JPH06104633A - Anechoic chamber - Google Patents

Anechoic chamber

Info

Publication number
JPH06104633A
JPH06104633A JP4272554A JP27255492A JPH06104633A JP H06104633 A JPH06104633 A JP H06104633A JP 4272554 A JP4272554 A JP 4272554A JP 27255492 A JP27255492 A JP 27255492A JP H06104633 A JPH06104633 A JP H06104633A
Authority
JP
Japan
Prior art keywords
section
anechoic chamber
radio wave
waveguide
floor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4272554A
Other languages
Japanese (ja)
Other versions
JP3265647B2 (en
Inventor
Takeshi Ishino
健 石野
Yasuo Hashimoto
康雄 橋本
Toshiaki Kobayashi
敏昭 小林
Shingo Seki
慎吾 関
Kazuhiko Ogawa
一彦 小川
Harunori Murakami
治憲 村上
Keisuke Tanaka
啓介 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
TDK Corp
Original Assignee
Nippon Sheet Glass Co Ltd
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd, TDK Corp filed Critical Nippon Sheet Glass Co Ltd
Priority to JP27255492A priority Critical patent/JP3265647B2/en
Publication of JPH06104633A publication Critical patent/JPH06104633A/en
Application granted granted Critical
Publication of JP3265647B2 publication Critical patent/JP3265647B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Aerials With Secondary Devices (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

PURPOSE:To obtain the anechoic chamber having excellent anechoic chamber performance in which no disturbance of an electromagnetic field is caused especially even at a high frequency band by connecting a transmission section and a reception section with a taper-shaped waveguide section so as to obtain a structure that a coupling border between the transmission section and the waveguide section is reduced by a radio wave absorbing body. CONSTITUTION:A transmission section 11 and a reception section 12 are connected by a taper-shaped waveguide section 15. Three side faces except the floor of the waveguide section 15, that is, part or all of the left right side wall faces and a ceiling face 15C is made of a flat plate ferrite radio wave absorbing body 16. An earth equivalent floor having a characteristic equivalent to the earth in terms of a radio wave is formed for floor faces 11e, 12e, 15e except a part by combining a ferrite tile and a conductive film. Then the radio wave absorbing body 20 is projected inward at a coupling zone 19 between the transmission section 11 and the radio wave section 15 to reduce the aperture cross section of the transmission section 11. Thus, the propagation of a harmonic component even at high frequencies is suppressed and a radio wave in the single mode is sent to the waveguide section 15 over a wide band.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、自動車や航空機等に取
り付けた受信アンテナ及び移動体通信用のアンテナ等の
特性測定、並びに電子機器から発生する不要電波やノイ
ズ等を評価するための及び外部からの妨害電波による電
子機器への影響を試験するEMIやEMSの測定に用い
る電波暗室に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is for measuring the characteristics of receiving antennas and mobile communication antennas mounted on automobiles, aircrafts, etc., and for evaluating unnecessary radio waves and noises generated from electronic devices and externally. The present invention relates to an anechoic chamber used for measuring EMI and EMS, which tests the influence of radio waves from EMI on electronic devices.

【0002】[0002]

【従来の技術】従来から、アンテナ等に関する電波伝搬
特性の測定、電子機器から発生するノイズ評価測定や外
部からの妨害電波による電子機器への影響に対する試験
を行う環境として、気象条件、温湿度条件、外来ノイズ
の影響を除去でき、安定かつ信頼度の高い室内空間が望
まれている。電波暗室は、このような室内空間を提供す
べく、その壁面、天井、及び床面を電波吸収体で覆った
ものであり、その優秀性はよく知られており、広く応用
されている。
2. Description of the Related Art Conventionally, as an environment for measuring the radio wave propagation characteristics of an antenna, measuring the noise generated from an electronic device, and testing the influence of an interference wave from the outside on the electronic device, weather conditions, temperature and humidity conditions have been used. A stable and highly reliable indoor space that can remove the influence of external noise is desired. The anechoic chamber is one in which the wall surface, ceiling, and floor surface are covered with an electromagnetic wave absorber in order to provide such an indoor space, and its superiority is well known and widely applied.

【0003】このような電波暗室の特性としては、電波
的に全く障害が無い自由空間を室内で実現することが大
きな課題となっており、室内の側壁面、天井面、及び床
面から反射する不要な電磁波エネルギを少なくするこ
と、及び優れた電界均一性を受信部で得ることが望まれ
ている。
As a characteristic of such an anechoic chamber, it is a major issue to realize a free space in the room free from radio wave obstructions, and it is reflected from the side wall surface, ceiling surface and floor surface of the room. It is desired to reduce unnecessary electromagnetic wave energy and to obtain excellent electric field uniformity in the receiver.

【0004】なお、自由空間における電波伝搬特性と
は、電波発生源である送信アンテナをモデル的に点波源
とした場合に、放射された電波の電界が同心球状に広が
って伝搬していき、十分な遠方の限られた領域において
大きさ及び位相が面内でそろったいわゆる平面波が実現
されることにより電界均一性が確保されるごときもので
ある。ただし、十分な遠方では、伝搬距離が長くなるに
従ってその距離に逆比例して電界強度が減衰する。
Incidentally, the radio wave propagation characteristic in free space means that when the transmission antenna, which is a radio wave generation source, is modeled as a point wave source, the electric field of the radiated radio wave spreads concentrically and propagates sufficiently. The electric field uniformity is ensured by realizing a so-called plane wave in which the magnitude and phase are aligned in the plane in a limited region at a long distance. However, at a sufficiently long distance, as the propagation distance increases, the electric field strength attenuates in inverse proportion to the distance.

