JPH06104584A - Cooler for electronic component - Google Patents

Cooler for electronic component

Info

Publication number
JPH06104584A
JPH06104584A JP24037192A JP24037192A JPH06104584A JP H06104584 A JPH06104584 A JP H06104584A JP 24037192 A JP24037192 A JP 24037192A JP 24037192 A JP24037192 A JP 24037192A JP H06104584 A JPH06104584 A JP H06104584A
Authority
JP
Japan
Prior art keywords
electronic component
cooling
blower
centrifugal
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24037192A
Other languages
Japanese (ja)
Inventor
Hideki Kurosaki
英喜 黒崎
Takeshi Harada
武 原田
Masatoshi Kanamaru
昌敏 金丸
Shigeo Ohashi
繁男 大橋
Akiomi Kono
顕臣 河野
Kazuo Sato
佐藤  一雄
Toshio Hatada
敏夫 畑田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP24037192A priority Critical patent/JPH06104584A/en
Publication of JPH06104584A publication Critical patent/JPH06104584A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PURPOSE:To allow cooling even if the air flow path is narrow and the flow path resistance is high by fixing a centrifugal cooling fan directly to an electronic component thereby increasing suction pressure and delivery pressure. CONSTITUTION:A centrifugal fan 10 and a drive motor 6 therefor are fixed directly to an electronic component 7 requiring cooling. The centrifugal fan 10 comprises a shaft 3 for coupling a runner 1 to the motor 6, and a casing having an appropriate inner flow path. Air 9 is sucked through suction ports 4 on the opposite sides of the casing 2 and flows in parallel with the shaft 3 into the fan and then blown out downward through a blow-out port 5 made in the lower side of the casing 2. Consequently, the centrifugal fan 10 produces high pressure difference between suction pressure and delivery pressure. Furthermore, suction and delivery air flow is increased resulting in sufficient cooling.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は発熱量の多い電子部品、
例えば、コンピュータのCPUや、レーザダイオード等
の冷却装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to electronic parts which generate a large amount of heat,
For example, the present invention relates to a cooling device such as a CPU of a computer or a laser diode.

【0002】[0002]

【従来の技術】冷却の必要な発熱量の多い電子部品があ
った場合、その電子部品には放熱フィンを取付け、同時
にその電子部品を搭載した電子機器全体に送風機で空気
を流して冷却していた(特開昭55−96661 号公報)。ま
たは、その電子部品に送風機を直接取り付けて冷却する
場合、送風機は軸流型であった(特開平2−196454 号公
報)。
2. Description of the Related Art When there is an electronic component that requires a large amount of heat generation to be cooled, a radiator fin is attached to the electronic component, and at the same time, air is blown by a blower over the entire electronic device on which the electronic component is mounted to cool it. (JP-A-55-96661). Alternatively, when a blower is directly attached to the electronic component for cooling, the blower is an axial flow type (Japanese Patent Laid-Open No. 2-196454).

【0003】[0003]

【発明が解決しようとする課題】電子機器全体に空気を
流して冷却する場合、冷却の必要な電子部品には送風し
た空気の一部分が流れて冷却に寄与するだけであり冷却
効率が悪い。一方、軸流型送風機を、直接、電子部品に
取り付ける場合、軸流型では大きな吹き出し圧が得られ
ないため、電子部品を高密度に実装すると空気流路の抵
抗のため空気の流量が少なくなり、充分に冷却ができな
い。
When air is supplied to the entire electronic equipment to cool it, a part of the blown air flows to the electronic parts requiring cooling, which only contributes to the cooling, resulting in poor cooling efficiency. On the other hand, when an axial-flow blower is directly attached to an electronic component, a large blowing pressure cannot be obtained with an axial-flow blower.Therefore, if the electronic component is mounted at a high density, the air flow rate will decrease due to the resistance of the air flow path. , Can not be cooled sufficiently.

【0004】[0004]

【課題を解決するための手段】上記課題を達成するため
この発明は、遠心型送風機を個々の電子部品に直接取り
付けた。
In order to achieve the above object, the present invention directly attaches a centrifugal blower to individual electronic components.

