JP2013160705A - Radar cross-sectional area measurement system - Google Patents

Radar cross-sectional area measurement system Download PDF

Info

Publication number
JP2013160705A
JP2013160705A JP2012024805A JP2012024805A JP2013160705A JP 2013160705 A JP2013160705 A JP 2013160705A JP 2012024805 A JP2012024805 A JP 2012024805A JP 2012024805 A JP2012024805 A JP 2012024805A JP 2013160705 A JP2013160705 A JP 2013160705A
Authority
JP
Japan
Prior art keywords
ground
measured
sectional area
radar cross
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012024805A
Other languages
Japanese (ja)
Inventor
Yasuhiro Nishioka
泰弘 西岡
Yoshio Inasawa
良夫 稲沢
Naofumi Yoneda
尚史 米田
Masayuki Saito
雅之 齊藤
Kei Hayashi
圭 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2012024805A priority Critical patent/JP2013160705A/en
Publication of JP2013160705A publication Critical patent/JP2013160705A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a radar cross-sectional area measurement system for suppressing multiple reflection between an object to be measured and the ground without using a wave absorber.SOLUTION: A radar cross-sectional area measurement system includes: an object 4 to be measured, which is arranged on the ground; a measurement antenna device 2 which transmits test radio waves 5a toward the object 4 to be measured, and receives reflected waves 5b from the object 4 to be measured to measure radar cross-sectional area of the object 4 to be measured; and a support rotation mechanism 3 for supporting the object 4 to be measured at an upper part of the ground 10 and rotating it. A normal direction of the ground 10 in a peripheral area where the object 4 to be measured is arranged is set so as to be different from a projection direction from the object 4 to be measured to the ground of the peripheral area.

Description

この発明は、屋外に配置された被測定物に試験電波を送信して反射波を受信することによりレーダ断面積(RCS:Radar Cross Section)を計測するレーダ断面積計測システムに関するものである。   The present invention relates to a radar cross section measurement system that measures a radar cross section (RCS) by transmitting a test radio wave to a measurement object placed outdoors and receiving a reflected wave.

従来から、屋外に配置された被測定物に試験電波を送信して反射波を受信する測定用アンテナ装置を用いたレーダ断面積計測システムは、良く知られている。
図8は屋外でレーダ断面積(RCS)を計測する一般的なレーダ断面積計測システムを概略的に示す側断面図であり、図8において、地面1の上方には、測定用アンテナ装置2と、支持回転機構3とが配置され、支持回転機構3の上には、被測定物4が取付けられている。
2. Description of the Related Art Conventionally, a radar cross-sectional area measurement system using a measurement antenna device that transmits a test radio wave to a measurement object placed outdoors and receives a reflected wave is well known.
FIG. 8 is a side sectional view schematically showing a general radar sectional area measurement system for measuring a radar sectional area (RCS) outdoors. In FIG. The support rotation mechanism 3 is disposed, and the object to be measured 4 is attached on the support rotation mechanism 3.

支持回転機構3は、被測定物4を支持するとともに、被測定物4を所望の向きに回転させる。
測定用アンテナ装置2は、支持回転機構3により被測定物4が所望方向に回転位置決めされた後、被測定物4に向けて試験電波5a(実線矢印参照)を送信して、被測定物4からの反射波5b(1点鎖線矢印参照)を受信する。
The support rotation mechanism 3 supports the device under test 4 and rotates the device under test 4 in a desired direction.
The measurement antenna device 2 transmits the test radio wave 5a (see the solid line arrow) to the device under test 4 after the device under test 4 is rotationally positioned in the desired direction by the support rotation mechanism 3, and the device under test 4 The reflected wave 5b from (see the one-dot chain line arrow) is received.

測定用アンテナ装置2は、あらかじめ別途に、RCSが既知の校正器(たとえば、導体球など)を同様に測定しておき、被測定物4を設置したときの受信電力と、校正器を設置したときの受信電力とを比較することにより、被測定物4のRCSを計測する。   The antenna apparatus for measurement 2 separately measures in advance a calibrator with a known RCS (for example, a conductor sphere) in the same manner, and installs the received power when the device under test 4 is installed and the calibrator. The RCS of the device under test 4 is measured by comparing the received power at that time.

被測定物4のRCSを計測する場合には、当然ながら、被測定物4からの反射波5bのみを受信する必要がある。
試験電波5aおよび反射波5bの伝搬経路5は、図8内の実線矢印および1点鎖線矢印で示す通りである。以下、試験電波5aが被測定物4で直接反射されて受信される反射波5bを直接波成分と呼ぶ。
When measuring the RCS of the device under test 4, it is naturally necessary to receive only the reflected wave 5 b from the device under test 4.
The propagation path 5 of the test radio wave 5a and the reflected wave 5b is as shown by a solid line arrow and a one-dot chain line arrow in FIG. Hereinafter, the reflected wave 5b that is received when the test radio wave 5a is directly reflected by the DUT 4 is referred to as a direct wave component.

しかし、実際には、測定用アンテナ装置2に受信される信号には、反射波5b(直接波成分)のみでなく、被測定物4と周辺エリアの地面10との間の伝搬経路6での多重反射波6a、6b(多重反射波成分)に起因した多重反射波6c(破線矢印参照)が含まれている。   However, in actuality, the signal received by the measurement antenna device 2 includes not only the reflected wave 5b (direct wave component) but also the propagation path 6 between the DUT 4 and the ground 10 in the surrounding area. Multiple reflected waves 6c (see broken line arrows) resulting from the multiple reflected waves 6a and 6b (multiple reflected wave components) are included.

