JPH06104514A - Laser oscillator and its oscillating method - Google Patents

Laser oscillator and its oscillating method

Info

Publication number
JPH06104514A
JPH06104514A JP27347492A JP27347492A JPH06104514A JP H06104514 A JPH06104514 A JP H06104514A JP 27347492 A JP27347492 A JP 27347492A JP 27347492 A JP27347492 A JP 27347492A JP H06104514 A JPH06104514 A JP H06104514A
Authority
JP
Japan
Prior art keywords
laser
laser medium
lamp
power supply
pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27347492A
Other languages
Japanese (ja)
Inventor
Minoru Watanabe
実 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP27347492A priority Critical patent/JPH06104514A/en
Publication of JPH06104514A publication Critical patent/JPH06104514A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lasers (AREA)

Abstract

PURPOSE:To provide a laser oscillator and oscillation method in which laser beam rises quickly and laser machining can be carried out sharply with no loss while downsizing the power supply. CONSTITUTION:The laser oscillator comprises a laser medium 1, a pumping lamp 2 disposed in same direction as the laser medium and in parallel therewith, a total reflector 5 and a partial reflector 7 disposed on the opposite ends of the laser medium, a reflection box 3 housing the laser medium and the pumping lamp, and a power supply connected with the opposite electrodes of the pumping lamp. The power supply comprises a rectifying power supply 10, a high frequency electronic switch 15 connected with positive or negative electrode of the rectifying power supply, and a circuit 14 connected with the high frequency electronic switch and controlling the pulse width of pulse current shorter than the natural relaxation time of pumping substance in the laser medium.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、レーザー光の立ち上が
りが早くて加工がシャープとなるレーザー発振装置及び
その発振方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laser oscillating device and a method of oscillating the laser oscillating device in which laser light rises quickly and processing is sharp.

【0002】[0002]

【従来の技術】レーザー発振装置は、ロッド状やスラブ
状の固体レーザー媒質(例えば、Nd:YAG、Cr:
YGGなどの単結晶やNd入りガラス等)の両端に全反
射鏡と部分反射鏡とを配置し、固体レーザー媒質と同一
方向かつ平行に置いた励起用ランプの放電光により固体
レーザー媒質を励起させ、励起によって発生した蛍光を
反射鏡間で共振させてレーザー光として出力させるもの
で、物質の切断、溶接、マーキング等材料加工に応用さ
れている。
2. Description of the Related Art A laser oscillator is a rod-shaped or slab-shaped solid-state laser medium (for example, Nd: YAG, Cr:
A total reflection mirror and a partial reflection mirror are arranged at both ends of a single crystal such as YGG or glass containing Nd, and the solid laser medium is excited by the discharge light of an excitation lamp placed in the same direction and parallel to the solid laser medium. Fluorescence generated by excitation is resonated between reflecting mirrors and output as laser light, which is applied to material processing such as cutting, welding and marking of substances.

【0003】図2は上記レーザー発振装置の概念図であ
る。レーザー媒質1は励起用ランプ2とともに反射箱3
に収納され、これらレーザー媒質1と励起用ランプ2と
は反射箱3に導入される水で冷却される。反射箱3の外
部に露出しているレーザー媒質1の一方の端面4側には
全反射鏡5が、また他方の端面6には部分反射鏡7が配
置され、もって共振系が構成される。また、ダイオード
8及びコイル9で平滑化回路が構成され、整流電源10
から供給される整流がパターン11の直流に平滑化され
て励起用ランプ2を発光させる。
FIG. 2 is a conceptual diagram of the above laser oscillator. The laser medium 1 is provided with the excitation lamp 2 and the reflection box 3
And the laser medium 1 and the excitation lamp 2 are cooled by water introduced into the reflection box 3. A total reflection mirror 5 is arranged on one end face 4 side of the laser medium 1 exposed to the outside of the reflection box 3, and a partial reflection mirror 7 is arranged on the other end face 6 thereof, thereby forming a resonance system. Further, the smoothing circuit is composed of the diode 8 and the coil 9, and the rectifying power source 10
The rectification supplied from is smoothed to the direct current of the pattern 11 to cause the excitation lamp 2 to emit light.