【0005】[0005]

【作用】遠心型送風機は軸流型送風機に比べて吹き出し
圧を大きくできるので空気流路が狭くても大きい空気流
量を得られる。また、個々の電子部品に直接取り付けら
れた送風機は、全体システムの中で、発熱量の大きい箇
所を効果的に冷却する。
Since the centrifugal blower can increase the blowing pressure as compared with the axial flow blower, a large air flow rate can be obtained even if the air passage is narrow. Further, the blower directly attached to each electronic component effectively cools a portion of the entire system that generates a large amount of heat.

【0006】[0006]

【実施例】図1に本発明の一実施例を示す。本実施例で
は、冷却に必要な電子部品7の上に、遠心型送風機10
とその送風機を駆動するためのモータ6が、直接、取り
付けられている。本実施例の平面図を図2に、また、分
解図を図3に示す。遠心型送風機10は羽根車1,羽根
車1をモータ6に連結するための軸3、及び、適当な内
部流路を持つケーシング2からなる。空気の流れ9は、
図1中の太線の矢印で示すように、ケーシング2の両側
面の吸い込み口4から、軸3と平行に流れて送風機に吸
い込まれ、ケーシング2の下面の吹き出し口5から下方
向に吹き出す構造となっている。図4は、送風機の特性
図であり、線aは遠心型送風機の特性を示し、線bは軸
流型送風機の特性を示す。この図に示すように、遠心型
送風機は、軸流型送風機に比べて、吸い込み・吹き出し
の圧力差を大きくできるので、吸い込み・吹き出しの各
空気流路が狭く、流路抵抗が大きい場合でも、空気流量
が多くなり、充分な冷却が行える。
FIG. 1 shows an embodiment of the present invention. In this embodiment, the centrifugal blower 10 is mounted on the electronic component 7 required for cooling.
And a motor 6 for driving the blower are directly attached. A plan view of this embodiment is shown in FIG. 2, and an exploded view thereof is shown in FIG. The centrifugal blower 10 comprises an impeller 1, a shaft 3 for connecting the impeller 1 to a motor 6, and a casing 2 having an appropriate internal flow path. The air flow 9 is
As indicated by a thick arrow in FIG. 1, a structure in which the air flows from the suction ports 4 on both sides of the casing 2 in parallel with the shaft 3 to be sucked by the blower and is blown downward from the blow-out port 5 on the lower surface of the casing 2. Has become. FIG. 4 is a characteristic diagram of the blower, where the line a shows the characteristic of the centrifugal type blower and the line b shows the characteristic of the axial flow type blower. As shown in this figure, the centrifugal blower can increase the pressure difference between suction and blowout as compared to the axial flow blower, so that each suction and blowout air passage has a narrow flow passage resistance, The air flow rate increases and sufficient cooling can be performed.

【0007】図5は本実施例で、冷却の必要な電子部品
7を複数個搭載した基板8を積層して、電子機器内に高
密度に実装した第二の実施例の断面図である。このよう
な場合は、電子部品7の上部空間が極めて狭くなり、流
路抵抗が大きくなるが、遠心型送風機10では、図4に
示したように流路抵抗が大きくても、大きな空気流量が
得られるので、充分な冷却が出来る。一方、従来の冷却
手段であった軸流型送風機では本質的に大きな差圧が得
られない。また、これに加えて、軸流型送風機では実装
形態が図6に示すように上方向から空気9を吸い込み下
方向に吹き出す形になるため、吸い込み・吹き出し口が
閉塞して、流路抵抗が増大し、一層不利になる。これに
対して、遠心型送風機を使用すると、図5に示したよう
に横方向から吸い込むので、吸い込みの流路抵抗は小さ
く、空気流量を大きくできる。
FIG. 5 is a cross-sectional view of a second embodiment of the present invention, in which a plurality of substrates 8 on which a plurality of electronic components 7 requiring cooling are mounted are stacked and mounted densely in an electronic device. In such a case, the upper space of the electronic component 7 becomes extremely narrow and the flow path resistance becomes large. However, in the centrifugal blower 10, even if the flow path resistance is large as shown in FIG. Since it is obtained, sufficient cooling can be performed. On the other hand, the axial flow type blower, which is the conventional cooling means, cannot essentially obtain a large differential pressure. Further, in addition to this, in the axial flow type blower, the mounting form is such that the air 9 is sucked in from above and blown out downward as shown in FIG. Increase and become even more disadvantageous. On the other hand, when the centrifugal blower is used, the suction is performed from the lateral direction as shown in FIG. 5, so that the flow resistance of the suction is small and the air flow rate can be increased.