なお、多重反射波6aは、実際には1回反射波であるが、計測対象とは異なる成分なので、計測対象の反射波5bと区別するために、以下、多重反射波と総称するものとする。
多重反射波6cは、測定用アンテナ装置2→被測定物4→被測定物4の周辺エリアの地面10→被測定物4→測定用アンテナ装置2、という経路を伝搬して受信される。
In addition, although the multiple reflected wave 6a is actually a single reflected wave, it is a component different from the measurement target. Therefore, in order to distinguish it from the measurement target reflected wave 5b, the multiple reflected wave 6a is hereinafter collectively referred to as a multiple reflected wave. .
The multiple reflected wave 6c is received by propagating through a path of the measurement antenna device 2 → the device under test 4 → the ground 10 in the peripheral area of the device under test 4 → the device under test 4 → the antenna device for measurement 2.

このとき、被測定物4と地面10との距離が、被測定物4の大きさに比べて十分大きい場合には、測定用アンテナ装置2への反射波5b(直接波成分)と多重反射波6c(多重反射波成分)との到達時刻差が大きくなり、時間軸上で両者は明確に分離される。   At this time, if the distance between the DUT 4 and the ground 10 is sufficiently larger than the DUT 4, the reflected wave 5b (direct wave component) and the multiple reflected waves to the measurement antenna device 2 are used. The arrival time difference from 6c (multiple reflected wave component) increases, and both are clearly separated on the time axis.

上記性質を利用すれば、多重反射波6c(多重反射波成分)を除去または抑圧して、反射波5b(直接波成分)のみを抽出することができる。
しかし、被測定物4と地面10との距離が、被測定物4の大きさに比べて小さい場合には、上記方法を用いて直接波成分のみを抽出することが困難になるので、他の手段を用いて多重反射波成分を除去または抑圧しなければならない。
If the above property is used, it is possible to extract only the reflected wave 5b (direct wave component) by removing or suppressing the multiple reflected wave 6c (multiple reflected wave component).
However, when the distance between the DUT 4 and the ground 10 is smaller than the DUT 4, it is difficult to extract only the direct wave component using the above method. Means must be used to remove or suppress multiple reflected wave components.

そこで、従来から、電波吸収体を用いて多重反射波成分を抑圧する技術が提案されている(たとえば、非特許文献1参照)。
図9は多重反射波成分を抑圧可能にした従来のレーダ断面積計測システムを概略的に示す側断面図であり、上記非特許文献1に記載の技術を示している。
Therefore, conventionally, a technique for suppressing multiple reflected wave components using a radio wave absorber has been proposed (see, for example, Non-Patent Document 1).
FIG. 9 is a side cross-sectional view schematically showing a conventional radar cross-sectional area measurement system capable of suppressing multiple reflected wave components, and shows the technique described in Non-Patent Document 1.

図9において、被測定物4および支持回転機構3の周辺エリアの地面10の表面には、被測定物4の地面10への投影エリアを含むように、電波吸収体7が配置されている。
図9のように、電波吸収体7を配置することにより、被測定物4で反射されて地面10に入射する多重反射波6aの大部分が、電波吸収体7で熱損となって消散されるので、多重反射波6b(点線矢印参照)を大幅に抑圧することが可能となる。
In FIG. 9, the radio wave absorber 7 is disposed on the surface of the ground 10 in the peripheral area of the device under test 4 and the support rotation mechanism 3 so as to include the projection area of the device under test 4 onto the ground 10.
As shown in FIG. 9, by arranging the radio wave absorber 7, most of the multiple reflected waves 6 a that are reflected by the DUT 4 and incident on the ground 10 are dissipated as heat loss by the radio wave absorber 7. Therefore, it is possible to significantly suppress the multiple reflected wave 6b (see the dotted arrow).

N.C.Currie ed.,Techniques of Radar Reflectivity Measurement,Artech House,Inc.,MA,1984.N. C. Currie ed. , Techniques of Radar Reflexibility Measurement, Arthouse House, Inc. , MA, 1984.

従来のレーダ断面積計測システムは、非特許文献1に記載の技術(図9)ように、多重反射波6bを抑圧するために、電波吸収体7を被測定物4の周辺エリアの地面10上に配置しているので、被測定物4が大きくて地面10への投影エリアが非常に広くなる場合には、非常に多くの電波吸収体7が必要になり、コストアップを招くという課題があった。
特に、屋外で電波吸収体7を常に配置した場合には、非常に高い耐候性が要求されることから、電波吸収体7の価格が非常に高価となり、さらにコストアップを招くという課題があった。
In the conventional radar cross-sectional area measurement system, as in the technique described in Non-Patent Document 1 (FIG. 9), the radio wave absorber 7 is placed on the ground 10 in the peripheral area of the object 4 to be measured in order to suppress the multiple reflected wave 6b. Therefore, when the object to be measured 4 is large and the projection area onto the ground 10 becomes very wide, a very large number of radio wave absorbers 7 are required, resulting in an increase in cost. It was.
In particular, when the radio wave absorber 7 is always arranged outdoors, a very high weather resistance is required, so that there is a problem that the price of the radio wave absorber 7 becomes very expensive and further increases the cost. .

また、低価格で一般的な屋内用の(耐候性の低い)電波吸収体7を用いて、好天の計測時のみに電波吸収体7を地面10上に配置する方法も考えられるが、計測の都度、電波吸収体7を搬出、配置および収納するための多大な労力が必要なうえ、膨大な量の電波吸収体7を収納するための設備を建設する必要もあり、結局、コストアップを回避することができないという課題があった。   In addition, a method of arranging the radio wave absorber 7 on the ground 10 only at the time of good weather measurement using a low price and general indoor radio wave absorber 7 (low weather resistance) can be considered. Each time, a great amount of labor is required to carry out, arrange and store the radio wave absorber 7, and it is also necessary to construct a facility for storing a huge amount of the radio wave absorber 7, resulting in an increase in cost. There was a problem that it could not be avoided.

この発明は、上記のような課題を解決するためになされたものであり、電波吸収体を用いずに、被測定物と地面との間の多重反射を抑圧することのできるレーダ断面積計測システムを得ることを目的とする。   The present invention has been made to solve the above-described problems, and is a radar cross-sectional area measurement system capable of suppressing multiple reflections between an object to be measured and the ground without using a radio wave absorber. The purpose is to obtain.

