay contact 6 is confirmed, the power feeding device 15 of the C station starts power feeding (since the power feeding device 15 does not feed power until the relay contact 6 is switched to the (b) side, Switching of the relay contact 4 based on the drive of the relay drive winding 5 does not occur).

【0011】その結果、海中接地用電極9から流れ込ん
だC局からの給電電流は、リレー接点6,光海底ケーブ
ル13および光海底中継器14を介して、C局の給電装
置15に流れ込む。
As a result, the power supply current from the station C flowing from the undersea grounding electrode 9 flows into the power supply device 15 of the station C via the relay contact 6, the optical submarine cable 13 and the optical submarine repeater 14.

【0012】上述した一連の動作により、海底分岐装置
19および全ての光海底中継器11,14および17へ
の給電が可能となり、A局,B局およびC局の相互間で
の通信が可能となる。
By the series of operations described above, power can be supplied to the submarine branching device 19 and all the optical submarine repeaters 11, 14 and 17, and communication between stations A, B and C is possible. Become.

【0013】第2に、給電の停止時の制御について説明
する。
Secondly, the control when the power supply is stopped will be described.

【0014】まず、C局の給電装置15が給電を停止す
る。
First, the power supply device 15 of the C station stops the power supply.

【0015】次に、A局とB局との間の給電電流が減少
されていき、給電装置18および給電装置12が給電を
停止する。ここで、リレー駆動巻線3を流れる給電電流
が一定の値の電流(駆動解除電流)まで降下すると、リ
レー接点6は(b)側から(a)側に切り替わる。
Next, the power supply current between station A and station B is reduced, and power supply device 18 and power supply device 12 stop supplying power. Here, when the power supply current flowing through the relay drive winding 3 drops to a constant value current (drive release current), the relay contact 6 switches from the (b) side to the (a) side.

【0016】[0016]

【発明が解決しようとする課題】上述した従来の海底分
岐装置(海底分岐装置19)による給電制御には、以下
に示すような問題点があった。
The power supply control by the above-mentioned conventional submarine branching device (submarine branching device 19) has the following problems.

【0017】給電の開始時の制御において、給電装置1
8から給電装置12に至る給電電流が増加される際に、
その給電電流がリレー駆動巻線3の最小感動電流に達し
た時点で、上述のようにリレー駆動巻線3に対応するリ
レー接点6が(a)側から(b)側に切り替わる。ここ
で、この最小感動電流に達する直前では、海底分岐装置
19の内部の回路は海中接地用電極9に接続されている
部分を除いて全て一定の電位(Vmとする)の状態にな
っている。また、この電位Vmは、光海底ケーブル13
および光海底中継器14にもリレー接点6を介して印加
されている。
In the control at the start of power feeding, the power feeding device 1
When the power supply current from 8 to the power supply device 12 is increased,
When the supplied current reaches the minimum moving current of the relay drive winding 3, the relay contact 6 corresponding to the relay drive winding 3 is switched from the (a) side to the (b) side as described above. Immediately before reaching the minimum moving current, all circuits inside the submarine branching device 19 are in a constant potential (Vm) except for the part connected to the undersea grounding electrode 9. . In addition, this potential Vm is the optical submarine cable 13
It is also applied to the optical submarine repeater 14 via the relay contact 6.

【0018】したがって、給電電流が上記の最小感動電
流に達した時点でリレー接点6が(a)側から(b)側
に切り替わると、光海底ケーブル13および光海底中継
器14は電位Vmから突然に海中アースの電位(0V)
に変化することになる。
Therefore, when the relay contact 6 is switched from the (a) side to the (b) side at the time when the feeding current reaches the above-mentioned minimum moving current, the optical submarine cable 13 and the optical submarine repeater 14 suddenly change from the potential Vm. The potential of undersea earth (0V)
Will change to.

【0019】一般に、海底分岐装置を必要とするような
光海底ケーブル通信システムでは、光海底ケーブルは数
百kmを超える長距離海底ケーブルとなる。したがっ
て、光海底ケーブル13の中心導体と海水との間には大
きな静電容量が存在する。よって、上述のような電位の
変化(Vmから0Vへの変化)により、この大きな静電
容量に対して電位Vmによって蓄積されていた電荷が瞬
時に光海底ケーブル13,リレー接点6および海中接地
電極9を介して放電されることになる。
Generally, in an optical submarine cable communication system that requires a submarine branching device, the optical submarine cable is a long-distance submarine cable exceeding several hundred km. Therefore, a large capacitance exists between the center conductor of the optical submarine cable 13 and seawater. Therefore, due to the change in potential (change from Vm to 0 V) as described above, the charges accumulated by the potential Vm with respect to this large capacitance are instantaneously transferred to the optical submarine cable 13, the relay contact 6, and the undersea ground electrode. It will be discharged via 9.