【0004】励起用ランプ2の光がレーザー媒質1に照
射されると、レーザー媒質1内の励起物質(例えばNd3+
イオン、Cr3+イオン等)が高いエネルギー準位に励起さ
れる。この高いエネルギー準位から低いエネルギー準位
に遷移する際に蛍光が発せられ、この蛍光が更に刺激と
なって蛍光の誘導放出を惹き起こす。上記共振系は、全
反射鏡5で反射された光が端面4からレーザー媒質1内
を通って端面6に到達し、この端面6から出て部分反射
鏡7に向かい、該部分反射鏡7から反射した光が再び同
一光路12を通るように調整してあり、従ってこの光路
12上を光が往復する間に増幅されてパターン13のレ
ーザー光出力が得られる。
When the laser medium 1 is irradiated with the light from the exciting lamp 2, the excited substance (eg Nd 3+) in the laser medium 1 is irradiated.
Ions, Cr 3+ ions, etc.) are excited to high energy levels. Fluorescence is emitted at the transition from this high energy level to the low energy level, and this fluorescence further stimulates and causes stimulated emission of fluorescence. In the above-mentioned resonance system, the light reflected by the total reflection mirror 5 reaches the end face 6 through the laser medium 1 from the end face 4, goes out from this end face 6 toward the partial reflection mirror 7, and from the partial reflection mirror 7. The reflected light is adjusted so as to pass through the same optical path 12 again. Therefore, while the light travels back and forth on the optical path 12, the light is amplified and the laser light output of the pattern 13 is obtained.

【0005】しかし、上記従来のレーザー発振装置の発
振方式では、ダイオード8及びコイル9で構成された平
滑化回路を使用するために、励起用ランプ2の発光が設
定強度に到達するまでの時間(立ち上がり時間)が長
く、従ってレーザー光出力の立ち上がりも遅い。このレ
ーザー光出力の立ち上がりの遅れが、レーザー加工時の
ドロス(削りかす等の不要物)発生を招くことになる。
また、上記平滑化回路では大電流を平滑化するため、ダ
イオード8及びコイル9に大きなものを必要とし、これ
がレーザー発振装置を大型化する原因となっている。
However, in the oscillation system of the conventional laser oscillator described above, since the smoothing circuit composed of the diode 8 and the coil 9 is used, the time until the light emission of the excitation lamp 2 reaches the set intensity ( The rise time) is long, and therefore the rise of the laser light output is slow. This delay in the rise of the laser light output causes the generation of dross (unnecessary material such as shavings) during laser processing.
Further, since the smoothing circuit smooths a large current, large diodes 8 and coils 9 are required, which causes the laser oscillation device to be upsized.

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、上記
問題を解消して従来よりレーザー光出力の立ち上がりが
早くて加工がシャープであるレーザー発振装置と、その
レーザー発振方法を提供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a laser oscillating device which solves the above problems and has a sharper rise of laser light output and a sharper processing than before, and a laser oscillating method thereof. is there.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
本発明のレーザー発振装置は、レーザー媒質と、該レー
ザー媒質と同一方向かつ平行に置かれた励起用ランプ
と、前記レーザー媒質の両端に置かれた全反射鏡及び部
分反射鏡と、前記レーザー媒質と前記励起用ランプとを
収納する反射箱と、前記励起用ランプの両極に接続した
電源とを有するレーザー発振装置において、前記電源
が、整流電源と、該整流電源の正極または負極に接続さ
れた高周波電子開閉装置と、該高周波電子開閉装置に接
続されこれを制御するための前記レーザー媒質内の励起
物質の固有緩和時間より短いパルス幅にパルス電流を制
御するパルス制御回路とからなる点に特徴がある。ま
た、そのようなレーザー発振装置を発振する本発明の方
法は、励起用ランプを発光させてレーザー媒質を励起
し、レーザー光を連続発振させるレーザー発振方法にお
いて、上記励起用ランプをレーザー媒質内の固有緩和時
間より短いパルス幅のパルス電流で連続発光させる点に
特徴がある。
In order to achieve the above object, a laser oscillating device of the present invention comprises a laser medium, an excitation lamp placed in the same direction as and parallel to the laser medium, and at both ends of the laser medium. In a laser oscillation device having a total reflection mirror and a partial reflection mirror placed, a reflection box that accommodates the laser medium and the excitation lamp, and a power supply connected to both electrodes of the excitation lamp, the power supply, A rectifying power source, a high-frequency electronic switchgear connected to a positive electrode or a negative electrode of the rectifying power source, and a pulse width shorter than the intrinsic relaxation time of the excitable substance in the laser medium for controlling the high-frequency electronic switchgear. Is characterized in that it comprises a pulse control circuit for controlling the pulse current. Further, the method of the present invention for oscillating such a laser oscillation device is a laser oscillation method in which an excitation lamp is caused to emit light to excite a laser medium to continuously oscillate laser light. It is characterized by continuous light emission with a pulse current having a pulse width shorter than the intrinsic relaxation time.