【0005】電波暗室は、一般的な直方体形状のものの
他に、送信部及び受信部の中間領域の壁面、天井面、及
び床面を広くしてそこからの反射を少なくした形状のも
の、さらに最近では狭い空間の送信部と広い空間の受信
部とをテーパ形状の導波部で連結したテーパ型電波暗室
が開発されている。
The anechoic chamber has, in addition to a general rectangular parallelepiped shape, a shape in which a wall surface, a ceiling surface, and a floor surface in an intermediate region between the transmitting portion and the receiving portion are widened to reduce reflection from them. Recently, a tapered anechoic chamber has been developed in which a transmitter in a narrow space and a receiver in a wide space are connected by a tapered waveguide.

【0006】テーパ型電波暗室は、直方体形状の電波暗
室に比べて、同一の送受信間距離をとった場合により少
ない容積で構成できるため経済的である。また、導波部
においてそのテーパ角度故に側壁部からの反射の影響が
ほとんどなく、送信部において側壁反射波の行路差を小
さくできるのでその位相差が極めて小さくなるから受信
部での電界均一性が優秀となる。
The taper type anechoic chamber is economical because it can be constructed with a smaller volume when the same transmitting and receiving distance is taken, as compared with a rectangular anechoic chamber. In addition, because of the taper angle of the waveguide portion, there is almost no influence of reflection from the sidewall portion, and the path difference of the sidewall reflected wave can be reduced in the transmission portion, so that the phase difference is extremely small and therefore the electric field uniformity in the reception portion is reduced. Become excellent.

【0007】図8は従来のこの種テーパ型電波暗室を概
略的に表す平面図、図9は図8のIX−IX線断面図であ
る。
FIG. 8 is a plan view schematically showing the conventional taper type anechoic chamber of this kind, and FIG. 9 is a sectional view taken along the line IX-IX of FIG.

【0008】これらの図に示すように、従来のテーパ型
電波暗室は、その平面形状及び側断面形状が共にテーパ
形状となっており、その全ての壁面、即ち側壁面80、
天井面81、及び床面82が抵抗損失材料であるカーボ
ン含有発泡体からなるピラミッド形状又はウェッジ形状
の電波吸収体83で覆われている。狭い空間の送信部8
4の端部には導波管を有するホーンアンテナ式の発信構
造85が設けられている。この送信部84と広い空間の
受信部86とは、テーパ状の導波部87によって連結さ
れている。導波部87は、その側壁面、天井面、及び床
面が、送信部84から受信部86に向かって徐々に広が
り断面積が徐々に大きくなるごときテーパ形状となって
いる。
As shown in these figures, the conventional tapered anechoic chamber has a tapered planar shape and a side sectional shape, and all the wall surfaces, that is, the side wall surfaces 80,
The ceiling surface 81 and the floor surface 82 are covered with a pyramid-shaped or wedge-shaped radio wave absorber 83 made of a carbon-containing foam which is a resistance loss material. Narrow space transmitter 8
A horn antenna type transmitting structure 85 having a waveguide is provided at the end of 4. The transmitting section 84 and the receiving section 86 having a wide space are connected by a tapered waveguide section 87. The side wall surface, the ceiling surface, and the floor surface of the waveguide section 87 are tapered so that the cross section area gradually increases from the transmission section 84 toward the reception section 86.

【0009】[0009]

【発明が解決しようとする課題】自動車等の地上移動体
に搭載されているアンテナが実装状態で電波受信する場
合、大地からの反射波と送信源からの直接波とを合成し
た電波を受け取ることとなる。しかしながら、上述した
ごとき従来のテーパ型電波暗室では、床面も電波吸収体
で構成されているので、大地からの反射波が無く直接波
だけを受け取ることとなる。このため、電波暗室内で受
信した電波特性と実用状態の電波特性とが互いに異なっ
てしまう。
When an antenna mounted on a ground moving body such as an automobile receives a radio wave in a mounted state, it must receive a radio wave that is a combination of a reflected wave from the ground and a direct wave from a transmission source. Becomes However, in the conventional taper type anechoic chamber as described above, since the floor surface is also constituted by the electromagnetic wave absorber, there is no reflected wave from the ground and only the direct wave is received. Therefore, the radio wave characteristic received in the anechoic chamber and the radio wave characteristic in the practical state are different from each other.

【0010】また、従来のテーパ型電波暗室では抵抗損
失材料による電波吸収体を用いているため、優れた電波
吸収特性を得るためには、電波吸収体の長さを吸収すべ
き周波数の波長の少なくとも1/2以上とする必要があ
る。これは、吸収すべき周波数を例えば100MHzと
した場合、吸収体の長さが1.5m以上となり、電波暗
室を構成する建屋の大きさが著しく大きくなって経済的
に不利となると共に各壁面からの電波吸収体の先端間に
挟まれる有効空間の容積が非常に小さくなってしまう。
Further, in the conventional taper type anechoic chamber, since the electromagnetic wave absorber made of the resistance loss material is used, in order to obtain excellent electromagnetic wave absorption characteristics, the length of the electromagnetic wave absorber is set to the wavelength of the frequency to be absorbed. It should be at least 1/2 or more. This is because, if the frequency to be absorbed is 100 MHz, for example, the length of the absorber will be 1.5 m or more, the size of the building that constitutes the anechoic chamber will be significantly large, and it will be economically disadvantageous and from each wall surface. The volume of the effective space sandwiched between the tips of the radio wave absorbers becomes extremely small.

【0011】さらに、従来のテーパ型電波暗室では、送
信部の発信構造からその発信周波数範囲が導波管の周波
数範囲に限定されてしまう。このため、最近の電波利用
の拡大及び利用周波数の広帯域化に伴って広帯域の測定
を行う場合には、周波数帯域の互いに異なる複数の送信
部を用意してこれらを交換することが必要となり、これ
は経済的な負担を増すのみならず交換に多大な手間がか
かるという不都合を招く。
Further, in the conventional taper type anechoic chamber, the transmission frequency range of the transmitting section is limited to the frequency range of the waveguide. For this reason, when performing wideband measurements with the recent expansion of radio wave usage and widening of available frequencies, it is necessary to prepare a plurality of transmitters having different frequency bands and exchange them. Causes an inconvenience that not only increases the financial burden but also requires a great deal of labor for replacement.