【0020】この放電による放電電流(放電電流の大き
さは海底分岐装置19が光海底ケーブル通信システム上
に設置される位置により異なってくる)はリレー接点6
や光海底中継器14に対してサージ電流となり、これら
の装置等の劣化の要因となる。
The discharge current due to this discharge (the magnitude of the discharge current varies depending on the position where the submarine branching device 19 is installed on the optical submarine cable communication system) is the relay contact 6
And a surge current to the optical submarine repeater 14 and cause deterioration of these devices and the like.

【0021】また、給電の停止時の制御において、給電
装置18から給電装置12に至る給電電流が減少される
際にもサージ電流は発生する。
Further, in the control when the power supply is stopped, the surge current is also generated when the power supply current from the power supply device 18 to the power supply device 12 is reduced.

【0022】すなわち、給電装置18から給電装置12
に至る給電電流が降下していくと、その電流値がリレー
駆動巻線3の駆動解除電流(駆動解除電流と最小感動電
流とは同一であるものとする)に達した時点でリレー接
点6は(b)側から(a)側に切り替わる。この時点で
は、まだ海底分岐装置19は一定の電位(Vnとする)
の状態にある。また、光海底ケーブル13および光海底
中継器14の電位は、この時点まで、海中アースの電位
(0V)となっていた。したがって、給電電流が上記の
駆動解除電流に達した時点でリレー接点6が(b)側か
ら(a)側に切り替わると、光海底ケーブル13および
光海底中継器14は海中アースの電位(0V)から突然
に電位Vnに変化することになる。そこで、リレー接点
6や光海底中継器14に対してサージ電流が流れる。
That is, from the power feeding device 18 to the power feeding device 12
When the current value reaches the drive release current of the relay drive winding 3 (the drive release current and the minimum moving current are the same), the relay contact 6 becomes The side (b) is switched to the side (a). At this point, the submarine branching device 19 is still at a constant potential (Vn).
Is in the state of. Further, the electric potentials of the optical submarine cable 13 and the optical submarine repeater 14 have been the electric potential (0 V) of the undersea earth until this point. Therefore, when the relay contact 6 is switched from the (b) side to the (a) side at the time when the power supply current reaches the above drive release current, the optical submarine cable 13 and the optical submarine repeater 14 have the potential of the undersea earth (0 V). Suddenly changes to the potential Vn. Therefore, surge current flows to the relay contact 6 and the optical submarine repeater 14.

【0023】このように、従来の海底分岐装置における
給電制御では、光海底ケーブル通信システムにおける給
電の開始時および停止時においてサージ電流が発生する
ので、海底分岐装置内のリレー接点や光海底ケーブル通
信システムを構成する光海底中継器の劣化(光海底中継
器については海底分岐装置の直近に接続される光海底中
継器が最も大きな影響を受ける)を招くという欠点があ
った。
As described above, in the power feeding control in the conventional submarine branching device, a surge current is generated at the start and stop of power feeding in the optical submarine cable communication system, so that a relay contact in the submarine branching device or an optical submarine cable communication is generated. There is a drawback that it causes deterioration of the optical submarine repeaters constituting the system (for the optical submarine repeaters, the optical submarine repeaters connected in the immediate vicinity of the submarine branching device are most affected).

【0024】本発明の目的は、上述の点に鑑み、光海底
ケーブル通信システムへの給電の開始時および停止時に
発生するサージ電流を抑制することができる給電制御を
行う海底分岐装置を提供することにある。
In view of the above points, an object of the present invention is to provide a submarine branching device for performing power feeding control capable of suppressing a surge current generated at the start and stop of power feeding to an optical submarine cable communication system. It is in.

【0025】[0025]