この発明に係るレーダ断面積計測システムは、地上に配置された被測定物と、被測定物に向けて試験電波を送信するとともに、被測定物からの反射波を受信して被測定物のレーダ断面積を計測する測定用アンテナ装置と、被測定物を地面の上方に支持して回転させるための支持回転機構とを備えたレーダ断面積計測システムであって、被測定物が配置された周辺エリアの地面の法線方向は、被測定物から周辺エリアの地面に対する投影方向とは異なるように設定されたものである。   A radar cross-sectional area measurement system according to the present invention transmits a test wave to a device to be measured placed on the ground and the device to be measured, and receives a reflected wave from the device to be measured to detect the radar of the device to be measured. A radar cross-sectional area measurement system including a measurement antenna device for measuring a cross-sectional area and a support rotation mechanism for supporting and rotating the object to be measured above the ground. The normal direction of the ground of the area is set to be different from the projection direction from the object to be measured to the ground of the peripheral area.

この発明によれば、単に被測定物および支持回転機構の周辺エリアの地面形状を異ならせるという簡単で安価な構成を用いることにより、被測定物と地面との間の多重反射を抑圧することができる。   According to the present invention, it is possible to suppress multiple reflections between the object to be measured and the ground by using a simple and inexpensive configuration in which the shape of the ground in the peripheral area of the object to be measured and the support rotation mechanism is simply changed. it can.

この発明の実施の形態1に係るレーダ断面積計測システムを示すxz面断面図および上面図である。It is the xz plane sectional view and the top view showing the radar sectional area measuring system concerning Embodiment 1 of this invention. この発明の実施の形態1のシミュレーション解析構成を示す説明図である。It is explanatory drawing which shows the simulation analysis structure of Embodiment 1 of this invention. この発明の実施の形態1の効果を図2の解析結果により示す説明図である。It is explanatory drawing which shows the effect of Embodiment 1 of this invention with the analysis result of FIG. この発明の実施の形態1に係るレーダ断面積計測システム他の構成例を示すyz面断面図である。It is yz surface sectional drawing which shows the other structural example of the radar cross-sectional area measurement system which concerns on Embodiment 1 of this invention. この発明の実施の形態2に係るレーダ断面積計測システムを示すxz面断面図および上面図である。It is a xz plane sectional view and a top view showing a radar sectional area measurement system according to Embodiment 2 of the present invention. この発明の実施の形態3に係るレーダ断面積計測システムを示すxz面断面図および上面図である。It is a xz plane sectional view and a top view showing a radar sectional area measurement system according to Embodiment 3 of the present invention. この発明の実施の形態3に係るレーダ断面積計測システムの他の構成例を示すxz面断面図および上面図である。It is xz surface sectional drawing and the top view which show the other structural example of the radar cross section measuring system which concerns on Embodiment 3 of this invention. 従来のレーダ断面積計測システムを示すxz面断面図である。It is xz surface sectional drawing which shows the conventional radar cross-sectional area measurement system. 従来のレーダ断面積計測システムの他の構成例を示すxz面断面図である。It is xz plane sectional drawing which shows the other structural example of the conventional radar cross-section measuring system.

実施の形態1.
以下、図面を参照しながら、この発明の実施の形態1について説明する。
図1はこの発明の実施の形態1を示すxz面断面図および上面図であり、上側がxz面断面図、下側がz方向からみた上面図である。
Embodiment 1 FIG.
Embodiment 1 of the present invention will be described below with reference to the drawings.
1A and 1B are an xz plane sectional view and a top view showing Embodiment 1 of the present invention, an upper side is an xz plane sectional view, and a lower side is a top view as viewed from the z direction.

図1において、この発明の実施の形態1に係るレーダ断面積計測システムは、地面1上に配置された測定用アンテナ装置2と、周辺エリアの地面10上に配置された支持回転機構3および被測定物4と、支持回転機構3を水平に設置するためのスペーサ8と、を備えている。   In FIG. 1, a radar cross-sectional area measurement system according to Embodiment 1 of the present invention includes a measurement antenna device 2 disposed on the ground 1, a support rotation mechanism 3 disposed on the ground 10 in the peripheral area, and an object to be measured. A measurement object 4 and a spacer 8 for installing the support rotation mechanism 3 horizontally are provided.

図1においては、被測定物4の中心を基準として、測定用アンテナ装置2に対する水平方向をx軸、地面1の表面に対する法線方向をz軸、zx面に対して垂直方向をy軸とする。
測定用アンテナ装置2は、被測定物4のRCSを計測するために、−x方向に試験電波5aを送信するとともに、試験電波5aの反射波5bを受信する。
支持回転機構3は、被測定物4を支持するとともに、z軸を中心に被測定物4を回転させて位置決めする。
In FIG. 1, the horizontal direction with respect to the measuring antenna device 2 is defined as the x axis, the normal direction with respect to the surface of the ground 1 is defined as the z axis, and the vertical direction with respect to the zx plane is defined as the y axis with respect to the center of the device under test 4 To do.
The measurement antenna device 2 transmits the test radio wave 5a in the −x direction and receives the reflected wave 5b of the test radio wave 5a in order to measure the RCS of the DUT 4.
The support rotation mechanism 3 supports the object to be measured 4 and positions the object to be measured 4 by rotating it around the z axis.

被測定物4および支持回転機構3の周辺エリアの地面10は、平坦な面形状からなるものの、y方向には一様な形状であり、−x方向に対しては傾斜している。
すなわち、被測定物4の周辺エリアの地面10の法線方向は、被測定物4から周辺エリアの地面10に対する投影方向とは異なるように設定されている。
The ground 10 in the peripheral area of the DUT 4 and the support rotation mechanism 3 has a flat surface shape, but has a uniform shape in the y direction and is inclined with respect to the -x direction.
That is, the normal direction of the ground 10 in the peripheral area of the device under test 4 is set to be different from the projection direction from the device under test 4 to the ground 10 of the peripheral area.