【0012】特に従来のテーパ型電波暗室で問題となる
のは、広帯域の測定を行う場合に、高周波帯域において
高調波が発生し、電磁界に乱れが生じることである。こ
の様子は、後述する図5の周波数−電界変動値特性に明
確に現れている。
A problem particularly in the conventional taper type anechoic chamber is that when measuring a wide band, harmonics are generated in the high frequency band and the electromagnetic field is disturbed. This state is clearly shown in the frequency-electric field fluctuation value characteristic of FIG. 5 described later.

【0013】従って本発明は、従来技術の上述の問題点
を解決するものであり、特に高周波帯域においても電磁
界の乱れが生じない優れた電波暗室性能を有する電波暗
室を提供するものである。
Therefore, the present invention solves the above-mentioned problems of the prior art, and particularly provides an anechoic chamber having excellent anechoic chamber performance in which disturbance of the electromagnetic field does not occur even in a high frequency band.

【0014】[0014]

【課題を解決するための手段】本発明によれば、送信部
及び受信部の壁面を電波吸収体で覆い、これら送信部及
び受信部をテーパ状の導波部で連結したテーパ型の電波
暗室であって、送信部と導波部との結合領域を電波吸収
体で絞り込んだ構造とした電波暗室が提供される。
According to the present invention, the wall surface of the transmitter and the receiver is covered with a radio wave absorber, and the transmitter and the receiver are connected by a tapered wave guide. Thus, an anechoic chamber having a structure in which the coupling area between the transmitter and the waveguide is narrowed down by the electromagnetic wave absorber is provided.

【0015】送信部、導波部、及び受信部の床面を大地
に対して平坦な構造とし、受信部及び導波部の床面をフ
ェライトタイルと導電性フィルムとを組み合わせてなる
大地等価床で構成することが好ましい。
A floor equivalent to a ground equivalent floor in which the floor surfaces of the transmitter, the waveguide, and the receiver are flat with respect to the ground, and the floor of the receiver and the waveguide are combined with a ferrite tile and a conductive film. It is preferable that

【0016】導波部の天井面及び側壁面の少なくとも一
部をフェライト電波吸収体で構成することも好ましい。
It is also preferable that at least a part of the ceiling surface and the side wall surface of the waveguide is made of a ferrite electromagnetic wave absorber.

【0017】さらに、送信部及び受信部の壁面に配置す
る電波吸収体をフェライトタイルと抵抗損失材料との組
み合わせからなる複合型電波吸収体で構成することも好
ましい。
Further, it is also preferable that the radio wave absorbers arranged on the wall surfaces of the transmitter and the receiver are composed of a composite type radio wave absorber made of a combination of a ferrite tile and a resistance loss material.

【0018】送信部に独立した送信用広帯域アンテナを
配置することも本発明の一実施態様である。
It is also an embodiment of the present invention to dispose an independent transmitting broadband antenna in the transmitting section.

【0019】[0019]

【作用】送信部と受信部とをテーパ状の導波部で連結
し、送信部と導波部との結合境界部分を電波吸収体で絞
った構造とすることにより、送信部の開口断面積が小さ
くなる。これによって、波長の短い高周波においても高
調波成分の伝搬が抑制され、単一モードの電波が導波部
へ伝送されるので電界がより均一な電波が受信部で得ら
れる。さらに、野外における実用状態の電波環境と同一
の環境を形成するため、導波部の床面を大地と電波的に
等価な特性を有する大地等価床で構成している。そし
て、導波部の天井面及び側壁面の一部又は全部を、波長
の1/2以上の長さを有する抵抗損失材料による電波吸
収体の代わりに、フェライト電波吸収体を配置してい
る。フェライト電波吸収体は、大きな磁気損失を有して
おり、波長の1/50〜1/200の厚さで優れた電波
吸収性能を有しているので、より広い有効空間を確保で
きると共に電波暗室を安価に形成することができる。
With the structure in which the transmitting section and the receiving section are connected by the tapered waveguide section and the coupling boundary portion between the transmitting section and the waveguide section is narrowed by the electromagnetic wave absorber, the opening cross-sectional area of the transmitting section is reduced. Becomes smaller. As a result, propagation of harmonic components is suppressed even in a high frequency having a short wavelength, and a single-mode radio wave is transmitted to the waveguide section, so that a radio wave having a more uniform electric field can be obtained at the receiving section. Furthermore, in order to form the same environment as a practical radio environment in the field, the floor surface of the waveguide is constructed with a ground equivalent floor that has radio characteristics equivalent to the ground. Further, a ferrite wave absorber is arranged on part or all of the ceiling surface and the side wall surface of the waveguide section instead of the wave absorber made of a resistance loss material having a length of ½ or more of the wavelength. The ferrite electromagnetic wave absorber has a large magnetic loss and excellent electromagnetic wave absorbing performance at a thickness of 1/50 to 1/200 of the wavelength, so that a wider effective space can be secured and the electromagnetic wave anechoic chamber can be secured. Can be formed at low cost.

【0020】[0020]

【実施例】以下本発明の実施例を詳細に説明する。EXAMPLES Examples of the present invention will be described in detail below.

【0021】図1は本発明の電波暗室の一実施例の構成
を概略的に示す平面図であり、図2は図1のII−II線断
面図である。
FIG. 1 is a plan view schematically showing the construction of an embodiment of the anechoic chamber of the present invention, and FIG. 2 is a sectional view taken along the line II--II of FIG.