【課題を解決するための手段】本発明の海底分岐装置
は、A局からの1本の幹線光海底ケーブルとB局および
C局からの2本の分岐光海底ケーブルとを接続する海底
分岐装置において、両端給電の給電路の給電電流の値を
検出する第1のリレー駆動巻線と、この第1のリレー駆
動巻線の最小感動電流および駆動解除電流よりも小さな
値の最小感動電流および駆動解除電流を有し両端給電の
給電路の給電電流の値を検出する第2のリレー駆動巻線
と、片局給電の給電路にメーク接点が挿入される前記第
1のリレー駆動巻線に対応する第1のリレー接点と、共
通接点が分岐光海底ケーブルに接続されメーク接点が前
記第1のリレー接点に接続されブレーク接点が両端給電
の給電路に接続される前記第2のリレー駆動巻線に対応
する第2のリレー接点と、片局給電の給電路において前
記第1のリレー接点と並列に接続されておりサージ電流
を抑制するのに十分な大きさの抵抗値を持つ抵抗とを有
する。
The submarine branching device of the present invention is a submarine branching device that connects one trunk optical submarine cable from station A and two branch optical submarine cables from station B and station C. , A first relay drive winding for detecting a value of a power supply current of a power supply path of both ends power supply, and a minimum touching current and driving of a value smaller than a minimum touching current and a drive release current of the first relay driving winding. Corresponds to the second relay drive winding that has a release current and detects the value of the power supply current of the power supply path of both ends power supply, and the first relay drive winding in which a make contact is inserted in the power supply path of single-station power supply. A second relay drive winding in which a first relay contact and a common contact are connected to a branched optical submarine cable, a make contact is connected to the first relay contact, and a break contact is connected to a power feeding path for feeding both ends. Second relay connection corresponding to When, and a resistor having a resistance value large enough to suppress the first surge current is connected in parallel with the relay contacts in the power supply path of the strip station power feeding.

【0026】[0026]

【作用】本発明の海底分岐装置では、第1のリレー駆動
巻線が両端給電の給電路の給電電流の値を検出し、第1
のリレー駆動巻線の最小感動電流および駆動解除電流よ
りも小さな値の最小感動電流および駆動解除電流を有す
る第2のリレー駆動巻線が両端給電の給電路の給電電流
の値を検出し、第1のリレー駆動巻線に対応する第1の
リレー接点が片局給電の給電路中にメーク接点を有し、
第2のリレー駆動巻線に対応する第2のリレー接点が分
岐光海底ケーブルに接続される共通接点と第1のリレー
接点に接続されるメーク接点と両端給電の給電路に挿入
されるブレーク接点とを有し、片局給電の給電路におい
て第1のリレー接点と並列に接続されている抵抗がサー
ジ電流を抑制するのに十分な大きさの抵抗値を持つ。
In the submarine branching device of the present invention, the first relay drive winding detects the value of the feeding current of the feeding path of the both ends feeding,
A second relay drive winding having a minimum touching current and drive release current smaller than the minimum touching current and drive release current of the relay drive winding of The first relay contact corresponding to the relay drive winding of 1 has a make contact in the power supply path of single-station power supply,
The second relay contact corresponding to the second relay drive winding is a common contact that is connected to the branched optical submarine cable, a make contact that is connected to the first relay contact, and a break contact that is inserted in the power supply path of both ends power supply. And a resistor connected in parallel with the first relay contact in the power feeding path for single-station power feeding has a resistance value large enough to suppress a surge current.

【0027】[0027]

【実施例】次に、本発明について図面を参照して詳細に
説明する。
The present invention will be described in detail with reference to the drawings.

【0028】図1は、本発明の海底分岐装置の一実施例
(海底分岐装置1)を含む光海底ケーブル通信システム
の構成を示す図である。
FIG. 1 is a diagram showing the configuration of an optical submarine cable communication system including an embodiment (submarine branching device 1) of the submarine branching device of the present invention.

【0029】この光海底ケーブル通信システムは、海底
分岐装置1以外は従来技術で言及した光海底ケーブル通
信システム(図2参照)と同一である。なお、図1と図
2との間で同様の構成要素(海底分岐装置1内の構成要
素も含む)については同一の符号を使用して示してい
る。
This optical submarine cable communication system is the same as the optical submarine cable communication system (see FIG. 2) referred to in the prior art except for the submarine branching device 1. In addition, the same components (including components in the submarine branching device 1) are denoted by the same reference numerals between FIGS. 1 and 2.