【0008】図7に第三の実施例を示す。本実施例で
は、電子部品7の上に、遠心型送風機10が、直接、取
り付けられており、その送風機を駆動するためのモータ
6は電子部品7と並んで基板8の上に取り付けられてい
る。このような配置にすると、電子部品7の上部空間が
狭い場合でも、送風機10およびモータ6を取り付ける
ことが出来る。さらに、比較的大型の、高回転数,高ト
ルクのモータ6を使用して、効果的な冷却を行うことが
出来る。
FIG. 7 shows a third embodiment. In this embodiment, the centrifugal blower 10 is directly mounted on the electronic component 7, and the motor 6 for driving the blower is mounted on the substrate 8 along with the electronic component 7. . With such an arrangement, the blower 10 and the motor 6 can be attached even when the upper space of the electronic component 7 is narrow. Further, effective cooling can be performed by using a relatively large motor 6 having a high rotation speed and a high torque.

【0009】図8に第四の実施例を示す。本実施例で
は、冷却の必要な電子部品7の上に、複数の遠心型送風
機10とモータ6が、直接、取り付けられている。個々
のモータは各々一つの送風機を駆動している。遠心型送
風機10は、電子部品7に比べて小型であるので、この
ように個々の電子部品に複数の遠心型送風機とモータを
取り付けることが出来る。1個の電子部品に1個の送風
機が取り付けられている場合に比べて、冷却能力が向上
し、且つ、1個の遠心型送風機またはモータが故障して
も、その他の送風機及びモータで冷却を続けることがで
きる。また、本実施例では、1個の電子部品に2個の送
風機が取り付けられているが、送風機の数は3個、また
は、それ以上でも良い。
FIG. 8 shows a fourth embodiment. In the present embodiment, the plurality of centrifugal blowers 10 and the motor 6 are directly mounted on the electronic component 7 requiring cooling. Each individual motor drives one blower. Since the centrifugal blower 10 is smaller than the electronic component 7, a plurality of centrifugal blowers and motors can be attached to each electronic component in this way. Compared to the case where one blower is attached to one electronic component, the cooling capacity is improved, and even if one centrifugal blower or motor fails, cooling is performed with other blowers and motors. I can continue. Further, in this embodiment, two blowers are attached to one electronic component, but the number of blowers may be three or more.

【0010】図9に第五の実施例を示す。本実施例で
は、冷却の必要な電子部品7の上に、複数の遠心型送風
機10とその送風機を駆動するためのモータ6が、直
接、取り付けられており、1個のモータは2個の送風機
を駆動している。このように複数の送風機を1個のモー
タで駆動すると、1個の送風機が故障しても冷却を続け
ることができる。また、本実施例では、1個の電子部品
に各々4個の送風機と2個のモータ6が取り付けられて
いるが、モータの数は3個、またはそれ以上でも良く、
また、個々のモータが駆動する送風機の数は3個、また
はそれ以上でも良い。
FIG. 9 shows a fifth embodiment. In this embodiment, a plurality of centrifugal blowers 10 and a motor 6 for driving the blowers are directly mounted on the electronic component 7 requiring cooling, and one motor is two blowers. Are driving. In this way, by driving a plurality of blowers with a single motor, cooling can be continued even if one blower fails. Further, in this embodiment, four blowers and two motors 6 are attached to one electronic component, but the number of motors may be three or more,
Further, the number of blowers driven by each motor may be three or more.