特に、図1においては、周辺エリアの地面10の法線方向は、周辺エリア以外の地面1(測定用アンテナ装置2との間の地面1)の法線方向とは異なっている。
具体的には、被測定物4および支持回転機構3の周辺エリアの地面10は、支持回転機構3の周辺エリア以外の領域(地面1)に対して、−x方向に下降傾斜している。
なお、傾斜させる地面10の範囲は、様々な角度に回転させた被測定物4の地面10への投影エリアを含む領域と同等の範囲またはそれよりも広く設定することが望ましい。
In particular, in FIG. 1, the normal direction of the ground 10 in the peripheral area is different from the normal direction of the ground 1 other than the peripheral area (the ground 1 between the measurement antenna device 2).
Specifically, the ground 10 in the peripheral area of the DUT 4 and the support rotation mechanism 3 is inclined downward in the −x direction with respect to the region (ground 1) other than the peripheral area of the support rotation mechanism 3.
It is desirable that the range of the ground 10 to be inclined is set to be equal to or wider than the range including the projection area of the DUT 4 rotated at various angles onto the ground 10.

上記構成により、測定用アンテナ装置2から送信された試験電波5a(実線矢印)のうち、被測定物4で下方に反射されて地面10に入射する多重反射波6a(破線矢印)は、傾斜した地面10により、スネルの法則にしたがって図中左斜め上方に反射されて、被測定物4に入射しない多重反射波6b(破線矢印)となる。   With the above configuration, among the test radio waves 5a (solid arrows) transmitted from the measurement antenna device 2, the multiple reflected waves 6a (broken arrows) reflected downward by the device under test 4 and incident on the ground 10 are inclined. It is reflected by the ground 10 obliquely upward and to the left in the figure according to Snell's law, and becomes a multiple reflected wave 6b (broken arrows) that does not enter the object 4 to be measured.

この結果、被測定物4と地面10との間に生じる多重反射波6a、6bは、従来システムのように周辺エリアの地面10が他の地面1と同一平面に位置する場合(または、他の地面1と平行な場合)に比べて、大幅に低減されることになり、多重反射波成分に起因したRCS計測誤差を大幅に抑圧することが可能になる。   As a result, the multiple reflected waves 6a and 6b generated between the DUT 4 and the ground 10 are obtained when the ground 10 in the peripheral area is located on the same plane as the other ground 1 as in the conventional system (or other Compared to the case of being parallel to the ground 1), the RCS measurement error due to the multiple reflected wave components can be greatly suppressed.

以下、図2および図3を参照しながら、この発明の実施の形態1の効果を確かめるための電磁界シミュレーション結果について説明する。
図2はこの発明の実施の形態1のシミュレーション解析構成を示す説明図であり、計測対象となる反射波5b(直接波成分)と、ノイズに相当する多重反射波6c(多重反射波成分)とに注目して、問題を簡単化した解析モデルを示している。
Hereinafter, an electromagnetic field simulation result for confirming the effect of the first embodiment of the present invention will be described with reference to FIGS. 2 and 3.
FIG. 2 is an explanatory diagram showing a simulation analysis configuration according to the first embodiment of the present invention. The reflected wave 5b (direct wave component) to be measured and the multiple reflected wave 6c (multiple reflected wave component) corresponding to noise are shown. An analysis model that simplifies the problem is shown.

図2において、測定用アンテナ装置2は、被測定物4から非常に離れた遠い位置に配置され、被測定物4の下方の周辺エリアには、図1と同様の平面状に傾斜した地面10が配置されている。
なお、この場合、被測定物4は、飛行機のような形状を有する導体としている。
In FIG. 2, the measurement antenna device 2 is arranged at a position far away from the object to be measured 4, and the ground area 10 inclined in a planar shape similar to FIG. Is arranged.
In this case, the DUT 4 is a conductor having a shape like an airplane.

試験電波5aの直接波成分である反射波5b(1回反射成分)の伝搬経路は、測定用アンテナ装置2→被測定物4→測定用アンテナ装置2であり、多重反射波6c(3回反射成分)の伝搬経路は、測定用アンテナ装置2→被測定物4→地面10→被測定物4→測定用アンテナ装置2となる。   The propagation path of the reflected wave 5b (one-time reflection component) that is the direct wave component of the test radio wave 5a is the measurement antenna device 2 → the object to be measured 4 → the measurement antenna device 2, and the multiple reflected wave 6c (three-time reflection). The propagation path of the component is as follows: measurement antenna device 2 → measurement object 4 → ground 10 → measurement object 4 → measurement antenna device 2.

図3は図2の解析モデルを用いたRCS解析結果(この発明の実施の形態1の効果)を示す説明図であり、横軸は被測定物4から見た測定用アンテナ装置2の測定角度(被測定物4の回転角度(0°〜360°)、縦軸はRCS値(受信レベルに対応)である。   FIG. 3 is an explanatory diagram showing an RCS analysis result (effect of the first embodiment of the present invention) using the analysis model of FIG. 2, and the horizontal axis indicates the measurement angle of the measurement antenna device 2 as viewed from the device under test 4. (Rotation angle (0 ° to 360 °) of the DUT 4 and the vertical axis represents the RCS value (corresponding to the reception level).