【0030】本実施例の海底分岐装置1は、給電制御を
実現するために、リレー駆動巻線2と、リレー駆動巻線
3と、リレー駆動巻線5に対応するリレー接点4(1×
2のリレー接点であり、共通接点とブレーク接点(a)
とメーク接点(b)とを有するリレー接点)と、リレー
駆動巻線5と、リレー駆動巻線3に対応するリレー接点
6(1×2のリレー接点であり、共通接点とブレーク接
点(a)とメーク接点(b)とを有するリレー接点)
と、リレー駆動巻線2に対応するリレー接点7(1×1
のリレー接点であり、メーク接点を有するリレー接点)
と、リレー接点7と並列に接続されておりサージ電流を
抑制するのに十分な大きさの抵抗値を持つ抵抗8とを含
んで構成されている。なお、リレー駆動巻線2の最小感
動電流(駆動解除電流も同じ値であるとする)をI2
しリレー駆動巻線3の最小感動電流(駆動解除電流も同
じ値であるとする)をI3 とした場合に、I2 >I3
関係が成立している。また、「特許請求の範囲」におけ
る「第1のリレー駆動巻線」はリレー駆動巻線2によっ
て実現され、「第2のリレー駆動巻線」はリレー駆動巻
線3または5(以下の説明ではリレー駆動巻線3)によ
って実現され、「第1のリレー接点」はリレー接点7に
よって実現され、「第2のリレー接点」はリレー接点4
または6(以下の説明ではリレー接点6)によって実現
される。
The submarine branching device 1 of this embodiment has a relay contact 4 (1 × 1) corresponding to the relay drive winding 2, the relay drive winding 3, and the relay drive winding 5 in order to realize power supply control.
2 relay contacts, common contact and break contact (a)
And a make contact (b)), a relay drive winding 5, and a relay contact 6 (1 × 2 relay contact corresponding to the relay drive winding 3; a common contact and a break contact (a)). Relay contact having a contact and a make contact (b))
And the relay contact 7 (1 × 1
Relay contact, which has a make contact)
And a resistor 8 connected in parallel with the relay contact 7 and having a resistance value large enough to suppress the surge current. Note that the minimum moving current of the relay drive winding 2 (assuming that the drive release current has the same value) is I 2, and the minimum moving current of the relay drive winding 3 (assuming that the drive release current has the same value) is I. When 3 , the relationship of I 2 > I 3 is established. Further, the "first relay drive winding" in the "claims" is realized by the relay drive winding 2, and the "second relay drive winding" is the relay drive winding 3 or 5 (in the following description, Is realized by the relay drive winding 3), the "first relay contact" is realized by the relay contact 7, and the "second relay contact" is the relay contact 4
Or 6 (relay contact 6 in the following description).

【0031】次に、このように構成された本実施例の海
底分岐装置1による給電制御に関する動作について説明
する。
Next, the operation relating to the power supply control by the submarine branching device 1 of the present embodiment having such a configuration will be described.

【0032】第1に、海底分岐装置1を含む光海底ケー
ブル通信システムにおける給電の開始時(給電電流の立
上げ時)の動作について説明する。
First, the operation of the optical submarine cable communication system including the submarine branching device 1 at the start of power supply (when the power supply current is started) will be described.

【0033】C局の給電装置15が給電を開始する前
に、A局の給電装置18およびB局の給電装置12が給
電を開始する。
Before the power feeding device 15 of the C station starts power feeding, the power feeding device 18 of the A station and the power feeding device 12 of the B station start power feeding.

【0034】A局とB局との間の給電電流は、光海底ケ
ーブル16,光海底中継器17,リレー駆動巻線2,リ
レー駆動巻線3,リレー接点4,光海底ケーブル10お
よび光海底中継器11を介して、給電装置18から給電
装置12に流れ込む。
The power supply current between the stations A and B is supplied to the optical submarine cable 16, the optical submarine repeater 17, the relay drive winding 2, the relay drive winding 3, the relay contact 4, the optical submarine cable 10 and the optical submarine. It flows from the power feeding device 18 into the power feeding device 12 via the relay 11.

【0035】この給電電流が上昇する際に、この給電電
流がリレー駆動巻線3の最小感動電流I3 に達する直前
において、海底分岐装置1の内部の回路(海中接地用電
極9に接続されている部分を除く)は一定の値の電位
(Vmとする)の状態となっている。また、この電位V
mは、光海底ケーブル13および光海底中継器14にも
リレー接点6を介して印加されている。
When this power supply current rises, immediately before this power supply current reaches the minimum moving current I 3 of the relay drive winding 3, the internal circuit of the submarine branching device 1 (connected to the undersea grounding electrode 9). The portion (excluding the portion where it is present) is in a state of a constant potential (Vm). Also, this potential V
m is also applied to the optical submarine cable 13 and the optical submarine repeater 14 via the relay contact 6.

【0036】給電電流が最小感動電流I3 に達した時点
で、リレー駆動巻線3に対応するリレー接点6は(a)
側(ブレーク接点側)から(b)側(メーク接点側)に
切り替わる。
When the feeding current reaches the minimum moving current I 3 , the relay contact 6 corresponding to the relay drive winding 3 is (a).
Side (break contact side) to (b) side (make contact side).

【0037】上述したように、従来の海底分岐装置(図
2中の海底分岐装置19)による給電制御であれば、こ
の時点でサージ電流が発生していた。
As described above, if the power supply is controlled by the conventional submarine branching device (submarine branching device 19 in FIG. 2), the surge current is generated at this point.

【0038】しかし、本実施例の海底分岐装置1による
給電制御では、リレー駆動巻線2,リレー接点7および
抵抗8の存在によって、次に示すようにサージ電流の発
生が回避されている。
However, in the power supply control by the submarine branching device 1 of the present embodiment, the existence of the relay drive winding 2, the relay contact 7 and the resistor 8 avoids the generation of surge current as shown below.