【0022】これらの図に示すように、テーパ型電波暗
室10は、その一端部を狭い空間の送信部11として構
成し、他端部を広い空間の受信部12として構成してい
る。この送信部11は、その壁面からの不要反射波を極
力抑えることにより、できるだけ単一モードの電波が伝
送されるように設計されている。送信部11の床面を除
く4つの壁面、即ち左右の側壁面11a及び11b、天
井面11c、奥壁面11dは、フェライト電波吸収体と
抵抗損失材料とを組み合わせてなる複合型電波吸収体1
3で覆われている。また、受信部12は、伝送されてき
た電波をあたかも無限空間が続いている状況を再現する
ためにその壁面からの不要反射波を極力抑え、進行波成
分のみが受信領域で得られるように設計されている。受
信部12の床面を除く4つの壁面、即ち左右の側壁面1
2a及び12b、天井面12c、奥壁面12dも、フェ
ライト電波吸収体と抵抗損失材料とを組み合わせてなる
複合型電波吸収体14で覆われている。これら電波吸収
体13及び14は、ピラミッド形状、ウェッジ形状、又
は材料定数が厚さ方向に異なる板形状に構成されてい
る。
As shown in these figures, the tapered anechoic chamber 10 has one end as a transmitting portion 11 having a narrow space and the other end having a receiving portion 12 having a wide space. The transmitter 11 is designed to transmit a single-mode radio wave as much as possible by suppressing unnecessary reflected waves from its wall surface. The four wall surfaces other than the floor surface of the transmitter 11, that is, the left and right side wall surfaces 11a and 11b, the ceiling surface 11c, and the inner wall surface 11d are the composite electromagnetic wave absorber 1 formed by combining a ferrite electromagnetic wave absorber and a resistance loss material.
Covered with 3. In addition, the receiving unit 12 is designed so that unnecessary reflected waves from the wall surface are suppressed as much as possible in order to reproduce the situation in which an infinite space continues for the transmitted electric wave, and only the traveling wave component is obtained in the receiving area. Has been done. Four wall surfaces other than the floor surface of the receiver 12, that is, the left and right side wall surfaces 1
2a and 12b, the ceiling surface 12c, and the back wall surface 12d are also covered with the composite type electromagnetic wave absorber 14 made of a combination of a ferrite electromagnetic wave absorber and a resistance loss material. The radio wave absorbers 13 and 14 are formed in a pyramid shape, a wedge shape, or a plate shape having different material constants in the thickness direction.

【0023】このように電波吸収体13及び14とし
て、フェライト電波吸収体と抵抗損失材料とを組み合わ
せた複合型電波吸収体を用いているため、低周波から優
れた電波吸収特性が得られると共に抵抗損失材料だけで
構成した場合に比して1/2以下の長さで同等以上の吸
収特性を得ることができる。その結果、電波暗室内の有
効空間が広がるのみならず建屋自体も小さくでき全体と
してコストを大幅に低減することができる。
As described above, since the composite type electromagnetic wave absorber in which the ferrite electromagnetic wave absorber and the resistance loss material are combined is used as the electromagnetic wave absorbers 13 and 14, excellent electromagnetic wave absorption characteristics can be obtained from low frequencies and the resistance can be improved. It is possible to obtain equal or more absorption characteristics with a length of ½ or less as compared with the case where only the lossy material is used. As a result, not only the effective space in the anechoic chamber can be expanded, but also the building itself can be made small and the cost can be largely reduced as a whole.

【0024】送信部11と受信部12とは、テーパ形状
の導波部15で接続されている。この導波部15は、送
信部11から伝送された単一モードの電波を壁面の局部
的不均一性による反射をできるだけなくし、かつ短い伝
送距離で自由空間における遠方領域の電波伝搬特性に近
い状況を得るためにできるだけ高い電波減衰効果を得る
ように設計されている。導波部15の、床面を除く3つ
の壁面、即ち左右の側壁面15a及び15b、天井面1
5cの全部又は一部は、平板状のフェライト電波吸収体
16で構成されている。このフェライト電波吸収体16
は、大きな磁気損失を有しており広帯域で電波減衰効果
が大きいものであり、また、波長の1/50〜1/20
0の厚さであっても優れた電波吸収性能を有しているの
で、極めて薄型に構成することができる。その結果、よ
り短い伝搬距離で電界均一な特性が得られると共に広い
有効空間を確保できしかも経済的な小さい建屋で有効な
電波暗室を実現することができる。
The transmission section 11 and the reception section 12 are connected by a tapered waveguide section 15. The waveguide unit 15 minimizes the reflection of the single mode radio wave transmitted from the transmission unit 11 due to the local non-uniformity of the wall surface, and is close to the radio wave propagation characteristics of the far region in the free space with a short transmission distance. Is designed to obtain the highest possible radio wave attenuation effect. Three wall surfaces of the waveguide portion 15 excluding the floor surface, that is, the left and right side wall surfaces 15a and 15b, and the ceiling surface 1
All or a part of 5c is formed of a flat ferrite wave absorber 16. This ferrite wave absorber 16
Has a large magnetic loss, has a large radio wave attenuation effect in a wide band, and has a wavelength of 1/50 to 1/20.
Even if the thickness is 0, it has excellent electromagnetic wave absorption performance, so that it can be made extremely thin. As a result, a uniform electric field can be obtained with a shorter propagation distance, a large effective space can be secured, and an effective anechoic chamber can be realized in an economical small building.

【0025】送信部11、受信部12、及び導波部15
の床面11e、12e、及び15eは、大地に対して平
行な平坦構造となっている。これは、一般に大地が平坦
であるためこれに合わせたものである。さらにこれら床
面11e、12e、及び15eは、一部を除いて、フェ
ライトタイルと導電性フィルムとを組み合わせることに
よって大地と電波的に等価な特性を有する大地等価床と
なっている。
The transmitter 11, the receiver 12, and the waveguide 15
The floor surfaces 11e, 12e, and 15e have a flat structure parallel to the ground. This is because the ground is generally flat. Furthermore, these floor surfaces 11e, 12e, and 15e are ground equivalent floors having a characteristic equivalent to the ground in terms of radio waves by combining a ferrite tile and a conductive film, except for a part.