図3においては、周辺エリアの地面10の傾斜角θをパラメータとして、θ=0°、θ=10°、θ=20°に設定した場合での、計測対象となる1回反射成分(反射波5b)のRCS(破線)と、ノイズとなる3回反射成分(多重反射波6c)のRCS(実線)とを示している。
すなわち、1回反射成分(反射波5b)がRCSの真値であり、3回反射成分(多重反射波6c)が被測定物4と地面10との間の多重反射に起因した誤差となる。
In FIG. 3, the single reflection component (reflected wave) to be measured when θ = 0 °, θ = 10 °, and θ = 20 ° are set with the inclination angle θ of the ground 10 in the surrounding area as a parameter. 5b) shows an RCS (broken line) and an RCS (solid line) of a three-time reflected component (multiple reflected wave 6c) that becomes noise.
That is, the one-time reflected component (reflected wave 5 b) is the true value of RCS, and the three-time reflected component (multiple reflected wave 6 c) is an error due to multiple reflection between the DUT 4 and the ground 10.

図3の解析結果から明らかなように、地面10が水平(傾斜角θ=0°)の従来システムに比べて、傾斜角θを大きく(θ=10°、θ=20°へと)設定することにより、3回反射成分(多重反射波6c)のRCS値が低下していく傾向を確認することができる。
この理由は、傾斜角θが増加するにつれて、周辺エリアの地面10での多重反射波6bが被測定物4に再び入射する量の割合が減少するからである。
As is apparent from the analysis result of FIG. 3, the inclination angle θ is set larger (θ = 10 °, θ = 20 °) than the conventional system in which the ground 10 is horizontal (inclination angle θ = 0 °). Thereby, the tendency for the RCS value of the three-time reflection component (multiple reflected wave 6c) to decrease can be confirmed.
The reason for this is that as the inclination angle θ increases, the ratio of the amount of the multiple reflected waves 6b on the ground 10 in the surrounding area again incident on the DUT 4 decreases.

また、図3から明らかなように、図2の解析モデルの場合には、地面10の傾斜角θを20°程度に設定した場合での3回反射成分のRCS値が、ほぼすべての測定角度において、傾斜角θ=0°の3回反射成分のRCS値よりも低くなっていることを確認することができる。
この結果、地面10の傾斜角θを適切(20°程度)に選定することにより、被測定物4と地面10との間の多重反射に起因したRCS計測誤差を低減可能なことが分かる。
As apparent from FIG. 3, in the case of the analysis model of FIG. 2, the RCS values of the three-time reflection component when the inclination angle θ of the ground 10 is set to about 20 ° are almost all measurement angles. It can be confirmed that the value is lower than the RCS value of the three-time reflection component at the inclination angle θ = 0 °.
As a result, it can be seen that the RCS measurement error caused by the multiple reflection between the DUT 4 and the ground 10 can be reduced by appropriately selecting the inclination angle θ of the ground 10 (about 20 °).

なお、上記検討結果から、被測定物4の周辺エリアの地面10は、図1の構成(−x方向に傾斜)に限らず、多重反射波6cの抑圧効果を得るという観点に鑑みれば、どの方向に傾斜してもよいことが分かる。   From the above examination results, the ground 10 in the peripheral area of the DUT 4 is not limited to the configuration shown in FIG. 1 (inclined in the −x direction), and in view of obtaining the suppression effect of the multiple reflected waves 6c, It can be seen that it may tilt in the direction.

ただし、周辺エリアの地面10の下降傾斜方向を、ほぼ+x方向(測定用アンテナ装置2の方向)い設定した場合には、傾斜角θによっては、被測定物4ではなく地面10そのものによる反射波が測定用アンテナ装置2で受信されてしまう可能性があるので注意が必要である。   However, when the descending inclination direction of the ground 10 in the peripheral area is set to approximately the + x direction (the direction of the measurement antenna device 2), the reflected wave from the ground 10 itself, not the DUT 4, depending on the inclination angle θ. Note that there is a possibility that the signal will be received by the measurement antenna device 2.

たとえば図4のように、被測定物4の周辺エリアの地面10は、−y方向(測定用アンテナ装置2と被測定物とを結ぶ直線x軸に直交する方向)に傾斜していてもよい。
図4はこの発明の実施の形態1に係るレーダ断面積計測システム他の構成例を示すyz面断面図であり、前述(図1参照)と同様のものについては、前述と同一符号が付されている。
図4の構成においても、多重反射波6bは、−y方向(図中左斜め上方)に反射されるので、前述と同様に、多重反射波6cの抑圧効果を奏することができる。
For example, as shown in FIG. 4, the ground 10 in the peripheral area of the DUT 4 may be inclined in the −y direction (a direction orthogonal to the straight x-axis connecting the measurement antenna device 2 and the DUT). .
4 is a yz-plane cross-sectional view showing another configuration example of the radar cross-sectional area measurement system according to Embodiment 1 of the present invention. The same reference numerals as those described above are given to the same components as those described above (see FIG. 1). ing.
In the configuration of FIG. 4 as well, the multiple reflected wave 6b is reflected in the −y direction (upwardly diagonally to the left in the figure), so that the effect of suppressing the multiple reflected wave 6c can be achieved as described above.

以上のように、この発明の実施の形態1(図1〜図4)に係るレーダ断面積計測システムは、地上(地面10の上)に配置された被測定物4と、被測定物4に向けて試験電波5aを送信するとともに、被測定物4からの反射波5bを受信して被測定物4のRCS(レーダ断面積)を計測する測定用アンテナ装置2と、被測定物4を地面10の上方に支持して回転させるための支持回転機構3とを備えている。   As described above, the radar cross-sectional area measurement system according to the first embodiment (FIGS. 1 to 4) of the present invention includes the measurement object 4 disposed on the ground (on the ground 10) and the measurement object 4. The measurement antenna device 2 that transmits the test radio wave 5a toward the target and receives the reflected wave 5b from the DUT 4 and measures the RCS (radar cross section) of the DUT 4, and the DUT 4 on the ground 10 is provided with a support rotation mechanism 3 for supporting and rotating above 10.