【0011】図10に第六の実施例を示す。本実施例で
は、冷却の必要な電子部品7の上に、複数の遠心型送風
機10が直接取り付けられている。その送風機10を駆
動するためのモータ6は電子部品7と並んで基板の上に
取り付けられており、それぞれのモータは複数の電子部
品7に取り付けられた複数の送風機を駆動している。こ
のような配置にすると、電子部品の上部空間が狭い場合
でも、送風機およびモータを取り付けることが出来る。
また、比較的大型の、高回転数,高トルクのモータ6を
使用して、効果的な冷却を行うことが出来る。さらに、
少数のモータで多数の電子部品を冷却することが出来
る。また、本実施例では、個々のモータは2個の電子部
品7に各々1個ずつ取り付けられた合計2個の送風機を
駆動しているが、1個のモータで、3個またはそれ以上
の送風機を駆動し、3個またはそれ以上の電子部品を冷
却しても良く、また、1個のモータで駆動する送風機は
1個の電子部品について複数個でも良い。
FIG. 10 shows a sixth embodiment. In this embodiment, a plurality of centrifugal blowers 10 are directly mounted on the electronic component 7 that needs to be cooled. A motor 6 for driving the blower 10 is mounted on the substrate side by side with the electronic component 7, and each motor drives a plurality of blowers mounted on the plurality of electronic components 7. With this arrangement, the blower and the motor can be attached even if the upper space of the electronic component is narrow.
Further, effective cooling can be performed by using a relatively large motor 6 having a high rotation speed and a high torque. further,
A large number of electronic components can be cooled with a small number of motors. Further, in the present embodiment, each motor drives a total of two blowers, one mounted on each of the two electronic components 7, but one motor drives three or more blowers. May be driven to cool three or more electronic components, and a plurality of blowers driven by one motor may be provided for one electronic component.

【0012】図2,図7ないし図10の送風機10に
は、いずれも従来の軸流型送風機に代って、遠心型送風
機が取り付けられている。
In each of the blowers 10 shown in FIGS. 2, 7 to 10, a centrifugal blower is attached instead of the conventional axial flow blower.

【0013】図11に第七の実施例を示す。本実施例で
は、送風機10から吹き出した空気9が、再び送風機1
0に吸い込まれて同じところを循環し、空気9の温度が
局部的に上昇し、冷却が充分に行われなくなることを防
ぐために、送風機10の吹き出し口5と吸い込み口4の
間に仕切り板12を設置している。これによって空気9
が局部的に循環することが無くなり、冷却が効率的に行
われる。
FIG. 11 shows a seventh embodiment. In the present embodiment, the air 9 blown out from the blower 10 is returned to the blower 1 again.
In order to prevent the temperature of the air 9 from being locally sucked up and circulated in the same place as when it is sucked into 0 and the cooling is not sufficiently performed, a partition plate 12 is provided between the air outlet 5 and the air inlet 4 of the blower 10. Has been installed. This makes the air 9
Is not circulated locally, and cooling is performed efficiently.

【0014】図12に第八の実施例を示す。本実施例で
は、冷却の必要な電子部品7から、十分に離れたところ
(例えば、その電子部品7を搭載した電子機器の筐体外
部)の温度の低い空気を、ダクト13によって吸い込
み、電子部品7に吹き付けている。こうすることによっ
て、電子部品7を確実に冷却することができる。
FIG. 12 shows an eighth embodiment. In the present embodiment, the duct 13 sucks in low-temperature air at a place sufficiently distant from the electronic component 7 that needs to be cooled (for example, outside the housing of the electronic device on which the electronic component 7 is mounted), and the electronic component is cooled. It is blowing to 7. By doing so, the electronic component 7 can be reliably cooled.

【0015】[0015]

【発明の効果】この発明には以下の効果がある。The present invention has the following effects.