【0026】送信部11の中央部には、広帯域特性を有
する独立したアレイ型アンテナ17が設置されており、
送信部11全体が広帯域の発信装置として構成される。
このため、周波数帯別の複数の送信部を用意する必要が
なくなり、しかもこれらを交換する手間も省ける。
An independent array type antenna 17 having a wide band characteristic is installed at the center of the transmitter 11.
The entire transmitter 11 is configured as a broadband transmitter.
Therefore, it is not necessary to prepare a plurality of transmission units for each frequency band, and the labor for exchanging them can be saved.

【0027】受信部12の中央には、被測定物、例えば
自動車Wを載置するためのターンテーブル18が設けら
れている。
At the center of the receiver 12, there is provided a turntable 18 on which an object to be measured, for example, a car W is placed.

【0028】送信部11と導波部15との結合領域19
においては、電波吸収体20が内方向に突出して設けら
れており、送信部11の開口断面を絞り込む構造となっ
ている。
A coupling region 19 between the transmitting section 11 and the waveguide section 15
In the above, the radio wave absorber 20 is provided so as to project inward, and has a structure in which the opening cross section of the transmitting unit 11 is narrowed.

【0029】図3及び図4は、この絞り込み構造を説明
するためのものであり、図1及び図2の結合領域19部
分のみをそれぞれ詳しく示す平面図及び断面図である。
FIGS. 3 and 4 are for explaining this narrowing structure, and are a plan view and a sectional view showing in detail only the coupling region 19 portion of FIGS. 1 and 2, respectively.

【0030】結合領域19における、側壁面19a及び
19b、天井面19c、床面19eは、上述した複合型
電波吸収体13で覆われている。そして、結合領域19
ではさらにこれら複合型電波吸収体13上に、望ましく
はこれと同様の複合型電波吸収体で構成された電波吸収
体20が突出して設けられており、これら電波吸収体2
0が送信部11の開口面を絞り込む構造となっている。
The side wall surfaces 19a and 19b, the ceiling surface 19c, and the floor surface 19e in the coupling region 19 are covered with the composite type electromagnetic wave absorber 13 described above. Then, the combined region 19
Further, an electromagnetic wave absorber 20 preferably made of a similar composite electromagnetic wave absorber is provided on the composite electromagnetic wave absorber 13 so as to project therefrom.
0 has a structure in which the opening surface of the transmission unit 11 is narrowed down.

【0031】アンテナ17によって送信部11全体が広
帯域の発信装置となっているため、送信部11の開口面
積が大きいと高周波帯域において逓倍又は横方向、縦方
向への何倍かの波が生じて高調波が伝搬してしまうが、
電波吸収体20によって低周波の伝搬を損なわない程度
の絞り込み構造とすることにより、高調波の発生を抑圧
することができる。
Since the transmitting unit 11 as a whole is a broadband transmitting device due to the antenna 17, if the opening area of the transmitting unit 11 is large, multiple waves or multiple waves in the horizontal and vertical directions occur in the high frequency band. Harmonics will propagate,
It is possible to suppress the generation of harmonics by adopting a narrowing structure that does not impair the propagation of low frequencies by the radio wave absorber 20.

【0032】図5及び図6は、絞り構造のない従来のテ
ーパ型電波暗室及び絞り構造を設けた上述した実施例の
テーパ型電波暗室10における垂直偏波の周波数に対す
る電界の変動値特性をそれぞれ表している。この特性
は、高さ1.3mで直径6mの円内における電界分布を
示している。
FIG. 5 and FIG. 6 respectively show the variation value characteristics of the electric field with respect to the frequency of the vertically polarized wave in the conventional tapered anechoic chamber without a diaphragm structure and the tapered anechoic chamber 10 of the above-mentioned embodiment provided with a diaphragm structure. It represents. This characteristic shows the electric field distribution in a circle with a height of 1.3 m and a diameter of 6 m.

【0033】図5に示すように、従来の電波暗室では、
最大−最小の電界変動値が高周波帯域で7dB以上とな
ることがあるが、本実施例のテーパ型電波暗室では、図
6に示すように、低周波帯域はもちろんのこと高周波帯
域においても最大−最小の電界変動値が4dB以下とな
っており、非常に安定している。
As shown in FIG. 5, in the conventional anechoic chamber,
The maximum-minimum electric field fluctuation value may be 7 dB or more in the high frequency band, but in the taper type anechoic chamber of the present embodiment, as shown in FIG. 6, not only in the low frequency band but also in the high frequency band- The minimum electric field fluctuation value is 4 dB or less, which is very stable.

【0034】さらに本実施例によれば、野外の電波伝搬
環境と条件を同一にするために、大地と電波的に等価な
大地等価床を導波部15に設けているので、送信部11
からの直接波と導波部15の床面15eからの反射波と
が実用状態と同じように合成されて受信部12へ入来し
て野外における電波伝搬に近い受信状態が実現される。
Further, according to the present embodiment, in order to make the conditions same as the outdoor radio wave propagation environment, a ground equivalent floor which is radio equivalent to the ground is provided in the waveguide section 15, so that the transmitting section 11
The direct wave from and the reflected wave from the floor surface 15e of the waveguide section 15 are combined in the same manner as in the practical state, enter the receiving section 12, and a reception state close to radio wave propagation in the field is realized.

【0035】床面を大地と電波的に等価な大地等価床と
した場合、送信部11からの直接波と大地等価床からの
反射波とが互いに干渉して大きな極大値及び極小値を有
するリップル現象の生じる可能性があり、互いの干渉に
よる電界不均一性を持たないようにすることが必要とな
る。そのためには、反射波の位相と直接波の位相との差
が少なくとも1/2波長以上となるように送受信間距離
を選ぶ必要がある。
When the floor is a ground equivalent floor that is radio equivalent to the ground, the direct wave from the transmitter 11 and the reflected wave from the ground equivalent floor interfere with each other and have ripples having large maximum and minimum values. This may cause a phenomenon, and it is necessary to prevent electric field nonuniformity due to mutual interference. For that purpose, it is necessary to select the distance between transmission and reception such that the difference between the phase of the reflected wave and the phase of the direct wave is at least ½ wavelength or more.