【0008】本発明のレーザー媒質は、公知のいかなる
種類も使用でき、例えばルビー結晶(Cr3+:Al2O3)、Ndイ
オン添加YAG結晶(Nd3+:Y3Al5O12)、Crイオン添加ガーネ
ット結晶(YGG (Cr3+:Y3Ga5O12)、YSGG (Cr3+:Y3(Sc,G
a)2Ga3O12)、GGG (Cr3+:Gd3Ga5O12)、GSGG (Cr3+:Gd3(G
a,Sc)2Ga3O12)、LLGG (Cr3+:(La,Lu)5Ga3O12))、GSAG
結晶(Nd3+:Cr3+:Gd3Sc2Al3O12)、YLF結晶(YLiF4)、斜方
晶系クリソベリル構造のアレキサンドライト(Cr3+:BeAl
2O4)、六方晶系ベリル構造のエメラルド(Cr3+:Be3Al2(S
iO3)6)、単斜晶系のBEL結晶(Nd3+:La2Be2O5)、Nd入りガ
ラス等がある。
The laser medium of the present invention may be of any known type, such as ruby crystal (Cr 3+ : Al 2 O 3 ), Nd ion-added YAG crystal (Nd 3+ : Y 3 Al 5 O 12 ), Garnet crystal with Cr ion added (YGG (Cr 3+ : Y 3 Ga 5 O 12 ), YSGG (Cr 3+ : Y 3 (Sc, G
a) 2 Ga 3 O 12 ), GGG (Cr 3+ : Gd 3 Ga 5 O 12 ), GSGG (Cr 3+ : Gd 3 (G
a, Sc) 2 Ga 3 O 12 ), LLGG (Cr 3+ : (La, Lu) 5 Ga 3 O 12 )), GSAG
Crystal (Nd 3+ : Cr 3+ : Gd 3 Sc 2 Al 3 O 12 ), YLF crystal (YLiF 4 ), orthorhombic chrysoberyl alexandrite (Cr 3+ : BeAl
2 O 4 ), a hexagonal beryl-structured emerald (Cr 3+ : Be 3 Al 2 (S
There are iO 3 ) 6 ), monoclinic BEL crystal (Nd 3+ : La 2 Be 2 O 5 ), Nd-containing glass and the like.

【0009】励起用ランプには、Krガスを封入したフ
ラッシュランプや、キセノンアークランプ等が使用でき
る。全反射鏡及び部分反射鏡には、溶融石英にチタニア
やハフア等の金属酸化物を真空蒸着したものが使用でき
る。整流電源には、交流を整流器で整流したものが使用
できる。高周波電子開閉装置には、バイポーラトランジ
スタ、電界効果トランジスタ、絶縁ゲートバイポーラト
ランジスタ、静電誘導トランジスタ、サイリスタ、静電
誘導サイリスタ、GTO等が使用できる。
A flash lamp containing Kr gas, a xenon arc lamp, or the like can be used as the exciting lamp. For the total reflection mirror and the partial reflection mirror, those obtained by vacuum-depositing metal oxide such as titania or hafah on fused silica can be used. As the rectification power source, an AC current rectified by a rectifier can be used. For the high frequency electronic switchgear, a bipolar transistor, a field effect transistor, an insulated gate bipolar transistor, an electrostatic induction transistor, a thyristor, an electrostatic induction thyristor, a GTO, etc. can be used.

【0010】本発明法のレーザー発振装置の発振方法
は、励起用ランプを発光させてレーザー媒質を励起する
点は従来と同じであるが、パルス制御回路を接続した高
周波電子開閉装置によって、レーザー媒質内の励起物質
の固有緩和時間よりも短かいパルス幅のパルス電流で励
起用ランプを発光させ、整流を平滑化するためのダイオ
ードやコイルが不要である点が異なる。このときのパル
ス電流は、duty比が50%以下であることが望まし
い。50%を超えるとレーザー光出力の効率が悪くな
る。パルス電流のパルス周期は、パルス幅とduty比
とで決まるが、通常10〜300μsecである。
The oscillating method of the laser oscillating device according to the present invention is the same as the conventional one in that the exciting lamp is caused to emit light to excite the laser medium. However, the high frequency electronic switching device connected to the pulse control circuit is used to oscillate the laser medium. The difference is that the diode or coil for smoothing the rectification is made unnecessary by causing the excitation lamp to emit light with a pulse current having a pulse width shorter than the intrinsic relaxation time of the excited substance inside. The duty ratio of the pulse current at this time is preferably 50% or less. If it exceeds 50%, the efficiency of laser light output is deteriorated. The pulse period of the pulse current is determined by the pulse width and the duty ratio, but is usually 10 to 300 μsec.