被測定物4が配置された周辺エリアの地面10の法線方向は、被測定物4から周辺エリアの地面10に対する投影方向とは異なるように設定されている。また、この場合、周辺エリアの地面10の形状は、傾斜平面である。
さらに、周辺エリアの地面10において、法線方向が他の地面1の法線方向とは異なる範囲は、被測定物4が回転したときの被測定物4からの投影エリアを含む。
The normal direction of the ground 10 in the peripheral area where the DUT 4 is arranged is set to be different from the projection direction from the DUT 4 to the ground 10 in the peripheral area. In this case, the shape of the ground 10 in the peripheral area is an inclined plane.
Furthermore, in the ground 10 in the peripheral area, the range in which the normal direction is different from the normal direction of the other ground 1 includes a projection area from the measurement object 4 when the measurement object 4 rotates.

このように、単に被測定物4および支持回転機構3の周辺エリアの地面10の形状を異ならせるという簡単で安価な構成を用いることにより、電波吸収体を用いずに、被測定物4と地面10との間の多重反射を抑圧することができる。   In this way, by using a simple and inexpensive configuration in which the shape of the ground 10 in the peripheral area of the object to be measured 4 and the support rotation mechanism 3 is different, the object to be measured 4 and the ground can be used without using a radio wave absorber. Multiple reflections between 10 and 10 can be suppressed.

実施の形態2.
なお、上記実施の形態1(図1〜図4)では、被測定物4の周辺エリアの地面10を傾斜した平面に設定したが、地面10の形状は平面に限定されるものではなく、図5のように、曲面形状としてもよい。
Embodiment 2. FIG.
In the first embodiment (FIGS. 1 to 4), the ground 10 in the peripheral area of the DUT 4 is set to an inclined plane. However, the shape of the ground 10 is not limited to a plane. As shown in FIG.

図5はこの発明の実施の形態2に係るレーダ断面積計測システムを示すxz面断面図および上面図であり、前述(図1参照)と同様のものについては、前述と同一符号を付して詳述を省略する。   FIG. 5 is an xz plane sectional view and a top view showing a radar sectional area measuring system according to Embodiment 2 of the present invention. Components similar to those described above (see FIG. 1) are denoted by the same reference numerals. Detailed description is omitted.

図5において、被測定物4の周辺エリアの地面10の形状は、曲面(たとえば、パラボラ面)となっている。
すなわち、地面10の形状は、被測定物4の位置から逸脱した紙面左斜め上方付近に、焦点(または、焦線)Fを有するパラボラ面相当の形状となっている。
In FIG. 5, the shape of the ground 10 in the peripheral area of the DUT 4 is a curved surface (for example, a parabolic surface).
In other words, the shape of the ground surface 10 is a shape corresponding to a parabolic surface having a focal point (or focal line) F in the vicinity of the upper left corner of the drawing deviating from the position of the DUT 4.

地面10のパラボラ面が焦点Fを有する場合には、地面10の形状は、xz面内においても、yz面内においても、いずれも一様ではない3次元的な放物面となる。
一方、地面10のパラボラ面が焦線Fを有する場合には、地面10の形状は、y方向に一様なシリンドリカルパラボラ面となる。
When the parabolic surface of the ground 10 has the focal point F, the shape of the ground 10 is a three-dimensional paraboloid that is not uniform in both the xz plane and the yz plane.
On the other hand, when the parabolic surface of the ground 10 has a focal line F, the shape of the ground 10 is a cylindrical parabolic surface that is uniform in the y direction.

以上のように、この発明の実施の形態2(図5)に係るレーダ断面積計測システムにおいて、周辺エリアの地面10の形状は、曲面形状となっており、具体的には、放物面の一部、または柱状放物面の一部からなっている。
これにより、前述(図1〜図4)のように地面10が傾斜平面である場合に比べて、多重反射波6bの伝搬経路を確実に被測定物4から逸脱させることが可能となる。
したがって、被測定物4と地面10との間の多重反射波6bが被測定物4に再び入射する量をさらに確実に低減することができる。
As described above, in the radar cross-sectional area measurement system according to Embodiment 2 (FIG. 5) of the present invention, the shape of the ground 10 in the peripheral area is a curved surface, specifically, a parabolic surface. It consists of a part or part of a columnar paraboloid.
As a result, as compared with the case where the ground 10 is an inclined plane as described above (FIGS. 1 to 4), the propagation path of the multiple reflected wave 6 b can be reliably deviated from the DUT 4.
Therefore, it is possible to further reliably reduce the amount of the multiple reflected waves 6b between the DUT 4 and the ground 10 that are incident on the DUT 4 again.

実施の形態3.
なお、上記実施の形態1、2(図1〜図5)では、被測定物4の周辺エリアの傾斜平面または曲面からなる地面10を、他の地面1の垂直位置よりも下方側に形成したが、これらの構成に限定されることはなく、たとえば図6、図7のように、周辺エリアの地面10を他の地面1の垂直位置よりも上方に形成してもよい。
Embodiment 3 FIG.
In the first and second embodiments (FIGS. 1 to 5), the ground 10 made of an inclined plane or curved surface in the peripheral area of the DUT 4 is formed below the vertical position of the other ground 1. However, the present invention is not limited to these configurations. For example, as shown in FIGS. 6 and 7, the ground 10 in the peripheral area may be formed above the vertical position of the other ground 1.

図6はこの発明の実施の形態3に係るレーダ断面積計測システムを示すxz面断面図および上面図であり、図7はこの発明の実施の形態3に係るレーダ断面積計測システムの他の構成例を示すxz面断面図および上面図である。   FIG. 6 is an xz plane sectional view and a top view showing a radar sectional area measuring system according to Embodiment 3 of the present invention, and FIG. 7 is another configuration of the radar sectional area measuring system according to Embodiment 3 of the present invention. It is xz surface sectional drawing and a top view which show an example.