【0036】図7に示すように、送信アンテナ70の高
さをh1 、受信アンテナ71の高さをh2 、送受信アン
テナ間の直線距離をl0 、送受信アンテナ間の反射距離
をl1 及びl2 、波長をλとすると、これは、 l1 +l2 −l0 =√{l0 2 +(h1 +h22 }−l0 ≧λ/2 の関係を満たすこととなる。例えば、送信アンテナ70
の高さh1 と受信アンテナ71の高さh2 との和がh1
+h2 =3mの場合、送受信アンテナ間の直線距離l0
は、周波数を100MHzとするとl0 ≧2.25mと
なり、周波数を300MHzとするとl0 ≧8.75m
となり、周波数を600MHzとするとl0 ≧17.9
mとなる。また、h1 +h2 =4mの場合、周波数を1
00MHzとするとl0 ≧4.58mとなり、周波数を
300MHzとするとl0 ≧15.75mとなり、周波
数を600MHzとするとl0 ≧32mとなる。このよ
うな条件を満たすように設定すると、受信アンテナが実
用上遠方にある送信点から電波を受けるという電波伝搬
の環境が実現される。
As shown in FIG. 7, the height of the transmitting antenna 70 is h 1 , the height of the receiving antenna 71 is h 2 , the linear distance between the transmitting and receiving antennas is l 0 , the reflecting distance between the transmitting and receiving antennas is 1 and If l 2 and the wavelength are λ, this satisfies the relation of l 1 + l 2 −l 0 = √ {l 0 2 + (h 1 + h 2 ) 2 } −l 0 ≧ λ / 2. For example, the transmitting antenna 70
Of the height h 1 of the receiving antenna 71 and the height h 2 of the receiving antenna 71 is h 1
When + h 2 = 3 m, the linear distance l 0 between the transmitting and receiving antennas
Is l 0 ≧ 2.25 m when the frequency is 100 MHz, and l 0 ≧ 8.75 m when the frequency is 300 MHz
Therefore, if the frequency is 600 MHz, then l 0 ≧ 17.9
m. When h 1 + h 2 = 4 m, the frequency is set to 1
At 00 MHz, l 0 ≧ 4.58 m, at frequency 300 MHz, l 0 ≧ 15.75 m, and at frequency 600 MHz, l 0 ≧ 32 m. Setting to satisfy such a condition realizes a radio wave propagation environment in which the reception antenna receives a radio wave from a transmission point which is practically distant.

【0037】[0037]

【発明の効果】以上詳細に説明したように本発明によれ
ば、送信部と受信部とをテーパ状の導波部で連結し、送
信部と導波部との結合境界部分を電波吸収体で絞った構
造として送信部の開口断面積を小さくしている。これに
よって、波長の短い高周波においても高調波成分の伝搬
が抑制され、広帯域にわたって単一モードの電波が導波
部へ伝送されるので電界がより均一な電波が受信部で得
られる。
As described above in detail, according to the present invention, the transmitting section and the receiving section are connected by the tapered waveguide section, and the coupling boundary portion between the transmitting section and the waveguide section is the electromagnetic wave absorber. The cross section of the aperture of the transmitter is made smaller as the structure is narrowed down. As a result, propagation of harmonic components is suppressed even in a high frequency having a short wavelength, and a single-mode radio wave is transmitted to the waveguide section over a wide band, so that a radio wave having a more uniform electric field can be obtained at the receiving section.

【0038】さらに、少なくとも導波部の床面を大地等
価床とすることにより、野外実相における電波伝搬にほ
ぼ近い特性を得ることができる。しかも導波部の天井面
及び側壁面の少なくとも一部をフェライト電波吸収体で
構成することにより、効果的な電波減衰が得られより短
い距離で優れた電界均一性が得られるので電波暗室性能
として優れているのみならず、極めて短い電波吸収体で
構成することができるので広い空間の確保が行えかつ経
済的に安価な電波暗室を提供することができる。また、
送信部に広帯域のアンテナを配置することにより、周波
数帯域別の複数の送信部を用意する必要がなく経済的に
低コストとなりしかも送信部交換の手間が省けるので大
幅な省力化及び迅速化を図ることができる。
Furthermore, by making at least the floor surface of the waveguide part the ground equivalent floor, it is possible to obtain characteristics almost similar to the radio wave propagation in the actual field. Moreover, by constructing at least a part of the ceiling surface and side wall surface of the waveguide part with a ferrite electromagnetic wave absorber, effective electromagnetic wave attenuation can be obtained and excellent electric field uniformity can be obtained in a shorter distance. It is possible to provide an economical anechoic chamber that is not only excellent but can be configured with an extremely short electromagnetic wave absorber so that a wide space can be secured and which is economically inexpensive. Also,
By arranging a wideband antenna in the transmitter, it is not necessary to prepare a plurality of transmitters for each frequency band, which is economically low cost and the labor of replacing the transmitters can be saved. be able to.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の電波暗室の一実施例の構成を概略的に
示す平面図である。
FIG. 1 is a plan view schematically showing the configuration of an embodiment of an anechoic chamber of the present invention.

【図2】図1のII−II線断面図である。FIG. 2 is a sectional view taken along line II-II in FIG.

【図3】図1の結合領域部分を詳しく示す平面図であ
る。
FIG. 3 is a plan view showing in detail a coupling region portion of FIG.

【図4】図2の結合領域部分を詳しく示す断面図であ
る。
4 is a cross-sectional view showing in detail a coupling region portion of FIG.

【図5】従来技術における電界変動値を示す特性図であ
る。
FIG. 5 is a characteristic diagram showing an electric field fluctuation value in a conventional technique.