【0016】(1) 遠心型送風機を用いて電子部品の冷
却を行うので吸い込み圧・吹き出し圧を大きくでき、空
気流路が狭く流路抵抗が大きい場合でも冷却が行える。
この結果、電子部品の高密度な実装が可能になる。
(1) Since the electronic components are cooled by using the centrifugal blower, the suction pressure and the blowing pressure can be increased, and the cooling can be performed even when the air passage is narrow and the passage resistance is large.
As a result, high density mounting of electronic components becomes possible.

【0017】(2) 個々の電子部品を直接冷却するので
冷却効率が高い。
(2) Cooling efficiency is high because individual electronic components are directly cooled.

【0018】(3) 送風機の横にモータが置かれるので
軸流型に比べて電子部品の上部空間が狭くても送風機を
取り付けることができる。この結果、高密度な実装が可
能になる。
(3) Since the motor is placed beside the blower, the blower can be attached even if the upper space of the electronic component is narrower than that of the axial flow type. As a result, high-density mounting becomes possible.

【0019】(4) 1個の電子部品に複数の送風機・モ
ータを取り付けることにより、一部の送風機・モータが
故障した場合でも電子部品の冷却が続けられる。
(4) By attaching a plurality of blowers / motors to one electronic component, the cooling of the electronic components can be continued even if some of the blowers / motors fail.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の電子部品冷却装置を構成する遠心型送
風機の一実施例を示す斜視図。
FIG. 1 is a perspective view showing an embodiment of a centrifugal fan that constitutes an electronic component cooling device of the present invention.

【図2】図1に示す実施例の平面図。FIG. 2 is a plan view of the embodiment shown in FIG.

【図3】図1に示す実施例の分解図。FIG. 3 is an exploded view of the embodiment shown in FIG.

【図4】遠心型送風機と軸流型送風機の特性図。FIG. 4 is a characteristic diagram of a centrifugal blower and an axial flow blower.

【図5】電子部品冷却装置の第2の実施例を示す断面
図。
FIG. 5 is a sectional view showing a second embodiment of the electronic component cooling device.

【図6】従来の電子部品冷却装置の一例を示す断面図。FIG. 6 is a sectional view showing an example of a conventional electronic component cooling device.

【図7】電子部品冷却装置の第3の実施例を示す平面
図。
FIG. 7 is a plan view showing a third embodiment of the electronic component cooling device.

【図8】電子部品冷却装置の第4の実施例を示す平面
図。
FIG. 8 is a plan view showing a fourth embodiment of the electronic component cooling device.

【図9】電子部品冷却装置の第5の実施例を示す平面
図。
FIG. 9 is a plan view showing a fifth embodiment of the electronic component cooling device.

【図10】電子部品冷却装置の第6の実施例を示す平面
図。
FIG. 10 is a plan view showing a sixth embodiment of the electronic component cooling device.

【図11】電子部品冷却装置の第7の実施例を示す断面
図。
FIG. 11 is a sectional view showing a seventh embodiment of an electronic component cooling device.

【図12】電子部品冷却装置の第8の実施例を示す断面
図。
FIG. 12 is a sectional view showing an eighth embodiment of the electronic component cooling device.

【符号の説明】[Explanation of symbols]