図6、図7において、被測定物4および支持回転機構3の周辺エリアの地面10は、z軸に関して回転対称な円錐側面形状を有し、他の領域の地面1の垂直位置よりも上方に形成されている。
また、図7において、被測定物4および支持回転機構3は、周辺エリアの地面10の中央に形成された凹部10aに収納されている。
6 and 7, the ground 10 in the peripheral area of the DUT 4 and the support rotation mechanism 3 has a conical side shape that is rotationally symmetric with respect to the z axis, and is above the vertical position of the ground 1 in other regions. Is formed.
In FIG. 7, the DUT 4 and the support rotation mechanism 3 are housed in a recess 10a formed at the center of the ground 10 in the peripheral area.

図6、図7のように周辺エリアの地面10を形成した場合においても、前述と同様に、被測定物4と地面10との間の多重反射を抑圧する効果が得られる。
また、前述の実施の形態1、2に比べて、周辺エリアの地面10の実質的な構成量が軽減されるので、安価に地面10を形成することが可能となる。
Even when the ground 10 in the peripheral area is formed as shown in FIGS. 6 and 7, the effect of suppressing multiple reflections between the DUT 4 and the ground 10 can be obtained as described above.
In addition, since the substantial amount of configuration of the ground 10 in the peripheral area is reduced as compared with the first and second embodiments, the ground 10 can be formed at a low cost.

なお、図6、図7においては、地面10の形状を、z軸に関して回転対称な円錐側面形状としたが、所望の多重反射抑圧効果が得られれば、他の曲面形状や平面であってよい。
また、上記実施の形態1〜3(図1〜図7)において、測定用アンテナ装置2は、送信用および受信用に1つずつ、合計2つのアンテナ構成(準モノスタティック)であってもよく、送受信を兼用する1つのアンテナ構成(完全モノスタティック)であってもよい。
6 and 7, the shape of the ground 10 is a conical side surface shape that is rotationally symmetric with respect to the z axis. .
In the first to third embodiments (FIGS. 1 to 7), the measurement antenna device 2 may have a total of two antenna configurations (quasi-monostatic), one for transmission and one for reception. A single antenna configuration (completely monostatic) may be used for both transmission and reception.

たとえば、測定用アンテナ装置2として、2つのアンテナ構成からなる準モノスタティックを適用した場合においても、被測定物4からみた送信アンテナと受信アンテナとの間の離角が小さければ、完全モノスタティックとほぼ同一の測定結果が得られる。   For example, even when a quasi-monostatic consisting of two antenna configurations is applied as the measurement antenna device 2, if the separation angle between the transmission antenna and the reception antenna as viewed from the device under test 4 is small, it is completely monostatic. Nearly identical measurement results can be obtained.

さらに、上記実施の形態1〜3において、地面10上に支持回転機構3を直接設置する場合を例にとって説明したが、被測定物4の周辺エリアの地面10の表面形状(法線方向)のみが他の面と異なってさえいれば、何らかの構造物が介在されていてもよい。   Furthermore, in the first to third embodiments, the case where the support rotation mechanism 3 is directly installed on the ground 10 has been described as an example. However, only the surface shape (normal direction) of the ground 10 in the peripheral area of the DUT 4 is described. As long as is different from other surfaces, some structure may be interposed.

1 地面、2 測定用アンテナ装置、3 支持回転機構、4 被測定物、5a 試験電波、5b 反射波、6a、6b、6c 多重反射波、10 地面、θ 傾斜角。   DESCRIPTION OF SYMBOLS 1 Ground, 2 measuring antenna apparatus, 3 support rotation mechanism, 4 to-be-measured object, 5a test radio wave, 5b reflected wave, 6a, 6b, 6c multiple reflected wave, 10 ground, (theta) inclination angle.

Claims (6)

地上に配置された被測定物と、
前記被測定物に向けて試験電波を送信するとともに、前記被測定物からの反射波を受信して前記被測定物のレーダ断面積を計測する測定用アンテナ装置と、
前記被測定物を地面の上方に支持して回転させるための支持回転機構と
を備えたレーダ断面積計測システムであって、
前記被測定物が配置された周辺エリアの地面の法線方向は、前記被測定物から前記周辺エリアの地面に対する投影方向とは異なるように設定されたことを特徴とするレーダ断面積計測システム。
An object to be measured placed on the ground;
A measurement antenna device that transmits a test radio wave toward the object to be measured, receives a reflected wave from the object to be measured, and measures a radar cross-sectional area of the object to be measured;
A radar cross-sectional area measurement system comprising: a support rotation mechanism for supporting and rotating the object to be measured above the ground;
A radar cross-sectional area measurement system, wherein a normal direction of a ground surface in a peripheral area where the measurement object is arranged is set to be different from a projection direction from the measurement object to the ground surface in the peripheral area.
前記周辺エリアの地面形状は、傾斜平面であることを特徴とする請求項1に記載のレーダ断面積計測システム。   The radar cross-sectional area measurement system according to claim 1, wherein the ground shape of the peripheral area is an inclined plane. 前記周辺エリアの地面形状は、曲面であることを特徴とする請求項1に記載のレーダ断面積計測システム。   The radar cross-sectional area measurement system according to claim 1, wherein the ground shape of the peripheral area is a curved surface. 前記周辺エリアの地面形状は、放物面の一部であることを特徴とする請求項3に記載のレーダ断面積計測システム。   The radar cross-sectional area measurement system according to claim 3, wherein the ground shape of the peripheral area is a part of a paraboloid. 前記周辺エリアの地面形状は、柱状放物面の一部であることを特徴とする請求項3に記載のレーダ断面積計測システム。   The radar cross-sectional area measurement system according to claim 3, wherein the ground shape of the peripheral area is a part of a columnar paraboloid. 前記周辺エリアの地面において、法線方向が前記他の地面の法線方向とは異なる範囲は、前記被測定物が回転したときの前記被測定物からの投影エリアを含むことを特徴とする請求項1から請求項5までのいずれか1項に記載のレーダ断面積計測システム。   The range in which the normal direction differs from the normal direction of the other ground on the ground of the peripheral area includes a projection area from the measurement object when the measurement object rotates. The radar cross-sectional area measurement system according to any one of claims 1 to 5.
JP2012024805A 2012-02-08 2012-02-08 Radar cross-sectional area measurement system Pending JP2013160705A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012024805A JP2013160705A (en) 2012-02-08 2012-02-08 Radar cross-sectional area measurement system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012024805A JP2013160705A (en) 2012-02-08 2012-02-08 Radar cross-sectional area measurement system