【図6】図1及び図2の実施例における電界変動値を示
す特性図である。
FIG. 6 is a characteristic diagram showing electric field fluctuation values in the examples of FIGS. 1 and 2.

【図7】電波の直接波及び反射波の関係を表した電波伝
搬のモデル図である。
FIG. 7 is a model diagram of radio wave propagation showing a relationship between a direct wave and a reflected wave of a radio wave.

【図8】従来のテーパ型電波暗室を概略的に表す平面図
である。
FIG. 8 is a plan view schematically showing a conventional tapered anechoic chamber.

【図9】図8のIX−IX線断面図である。9 is a sectional view taken along line IX-IX in FIG.

【符号の説明】[Explanation of symbols]

10 テーパ型電波暗室 11 送信部 11a、11b、12a、12b、15a、15b 側
壁面 11c、12c 、15c 天井面 11d、12d 奥壁面 11e、12e、15e 床面 12 受信部 13、14 複合型電波吸収体 15 導波部 16 フェライト電波吸収体 17 アレイ型アンテナ 18 ターンテーブル 19 結合領域 20 電波吸収体
10 Tapered anechoic chamber 11 Transmitter 11a, 11b, 12a, 12b, 15a, 15b Side wall surfaces 11c, 12c, 15c Ceiling surface 11d, 12d Inner wall surface 11e, 12e, 15e Floor surface 12 Receiver section 13, 14 Combined electromagnetic wave absorption Body 15 Waveguide 16 Ferrite electromagnetic wave absorber 17 Array type antenna 18 Turntable 19 Coupling region 20 Radio wave absorber

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小林 敏昭 東京都中央区日本橋一丁目13番1号ティー ディーケイ株式会社内 (72)発明者 関 慎吾 大阪府大阪市中央区道修町3丁目5番11号 日本板硝子株式会社内 (72)発明者 小川 一彦 大阪府大阪市中央区道修町3丁目5番11号 日本板硝子株式会社内 (72)発明者 村上 治憲 大阪府大阪市中央区道修町3丁目5番11号 日本板硝子株式会社内 (72)発明者 田中 啓介 大阪府大阪市中央区道修町3丁目5番11号 日本板硝子株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Toshiaki Kobayashi 1-13-1, Nihonbashi, Chuo-ku, Tokyo TDK Corporation (72) Inventor Shingo Seki 3-5-11, Doshomachi, Chuo-ku, Osaka-shi, Osaka No. Nippon Sheet Glass Co., Ltd. (72) Inventor Kazuhiko Ogawa 3-5-11 Doshumachi, Chuo-ku, Osaka City, Osaka Prefecture Japan Plate Glass Co., Ltd. (72) Inventor Harunori Murakami 3-5, Doshomachi, Chuo-ku, Osaka Prefecture, Osaka No. 11 within Nippon Sheet Glass Co., Ltd. (72) Inventor Keisuke Tanaka 3-5-11 Doshomachi, Chuo-ku, Osaka City, Osaka Prefecture Within Nippon Sheet Glass Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 送信部及び受信部の壁面を電波吸収体で
覆い、該送信部及び受信部をテーパ状の導波部で連結し
たテーパ型の電波暗室であって、前記送信部と前記導波
部との結合領域を電波吸収体で絞り込んだ構造としたこ
とを特徴とする電波暗室。
1. A tapered anechoic chamber in which the wall surfaces of the transmission unit and the reception unit are covered with a radio wave absorber, and the transmission unit and the reception unit are connected by a tapered waveguide unit. An anechoic chamber characterized in that the coupling area with the wave portion is narrowed down by an electromagnetic wave absorber.
【請求項2】 前記送信部、導波部、及び受信部の床面
を大地に対して平坦な構造とし、該受信部及び導波部の
床面をフェライトタイルと導電性フィルムとを組み合わ
せてなる大地等価床で構成したことを特徴とする請求項
1に記載の電波暗室。
2. The floor surfaces of the transmitter, the waveguide, and the receiver have a flat structure with respect to the ground, and the floor of the receiver and the waveguide are combined with a ferrite tile and a conductive film. The anechoic chamber according to claim 1, wherein the anechoic chamber comprises a ground equivalent floor.
【請求項3】 前記導波部の天井面及び側壁面の少なく
とも一部をフェライト電波吸収体で構成したことを特徴
とする請求項1又は2に記載の電波暗室。
3. The anechoic chamber according to claim 1 or 2, wherein at least a part of a ceiling surface and a side wall surface of the waveguide is formed of a ferrite electromagnetic wave absorber.
【請求項4】 前記送信部及び受信部の壁面に配置する
電波吸収体をフェライトタイルと抵抗損失材料との組み
合わせからなる複合型電波吸収体で構成したことを特徴
とする請求項1から3のいずれか1項に記載の電波暗
室。
4. The electromagnetic wave absorber disposed on the wall surfaces of the transmitting unit and the receiving unit is composed of a composite type electromagnetic wave absorber made of a combination of a ferrite tile and a resistance loss material. The anechoic chamber according to any one of items.
【請求項5】 前記送信部に独立した送信用広帯域アン
テナを配置したことを特徴とする請求項1から4のいず
れか1項に記載の電波暗室。
5. The anechoic chamber according to claim 1, wherein an independent wideband antenna for transmission is arranged in the transmitting unit.
JP27255492A 1992-09-17 1992-09-17 Anechoic chamber Expired - Lifetime JP3265647B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27255492A JP3265647B2 (en) 1992-09-17 1992-09-17 Anechoic chamber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27255492A JP3265647B2 (en) 1992-09-17 1992-09-17 Anechoic chamber

Publications (2)

Publication Number Publication Date
JPH06104633A true JPH06104633A (en) 1994-04-15
JP3265647B2 JP3265647B2 (en) 2002-03-11