【0039】リレー駆動巻線2の最小感動電流I2 がリ
レー駆動巻線3の最小感動電流I3よりも大きい(I2
>I3 )ので、給電電流がI3 に達してもリレー駆動巻
線2に対応するリレー接点7のメーク接点は開いたまま
となっている。したがって、リレー接点6が(a)側か
ら(b)側に切り替わっても、電位Vmによって光海底
ケーブル13に係る静電容量に蓄積されていた電荷は抵
抗8を通ってゆっくり放電される。よって、リレー接点
6や光海底中継器14に対するサージ電流は発生しな
い。
The minimum moving current I 2 of the relay drive winding 2 is larger than the minimum moving current I 3 of the relay drive winding 3 (I 2
> I 3 ), the make contact of the relay contact 7 corresponding to the relay drive winding 2 remains open even when the supply current reaches I 3 . Therefore, even if the relay contact 6 is switched from the (a) side to the (b) side, the electric charge accumulated in the electrostatic capacitance of the optical submarine cable 13 due to the potential Vm is slowly discharged through the resistor 8. Therefore, no surge current is generated in the relay contact 6 or the optical submarine repeater 14.

【0040】A局とB局との間の給電電流がさらに増加
してリレー駆動巻線2の最小感動電流I2 に達すると、
リレー駆動巻線2に対応するリレー接点7のメーク接点
が閉じる(リレー接点6の(b)側の接点が海中接地用
電極9に直接に接続される)。
When the power supply current between the A station and the B station further increases and reaches the minimum moving current I 2 of the relay drive winding 2,
The make contact of the relay contact 7 corresponding to the relay drive winding 2 is closed (the contact on the (b) side of the relay contact 6 is directly connected to the underwater grounding electrode 9).

【0041】その結果、C局の給電装置15から光海底
中継器14等への給電が可能となる。すなわち、この時
点では、リレー接点6は(a)側から(b)側に切り替
わっておりリレー接点7のメーク接点は閉じているの
で、海中接地用電極9から流れ込んだC局からの給電電
流はリレー接点7,リレー接点6,光海底ケーブル13
および光海底中継器14を介してC局の給電装置15に
流れ込む。
As a result, power can be supplied from the power supply device 15 of the C station to the optical submarine repeater 14 and the like. That is, at this time, the relay contact 6 is switched from the (a) side to the (b) side, and the make contact of the relay contact 7 is closed, so that the power supply current from the C station flowing from the undersea grounding electrode 9 is generated. Relay contact 7, relay contact 6, optical submarine cable 13
And, it flows into the power feeding device 15 of the C station via the optical submarine repeater 14.

【0042】その後、給電装置18と給電装置12との
間に流れている給電電流が、光海底中継器11および1
7を動作させるための通常電流に設定される(給電装置
15による給電電流も光海底中継器14を動作させるた
めの通常電流に設定される)。
After that, the power supply current flowing between the power supply device 18 and the power supply device 12 is changed to the optical submarine repeaters 11 and 1.
7 is set to the normal current (the current supplied by the power supply device 15 is also set to the normal current for operating the optical submarine repeater 14).

【0043】以上の結果、図1に示す光海底ケーブル通
信システムにおいて、給電装置18と給電装置12との
間で両端給電が完成し、給電装置15による片局給電が
完成する。これによって、海底分岐装置1および全ての
光海底中継器11,14および17への給電が可能とな
り、A局,B局およびC局の相互間での通信が可能とな
る。
As a result of the above, in the optical submarine cable communication system shown in FIG. 1, both-end power supply is completed between the power supply device 18 and the power supply device 12, and single-station power supply by the power supply device 15 is completed. As a result, the submarine branching device 1 and all the optical submarine repeaters 11, 14 and 17 can be supplied with power, and communication between stations A, B and C is possible.

【0044】第2に、海底分岐装置1を含む光海底ケー
ブル通信システムにおける給電の停止時(給電電流の立
下げ時)の動作について説明する。
Secondly, the operation of the optical submarine cable communication system including the submarine branching device 1 when the power supply is stopped (when the power supply current is lowered) will be described.

【0045】まず、C局の給電装置15が給電を停止す
る。
First, the power supply device 15 of the C station stops the power supply.

【0046】次に、A局とB局との間の給電電流(Iと
する)が減少されていき、この給電電流IがI3 <I<
2 となるように設定される。
Next, the feed current (denoted as I) between the A station and the B station is reduced, and this feed current I becomes I 3 <I <
It is set to be I 2 .