【0011】[0011]

【作用】レーザー媒質に励起光を照射すると、レーザー
媒質の励起物質中の電子の一部が光量子エネルギーを吸
収して励起準位に移り、その励起準位に一定時間留まっ
た後基底準位に落ちる。この時間を固有緩和時間とい
い、励起物質がNd3+の場合0.3msec程度であ
る。励起中の電子に固有緩和時間内に次のパルスの励起
光の光量子エネルギーが与えられると、その電子は固有
緩和時間経過後も励起準位に留まり、余分のエネルギー
を放出して他の電子を励起準位に移す。これを繰り返し
て励起物質中の電子の励起が飽和状態になると、やがて
はじめのパルスの励起光によって励起された電子の一部
が基底準位に落ち、蛍光を発生する。以下、二回目以降
のパルスの励起光により励起された電子も次第に基底準
位に落ちて蛍光を発生する。
[Operation] When the laser medium is irradiated with excitation light, some of the electrons in the excited substance of the laser medium absorb the photon energy and move to the excitation level, and after staying at the excitation level for a certain period of time, they become the ground level. drop down. This time is called intrinsic relaxation time, which is about 0.3 msec when the excited substance is Nd 3+ . When the photon energy of the excitation light of the next pulse is given to the electron being excited within the intrinsic relaxation time, the electron remains in the excitation level even after the lapse of the intrinsic relaxation time, and emits excess energy to release other electrons. Move to the excitation level. When the excitation of the electrons in the excited substance is saturated by repeating this process, some of the electrons excited by the excitation light of the first pulse eventually fall to the ground level and generate fluorescence. Hereinafter, the electrons excited by the excitation light of the second and subsequent pulses also gradually fall to the ground level and generate fluorescence.

【0012】従って本発明のレーザー発振方法によれ
ば、励起用ランプに平滑化した連続的な電流を供給する
ことなく、レーザー媒質内の励起物質の固有緩和時間よ
り短いパルス幅のパルス発光によって連続的なレーザー
光を得ることができる。
Therefore, according to the laser oscillating method of the present invention, continuous emission is performed by pulse emission having a pulse width shorter than the intrinsic relaxation time of the excitation material in the laser medium, without supplying a smooth continuous current to the excitation lamp. Laser light can be obtained.

【0013】[0013]

【実施例】【Example】

実施例 ・・・ 図1に本発明のレーザー発振装置の構
成図を示す。パルス制御回路14は高周波電子開閉装置
15に接続され、高周波電子開閉装置15は整流電源1
0と励起用ランプ2との間に接続されている。レーザー
媒質1には、長さ152mm、幅25mm、厚さ10m
m、端面と上下面との角度40.5度、Ndを1.1a
tm%ドープしたスラブ型YAG結晶(Nd3+:Y3
512)を用いた。このレーザー媒質1の励起物質は
Nd3+であり、固有緩和時間は0.3msecである。
整流電源10からは交流電圧を全波整流した直流電流が
供給される。全反射鏡5には反射率100%、部分反射
鏡7には反射率30%の、いずれも溶融石英にチタニア
を真空蒸着したものを用い、全反射鏡5と部分反射鏡7
との距離、即ち共振器長を900mmとした。パルス制
御回路14にはレーザー媒質1内の励起物質Nd3+の固
有緩和時間0.3msecより短いパルス幅のパルス電
流を制御できる電子回路を、高周波電子開閉装置15に
はバイポーラトランジスタを使用した。
Embodiments FIG. 1 shows a configuration diagram of a laser oscillator according to the present invention. The pulse control circuit 14 is connected to a high frequency electronic switchgear 15, and the high frequency electronic switchgear 15 is a rectifier power supply 1.
It is connected between 0 and the excitation lamp 2. The laser medium 1 has a length of 152 mm, a width of 25 mm, and a thickness of 10 m.
m, the angle between the end surface and the top and bottom surfaces is 40.5 degrees, and Nd is 1.1a
Slab-type YAG crystal (Nd 3+ : Y 3 A) doped with tm%
15 O 12 ) was used. The exciting substance of the laser medium 1 is Nd 3+ , and the intrinsic relaxation time is 0.3 msec.
A rectified power source 10 supplies a DC current that is a full-wave rectified AC voltage. The total reflection mirror 5 has a reflectance of 100%, and the partial reflection mirror 7 has a reflectance of 30%. Both of them are made of fused silica obtained by vacuum vapor deposition of titania.
And the resonator length was set to 900 mm. An electronic circuit capable of controlling a pulse current having a pulse width shorter than the intrinsic relaxation time of 0.3 msec of the excitation material Nd 3+ in the laser medium 1 was used for the pulse control circuit 14, and a bipolar transistor was used for the high-frequency electronic switchgear 15.