1…遠心型羽根車、2…ケーシング、3…軸、4…吸い
込み口、5…吹き出し口、6…モータ、7…電子部品、
8…基板、9…空気、10…遠心型送風機、11…軸流
型送風機。
DESCRIPTION OF SYMBOLS 1 ... Centrifugal impeller 2, ... Casing, 3 ... Shaft, 4 ... Suction port, 5 ... Outlet port, 6 ... Motor, 7 ... Electronic component,
8 ... Substrate, 9 ... Air, 10 ... Centrifugal blower, 11 ... Axial blower.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大橋 繁男 茨城県土浦市神立町502番地 株式会社日 立製作所機械研究所内 (72)発明者 河野 顕臣 茨城県土浦市神立町502番地 株式会社日 立製作所機械研究所内 (72)発明者 佐藤 一雄 茨城県土浦市神立町502番地 株式会社日 立製作所機械研究所内 (72)発明者 畑田 敏夫 茨城県土浦市神立町502番地 株式会社日 立製作所機械研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Shigeo Ohashi Inventor Shigeo Ohashi 502 Jintamachi, Tsuchiura-shi, Ibaraki Hiritsu Manufacturing Co., Ltd.Mechanical Research Laboratory (72) Akemi Kono 502 Kintatecho, Tsuchiura-shi, Ibaraki Hitate Co., Ltd. Machinery Research Institute (72) Inventor Kazuo Sato 502 Jinritsucho, Tsuchiura-shi, Ibaraki Hiritsu Manufacturing Co., Ltd. (72) Inventor Toshio Hatada 502 Jinritsucho, Tsuchiura-shi, Ibaraki Hiritsu Manufacturing Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】電子部品の冷却用送風機が遠心型であり、
前記冷却用該送風機が電子部品に直接取付け可能である
ことを特徴とする電子部品冷却装置。
1. A blower for cooling electronic parts is a centrifugal type,
An electronic component cooling device, wherein the blower for cooling can be directly attached to an electronic component.
JP24037192A 1992-09-09 1992-09-09 Cooler for electronic component Pending JPH06104584A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24037192A JPH06104584A (en) 1992-09-09 1992-09-09 Cooler for electronic component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24037192A JPH06104584A (en) 1992-09-09 1992-09-09 Cooler for electronic component

Publications (1)

Publication Number Publication Date
JPH06104584A true JPH06104584A (en) 1994-04-15

Family

ID=17058501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24037192A Pending JPH06104584A (en) 1992-09-09 1992-09-09 Cooler for electronic component

Country Status (1)

Country Link
JP (1) JPH06104584A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6846157B1 (en) * 2003-09-24 2005-01-25 Averatec Inc. Cooling fans
US7359196B2 (en) * 2005-12-21 2008-04-15 International Business Machines Corporation Dual impeller push-pull axial fan heat sink
CN103002713A (en) * 2011-09-15 2013-03-27 哈米尔顿森德斯特兰德公司 Integrated fan motor and controller housing

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6846157B1 (en) * 2003-09-24 2005-01-25 Averatec Inc. Cooling fans
US7359196B2 (en) * 2005-12-21 2008-04-15 International Business Machines Corporation Dual impeller push-pull axial fan heat sink
CN103002713A (en) * 2011-09-15 2013-03-27 哈米尔顿森德斯特兰德公司 Integrated fan motor and controller housing
CN103002713B (en) * 2011-09-15 2017-03-01 哈米尔顿森德斯特兰德公司 Integrated fan motor and controller housing

Similar Documents

Publication Publication Date Title
US5794687A (en) Forced air cooling apparatus for semiconductor chips
US6179561B1 (en) Fan wheel structures
US7071587B2 (en) Integrated cooler for electronic devices
US5335143A (en) Disk augmented heat transfer system
US6903928B2 (en) Integrated crossflow cooler for electronic components
US6565428B2 (en) Duct flow-type fan
US7255532B2 (en) Bi-directional blowers for cooling computers
US7167364B2 (en) Cooler with blower between two heatsinks
US7021894B2 (en) Apparatus for cooling of electronic components
US20060021735A1 (en) Integrated cooler for electronic devices
US7146822B2 (en) Centrifugal liquid pump with perimeter magnetic drive
US7481616B2 (en) Centrifugal fan, cooling mechanism, and apparatus furnished with the cooling mechanism
US20080074842A1 (en) Computer device cooling system
US8450889B2 (en) Method and structure for cooling an electric motor
US7265974B2 (en) Multi-heatsink integrated cooling device
US6923619B2 (en) Integrated blade cooler for electronic components
US6698505B2 (en) Cooler for an electronic device
US7237599B2 (en) Cooler with blower comprising heat-exchanging elements
US5873407A (en) Windblown-type heat-dissipating device for computer mother board
JPH06104584A (en) Cooler for electronic component
EP1328844B1 (en) Cooling device in a projector
JP3533909B2 (en) Electronic equipment cooling device
US6217440B1 (en) Air mover system with reduced reverse air flow
JPH09274791A (en) Magnetic disk device and electronic device
JPH08340065A (en) Cooling device for electronic parts