Publications (1)

Publication Number Publication Date
JP2013160705A true JP2013160705A (en) 2013-08-19

Family

ID=49173048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012024805A Pending JP2013160705A (en) 2012-02-08 2012-02-08 Radar cross-sectional area measurement system

Country Status (1)

Country Link
JP (1) JP2013160705A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016540960A (en) * 2013-10-09 2016-12-28 マサチューセッツ インスティテュート オブ テクノロジー Motion tracking by wireless reflection of body
CN106428625A (en) * 2016-09-14 2017-02-22 北京环境特性研究所 Low-scattering carrier used for RCS test

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3495265A (en) * 1965-08-11 1970-02-10 Bell Telephone Labor Inc Dielectric clutter fence
JPS6279384A (en) * 1985-10-01 1987-04-11 Mitsubishi Electric Corp Microwave tester
US4879560A (en) * 1988-07-06 1989-11-07 Northrop Corporation Radar test device with rotator inside subject-support fixture
US4901080A (en) * 1988-07-06 1990-02-13 Northrop Corporation Radar test device with planar reflecting shield
US4947175A (en) * 1983-12-27 1990-08-07 Lockheed Corporation Radar range
US5075681A (en) * 1991-01-28 1991-12-24 Lockheed Corporation Radar cross-section model support and positioning apparatus
JPH06104633A (en) * 1992-09-17 1994-04-15 Tdk Corp Anechoic chamber
JPH0933245A (en) * 1995-07-25 1997-02-07 Mitsubishi Electric Corp Measuring apparatus for scattering cross section
JPH1152043A (en) * 1997-08-08 1999-02-26 Mitsubishi Electric Corp Apparatus for measuring scattering cross section
JP2006184130A (en) * 2004-12-27 2006-07-13 Tdk Corp Radar device
JP2010019691A (en) * 2008-07-10 2010-01-28 Denso Corp Electromagnetic anechoic box

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3495265A (en) * 1965-08-11 1970-02-10 Bell Telephone Labor Inc Dielectric clutter fence
US4947175A (en) * 1983-12-27 1990-08-07 Lockheed Corporation Radar range
JPS6279384A (en) * 1985-10-01 1987-04-11 Mitsubishi Electric Corp Microwave tester
US4879560A (en) * 1988-07-06 1989-11-07 Northrop Corporation Radar test device with rotator inside subject-support fixture
US4901080A (en) * 1988-07-06 1990-02-13 Northrop Corporation Radar test device with planar reflecting shield
US5075681A (en) * 1991-01-28 1991-12-24 Lockheed Corporation Radar cross-section model support and positioning apparatus
JPH06104633A (en) * 1992-09-17 1994-04-15 Tdk Corp Anechoic chamber
JPH0933245A (en) * 1995-07-25 1997-02-07 Mitsubishi Electric Corp Measuring apparatus for scattering cross section
JPH1152043A (en) * 1997-08-08 1999-02-26 Mitsubishi Electric Corp Apparatus for measuring scattering cross section
JP2006184130A (en) * 2004-12-27 2006-07-13 Tdk Corp Radar device
JP2010019691A (en) * 2008-07-10 2010-01-28 Denso Corp Electromagnetic anechoic box

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016540960A (en) * 2013-10-09 2016-12-28 マサチューセッツ インスティテュート オブ テクノロジー Motion tracking by wireless reflection of body
CN106428625A (en) * 2016-09-14 2017-02-22 北京环境特性研究所 Low-scattering carrier used for RCS test

Similar Documents

Publication Publication Date Title
US10075249B2 (en) Massive-MIMO antenna measurement device and method of measuring directivity thereof
JP5825995B2 (en) Radar cross section measuring device
US20170012714A1 (en) Methods and apparatuses for testing wireless communication to vehicles
KR100802181B1 (en) System and method for measurement of antenna radiation pattern in Fresnel region
KR101009630B1 (en) Apparatus for measurement of antenna radiation performance and method of designing thereof
JP5396601B2 (en) Radiation efficiency measuring device
JP6678554B2 (en) Antenna measuring device
CA2801407C (en) Frequency field scanning
JP2009276187A (en) Radar cross section measuring method and measuring apparatus
JP5635453B2 (en) Method for measuring power transmission rate of radio wave transmission body
CN108508393A (en) A kind of Multi probe Antenna testing system probe calibration system and calibration method
JP2023547206A (en) Radar beacon and radar measurement system
CN106291145B (en) The test macro of wireless terminal
JP2003057281A (en) Anechoic chamber, system and method of measuring radiation electromagnetic waves
JP5371233B2 (en) Radar cross section measuring method and radar cross section measuring apparatus
JP2013160705A (en) Radar cross-sectional area measurement system
Fordham An introduction to antenna test ranges, measurements and instrumentation
JP2010237069A (en) Apparatus for measuring radar reflection cross-section
JP4545606B2 (en) Radar cross section measuring device
US11762001B2 (en) Measurement arrangement and measurement method
CN208459582U (en) A kind of Multi probe Antenna testing system electromagnetic performance probe correcting device
JP6349916B2 (en) Antenna diagnostic device
JP5534698B2 (en) Radar cross section measurement equipment
Hu et al. Amplitude and phase errors analysis on spherical multi-probe antenna near-field measurement
RU2548231C1 (en) Stand for measuring amplitude back-scattering diagrams from radar target

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150804

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160331

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160628