【0047】この状態でリレー駆動巻線2の駆動は解除
となり(上述したようにリレー駆動巻線2の駆動解除電
流は最小感動電流と同一のI2 である)、リレー駆動巻
線2に対応するリレー接点7のメーク接点が開放され
る。この時点で給電装置12および18の給電によって
海底分岐装置1の内部の回路(両端給電の給電路に関す
る部分)は一定の値の電位(Vnとする)になっている
ものとする。
In this state, the drive of the relay drive winding 2 is released (as described above, the drive release current of the relay drive winding 2 is I 2 which is the same as the minimum moving current), and corresponds to the relay drive winding 2. The make contact of the relay contact 7 is opened. At this time, it is assumed that the internal circuit of the submarine branching device 1 (the portion related to the power feeding path for both-end power feeding) has a constant potential (Vn) by the power feeding from the power feeding devices 12 and 18.

【0048】この段階で、C局の給電装置15は、光海
底ケーブル13および光海底中継器14が電位Vnとな
るように給電を行う。なお、この場合に、給電装置15
から供給される給電電流(リレー接点6の(b)側の接
点を通る電流)は、高い抵抗値を持つ抵抗8の存在によ
って非常に小さくなる。
At this stage, the power feeding device 15 of the C station feeds power so that the optical submarine cable 13 and the optical submarine repeater 14 have the potential Vn. In this case, the power supply device 15
The power supply current (current passing through the contact on the (b) side of the relay contact 6) supplied from is extremely small due to the presence of the resistor 8 having a high resistance value.

【0049】このような状態で、A局とB局との間の給
電電流がさらにI3 まで降下すると、給電電流Iがリレ
ー駆動巻線3の駆動解除電流I3 以下となり、リレー駆
動巻線3に対応するリレー接点6は(b)側から(a)
側に切り替わる。
In such a state, when the power supply current between the station A and the station B further drops to I 3 , the power supply current I becomes less than the drive release current I 3 of the relay drive winding 3 , and the relay drive winding Relay contact 6 corresponding to 3 is from (a) to (a)
Switch to the side.

【0050】この切替わりの時点において、海底分岐装
置1内の両端給電の給電路に関する部分は上述のように
電位Vnの状態にあり、光海底ケーブル13および光海
底中継器14も上述のように電位Vnの状態に設定され
ている。したがって、光海底ケーブル13および光海底
中継器14がリレー接点6を介して給電装置18と給電
装置12との間の給電路(両端給電の給電路)に接続さ
れる際には、光海底ケーブル13および光海底中継器1
4の電位は変化しない。よって、従来の海底分岐装置
(図2中の海底分岐装置19)による給電制御であれば
発生していたサージ電流の発生を回避することができ
る。
At the time of this switching, the portion of the submarine branching device 1 relating to the power feeding path for both ends feeding is in the state of the potential Vn as described above, and the optical submarine cable 13 and the optical submarine repeater 14 also have the same configuration as described above. It is set to the state of the potential Vn. Therefore, when the optical submarine cable 13 and the optical submarine repeater 14 are connected to the power feeding path (power feeding path of both ends power feeding) between the power feeding device 18 and the power feeding device 12 via the relay contact 6, the optical submarine cable 13 and optical submarine repeater 1
The potential of 4 does not change. Therefore, it is possible to avoid the generation of the surge current that would occur if the power supply control was performed by the conventional submarine branching device (submarine branching device 19 in FIG. 2).

【0051】その後、上記の給電電流Iが0Aまで減少
され、給電装置15による給電に基づく光海底ケーブル
13および光海底中継器14の電位が0Vに減少されれ
ば、図1に示す光海底ケーブル通信システムへの給電が
全て停止される。上述のように、この停止までの過程で
サージ電流が発生することはない。
After that, if the power supply current I is reduced to 0 A and the potentials of the optical submarine cable 13 and the optical submarine repeater 14 based on the power feeding by the power feeding device 15 are reduced to 0 V, the optical submarine cable shown in FIG. All power to the communication system is stopped. As described above, no surge current is generated in the process up to this stop.

【0052】[0052]

【発明の効果】以上説明したように本発明は、分岐構成
となる光海底ケーブル通信システムにおける給電の開始
時および停止時(給電電流の立上げ時および立下げ時)
にサージ電流が発生しないように制御することにより、
当該サージ電流に起因する海底分岐装置内のリレー接点
や海底分岐装置の直近に接続される光海底中継器等の劣
化を防ぐことができるという効果がある。
As described above, according to the present invention, when power feeding is started and stopped in the optical submarine cable communication system having a branch configuration (when power feeding current is started and when power feeding is stopped).
By controlling so that surge current does not occur,
There is an effect that it is possible to prevent deterioration of a relay contact in the submarine branching device, an optical submarine repeater connected in the immediate vicinity of the submarine branching device, etc. due to the surge current.