Family

ID=17515527

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27255492A Expired - Lifetime JP3265647B2 (en) 1992-09-17 1992-09-17 Anechoic chamber

Country Status (1)

Country Link
JP (1) JP3265647B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006053010A (en) * 2004-08-11 2006-02-23 Tokimec Inc Electromagnetic field pattern measuring apparatus
JP2013160705A (en) * 2012-02-08 2013-08-19 Mitsubishi Electric Corp Radar cross-sectional area measurement system

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62142899U (en) * 1985-10-29 1987-09-09
JPH01135139A (en) * 1987-11-20 1989-05-26 Tdk Corp Radio wave dark room
JPH01280398A (en) * 1988-05-06 1989-11-10 Kajima Corp Wave anechoic room
JPH0212996A (en) * 1988-06-30 1990-01-17 Nec Corp Radio wave absorber
JPH0253337A (en) * 1988-08-18 1990-02-22 Tdk Corp Anechoic chamber
JPH02174199A (en) * 1988-12-26 1990-07-05 Yokohama Rubber Co Ltd:The Radio wave anechoic chamber
JPH02196500A (en) * 1989-01-25 1990-08-03 Ngk Insulators Ltd Cladding tile
JPH02228097A (en) * 1989-02-28 1990-09-11 Toppan Printing Co Ltd Radio wave anechoic room
JPH03124099A (en) * 1989-10-06 1991-05-27 Toshiba Corp Radiowave anechoic room
JPH0453198A (en) * 1990-06-15 1992-02-20 Ngk Insulators Ltd Radio wave anechoic room
JPH0462900A (en) * 1990-06-25 1992-02-27 Tokin Corp Radio wave dark room
JPH04169866A (en) * 1990-11-02 1992-06-17 Tdk Corp Radio wave dark room
JPH0577781A (en) * 1991-09-19 1993-03-30 Ishikawajima Harima Heavy Ind Co Ltd Traffic device for tanker
JPH0577783A (en) * 1991-09-19 1993-03-30 Mitsubishi Heavy Ind Ltd Horizontal storage type broadside ladder device
JPH0577782A (en) * 1991-09-21 1993-03-30 Zeniraito V:Kk Lighting body

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62142899U (en) * 1985-10-29 1987-09-09
JPH01135139A (en) * 1987-11-20 1989-05-26 Tdk Corp Radio wave dark room
JPH01280398A (en) * 1988-05-06 1989-11-10 Kajima Corp Wave anechoic room
JPH0212996A (en) * 1988-06-30 1990-01-17 Nec Corp Radio wave absorber
JPH0253337A (en) * 1988-08-18 1990-02-22 Tdk Corp Anechoic chamber
JPH02174199A (en) * 1988-12-26 1990-07-05 Yokohama Rubber Co Ltd:The Radio wave anechoic chamber
JPH02196500A (en) * 1989-01-25 1990-08-03 Ngk Insulators Ltd Cladding tile
JPH02228097A (en) * 1989-02-28 1990-09-11 Toppan Printing Co Ltd Radio wave anechoic room
JPH03124099A (en) * 1989-10-06 1991-05-27 Toshiba Corp Radiowave anechoic room
JPH0453198A (en) * 1990-06-15 1992-02-20 Ngk Insulators Ltd Radio wave anechoic room
JPH0462900A (en) * 1990-06-25 1992-02-27 Tokin Corp Radio wave dark room
JPH04169866A (en) * 1990-11-02 1992-06-17 Tdk Corp Radio wave dark room
JPH0577781A (en) * 1991-09-19 1993-03-30 Ishikawajima Harima Heavy Ind Co Ltd Traffic device for tanker
JPH0577783A (en) * 1991-09-19 1993-03-30 Mitsubishi Heavy Ind Ltd Horizontal storage type broadside ladder device
JPH0577782A (en) * 1991-09-21 1993-03-30 Zeniraito V:Kk Lighting body

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006053010A (en) * 2004-08-11 2006-02-23 Tokimec Inc Electromagnetic field pattern measuring apparatus
JP2013160705A (en) * 2012-02-08 2013-08-19 Mitsubishi Electric Corp Radar cross-sectional area measurement system

Also Published As

Publication number Publication date
JP3265647B2 (en) 2002-03-11

Similar Documents

Publication Publication Date Title
CN106770374B (en) Wave-absorbing material reflection measurement device and method
KR970007981B1 (en) Radio-frequency unechoic chamber
Petrov et al. Measurements of reflection and penetration losses in low terahertz band vehicular communications
Severin Nonreflecting absorbers for microwave radiation
US4381510A (en) Microwave absorber
JP4144754B2 (en) Radio wave absorber
TWI542884B (en) Microwave dark room with absorbing body changing reflection path
JP3265647B2 (en) Anechoic chamber
JP2979898B2 (en) Anechoic chamber
JP3645073B2 (en) System for evaluating electromagnetic field environment characteristics of wireless terminals
US6947009B2 (en) Built-in antenna system for indoor wireless communications
KR101134202B1 (en) anechoic chamber having ferrite resonator
JP3265648B2 (en) Anechoic chamber
CN110095763B (en) Radar test darkroom
JP3265646B2 (en) Anechoic chamber
JPH0241197B2 (en) DENPAMUKYOSHITSU
JPH0453198A (en) Radio wave anechoic room
KR102064103B1 (en) Electro-Magnetic Anechoic Chamber For Testing Electro-Magnetic Interference
JPH06237090A (en) Radio frequency anechoic enclosure
US3541560A (en) Enhancement of polarization isolation in a dual polarized antenna
JP2000286588A (en) Multiple-type rf anechoic chamber
KR102053914B1 (en) Interior test apparatus for performance of wireless telecommunication system
JPH0253337A (en) Anechoic chamber
JP5249959B2 (en) Multipath reduction device
Chueca et al. Closed metal chamber configuration for estimating RF attenuation in vehicles with advanced thermal properties windows

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20011204

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090111

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100111

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 11