【0053】また、以上のような効果が得られることに
より、複数の海底分岐装置を用いて複雑な分岐構成を有
する光海底ケーブル通信システムを構築する際にサージ
電流による装置等の劣化を考慮する必要がなくなり、海
底分岐装置の応用範囲を拡張することができる(複雑な
分岐構成を有する光海底ケーブル通信システムの構築の
ために考慮すべき海底分岐装置に関する障害の1つを除
去することができる)という効果がある。
Further, by obtaining the above effects, when constructing an optical submarine cable communication system having a complicated branch configuration using a plurality of submarine branching devices, deterioration of the devices due to surge current is considered. It eliminates the need and can extend the application range of the submarine branching device (can remove one of the obstacles related to the submarine branching device to be considered for the construction of the optical submarine cable communication system having a complicated branching configuration. ) Is effective.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の海底分岐装置の一実施例が適用される
光海底ケーブル通信システムの構成を示す図である。
FIG. 1 is a diagram showing a configuration of an optical submarine cable communication system to which an embodiment of a submarine branching device of the present invention is applied.

【図2】従来の海底分岐装置の一例が適用される光海底
ケーブル通信システムの構成を示す図である。
FIG. 2 is a diagram showing a configuration of an optical submarine cable communication system to which an example of a conventional submarine branching device is applied.

【符号の説明】[Explanation of symbols]

1,19 海底分岐装置 2,3,5 リレー駆動巻線 4,6,7 リレー接点 8 抵抗 9 海中接地用電極 10,13,16 光海底ケーブル 11,14,17 光海底中継器 12,15,18 給電装置 1,19 Submarine branching device 2,3,5 Relay drive winding 4,6,7 Relay contact 8 Resistance 9 Subsea grounding electrode 10,13,16 Optical submarine cable 11,14,17 Optical submarine repeater 12,15, 18 Power supply device

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 A局からの1本の幹線光海底ケーブルと
B局およびC局からの2本の分岐光海底ケーブルとを接
続する海底分岐装置において、 両端給電の給電路の給電電流の値を検出する第1のリレ
ー駆動巻線と、 この第1のリレー駆動巻線の最小感動電流および駆動解
除電流よりも小さな値の最小感動電流および駆動解除電
流を有し両端給電の給電路の給電電流の値を検出する第
2のリレー駆動巻線と、 片局給電の給電路にメーク接点が挿入される前記第1の
リレー駆動巻線に対応する第1のリレー接点と、 共通接点が分岐光海底ケーブルに接続されメーク接点が
前記第1のリレー接点に接続されブレーク接点が両端給
電の給電路に接続される前記第2のリレー駆動巻線に対
応する第2のリレー接点と、 片局給電の給電路において前記第1のリレー接点と並列
に接続されておりサージ電流を抑制するのに十分な大き
さの抵抗値を持つ抵抗とを有することを特徴とする海底
分岐装置。
1. A submarine branching device that connects one trunk optical submarine cable from A station and two branch optical submarine cables from B station and C station, in a submarine branching device, the value of a feeding current of a feeding line of both ends feeding. And a first relay drive winding for detecting a current, and a minimum feed current and a drive release current that are smaller than the minimum touch drive current and drive release current of the first relay drive winding. A second relay drive winding for detecting the value of the current, a first relay contact corresponding to the first relay drive winding in which a make contact is inserted in a power supply path for single-station power supply, and a common contact branch A second relay contact corresponding to the second relay drive winding, which is connected to the optical submarine cable, a make contact of which is connected to the first relay contact and a break contact of which is connected to a power feeding path for feeding both ends; In the power feeding path, Submarine branching unit, characterized in that it comprises a resistor and having a resistance value large enough to suppress the connected and surge current in parallel with the relay contacts.
JP4274919A 1992-09-21 1992-09-21 Undersea branching device Expired - Lifetime JP3063425B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4274919A JP3063425B2 (en) 1992-09-21 1992-09-21 Undersea branching device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4274919A JP3063425B2 (en) 1992-09-21 1992-09-21 Undersea branching device

Publications (2)

Publication Number Publication Date
JPH06104799A true JPH06104799A (en) 1994-04-15
JP3063425B2 JP3063425B2 (en) 2000-07-12

Family

ID=17548372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4274919A Expired - Lifetime JP3063425B2 (en) 1992-09-21 1992-09-21 Undersea branching device

Country Status (1)

Country Link
JP (1) JP3063425B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09181654A (en) * 1995-12-21 1997-07-11 Kokusai Denshin Denwa Co Ltd <Kdd> Feeding path changeover circuit
JPH09233004A (en) * 1996-02-20 1997-09-05 Kokusai Denshin Denwa Co Ltd <Kdd> Feeding path changeover circuit
US6770373B1 (en) 1998-12-25 2004-08-03 Henkel Corporation Water-based metal surface treatment composition for forming lubricating film with excellent marring resistance
JP2004248274A (en) * 2003-02-11 2004-09-02 Alcatel Branch unit incorporated in submarine telecommunication system, submarine telecommunication system, and method for reconstituting submarine telecommunication system
US7058305B2 (en) 2002-02-08 2006-06-06 Mitsubishi Denki Kabushiki Kaisha Optical submarine communication system and surge suppressing apparatus of the optical submarine communication system
WO2017204097A1 (en) * 2016-05-25 2017-11-30 日本電気株式会社 Grounding circuit, electrical device, grounding control method, and grounding control program
WO2019031415A1 (en) * 2017-08-07 2019-02-14 日本電気株式会社 Grounding circuit, electrical apparatus, grounding control method, and grounding control program
CN110176699A (en) * 2019-06-24 2019-08-27 中国电子科技集团公司第三十四研究所 A kind of the seabed splitter and application method of single-core cable constant-current supply system

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09181654A (en) * 1995-12-21 1997-07-11 Kokusai Denshin Denwa Co Ltd <Kdd> Feeding path changeover circuit
JPH09233004A (en) * 1996-02-20 1997-09-05 Kokusai Denshin Denwa Co Ltd <Kdd> Feeding path changeover circuit
US6770373B1 (en) 1998-12-25 2004-08-03 Henkel Corporation Water-based metal surface treatment composition for forming lubricating film with excellent marring resistance
US7058305B2 (en) 2002-02-08 2006-06-06 Mitsubishi Denki Kabushiki Kaisha Optical submarine communication system and surge suppressing apparatus of the optical submarine communication system
JP2004248274A (en) * 2003-02-11 2004-09-02 Alcatel Branch unit incorporated in submarine telecommunication system, submarine telecommunication system, and method for reconstituting submarine telecommunication system
WO2017204097A1 (en) * 2016-05-25 2017-11-30 日本電気株式会社 Grounding circuit, electrical device, grounding control method, and grounding control program
CN109155520A (en) * 2016-05-25 2019-01-04 日本电气株式会社 Earthed circuit, electric device, ground connection control method and ground connection control program
US10666044B2 (en) 2016-05-25 2020-05-26 Nec Corporation Grounding circuit, electrical device, grounding control method, and grounding control program
WO2019031415A1 (en) * 2017-08-07 2019-02-14 日本電気株式会社 Grounding circuit, electrical apparatus, grounding control method, and grounding control program
US11488792B2 (en) 2017-08-07 2022-11-01 Nec Corporation Grounding circuit, electrical apparatus, grounding control method, and grounding control program
CN110176699A (en) * 2019-06-24 2019-08-27 中国电子科技集团公司第三十四研究所 A kind of the seabed splitter and application method of single-core cable constant-current supply system
CN110176699B (en) * 2019-06-24 2024-02-13 中国电子科技集团公司第三十四研究所 Submarine branching device of single-core cable constant-current power supply system and use method

Also Published As

Publication number Publication date
JP3063425B2 (en) 2000-07-12

Similar Documents

Publication Publication Date Title
US5517383A (en) Branching unit for submarine systems
US10404382B2 (en) Grounding circuit and grounding method
EP3467983B1 (en) Grounding circuit, electrical device, grounding control method, and grounding control program
JPH11186959A (en) Feeder connection circuit and optical transmission system
JP3063425B2 (en) Undersea branching device
JPS63189025A (en) Switching circuit for feeder path
US4173740A (en) Speaker protection circuit
JP3341245B2 (en) Power supply line switching circuit
US5777286A (en) Electric device having separable contacts with arc switching
US4462058A (en) Switching apparatus for devices for alternating current parallel remote feed
JP6773230B2 (en) Grounding circuit, electrical equipment, grounding control method, and grounding control program
US7067940B2 (en) Submarine branching unit having asymmetrical architecture
JPH05129991A (en) Feeder changeover circuit
JPH0815370B2 (en) Submarine relay transmission line power supply switching method
JPH04245816A (en) Feeder switching circuit
JP3875192B2 (en) Feed line switching circuit
EP0917300A2 (en) A branching unit for an underwater communications system
EP1322046B1 (en) Submarine branching unit having asymmetrical architecture
JPS637032A (en) Feeder switching circuit
JPH04341018A (en) Feeder line switching circuit for submarine branching device and feeding method for submarine communication system
JP3171862B2 (en) Power supply system and method for communication cable
US2235402A (en) High-speed relay system
US1979256A (en) Electrical protective system
JPS63262923A (en) Feed switching device for underwater branching device
JP2001203610A (en) Feeding path changeover device