【0014】上記構成により励起ランプ2より、図中1
6で示す光ピーク出力強度11kW、パルス幅23μs
ec、duty比30%、パルス周期70μsec、平
均光出力強度3.3kW、duty比30%の、励起物
質Nd3+の固有緩和時間より短いパルス電流をレーザー
媒質1に照射した。その結果、出力100Wのパターン
17で示す連続したレーザー光が得られ、そのレーザー
光の立ち上がり時間は8μsecであった。また、上記
構成のレーザー発振装置の電源の重量は約5kgであっ
た。
With the above structure, the excitation lamp 2 is connected to
Optical peak output intensity shown in 6 is 11 kW, pulse width is 23 μs
The laser medium 1 was irradiated with a pulse current of ec, duty ratio of 30%, pulse period of 70 μsec, average light output intensity of 3.3 kW, and duty ratio of 30%, which was shorter than the intrinsic relaxation time of the excitable substance Nd 3+ . As a result, continuous laser light shown by pattern 17 having an output of 100 W was obtained, and the rise time of the laser light was 8 μsec. The weight of the power source of the laser oscillator having the above structure was about 5 kg.

【0015】従来例 ・・・ パルス制御回路14、高
周波電子開閉装置15を用いずに、ダイオード8及びコ
イル9を使用した他は実施例と同じで図2の構成によ
り、出力強度2.0kWの直流電流をレーザー媒質1に
照射した。その結果、出力100Wのパターン13で示
す連続したレーザー光が得られ、そのレーザー光の立ち
上がり時間は100μsecであった。また、上記構成
のレーザー発振装置の電源の重量は約10kgであっ
た。
Conventional example ... Same as the embodiment except that the diode 8 and the coil 9 are used without using the pulse control circuit 14 and the high frequency electronic switchgear 15, and the output intensity of 2.0 kW is obtained by the configuration of FIG. A direct current was applied to the laser medium 1. As a result, continuous laser light shown by pattern 13 with an output of 100 W was obtained, and the rise time of the laser light was 100 μsec. The weight of the power source of the laser oscillator having the above structure was about 10 kg.

【0016】上記のように、本発明法のレーザー発振装
置は、レーザー光出力の立ち上がり時間が従来方法のレ
ーザー発振装置の約1/13、電源の重量は約半分とな
った。
As described above, in the laser oscillator of the present invention, the rise time of the laser light output was about 1/13 of that of the conventional laser oscillator, and the weight of the power source was about half.

【0017】[0017]

【発明の効果】本発明により、従来よりレーザー光の立
ち上がりが早いため加工がシャープで、レーザー加工時
にドロスが発生しないレーザー発振装置が得られる。ま
た、電源にダイオードやコイルが不要であるため装置が
小型化、軽量化できる。
According to the present invention, it is possible to obtain a laser oscillating device which is sharper in processing because laser light rises earlier than before and does not cause dross during laser processing. Further, since the power supply does not require a diode or a coil, the device can be made compact and lightweight.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のレーザー発振装置の概念図である。FIG. 1 is a conceptual diagram of a laser oscillation device of the present invention.

【図2】従来のレーザー発振装置の概念図である。FIG. 2 is a conceptual diagram of a conventional laser oscillation device.

【符号の説明】[Explanation of symbols]

1 レーザー媒質 2 励起用ランプ 3 反射箱 4 レーザー媒質の端面 5 全反射鏡 6 レーザー媒質の端面 7 部分反射鏡 8 ダイオード 9 コイル 10 整流電源 11 入力電流の経時変化パターン 12 レーザー光路 13 レーザー出力の経時変化パターン 14 パルス制御回路 15 高周波電子開閉装置 16 パルス状の入力電流の経時変化パターン 17 レーザー出力の経時変化パターン 1 Laser Medium 2 Excitation Lamp 3 Reflection Box 4 End Face of Laser Medium 5 Total Reflector 6 End Face of Laser Medium 7 Partial Reflector 8 Diode 9 Coil 10 Rectifier Power Supply 11 Input Current Change Pattern 12 Laser Optical Path 13 Laser Output Temporal Change pattern 14 Pulse control circuit 15 High-frequency electronic switchgear 16 Pulse time-dependent change pattern of input current 17 Laser output change-time pattern

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 レーザー媒質と、該レーザー媒質と同一
方向かつ平行に置かれた励起用ランプと、前記レーザー
媒質の両端に置かれた全反射鏡及び部分反射鏡と、前記
レーザー媒質と前記励起用ランプとを収納する反射箱
と、前記励起用ランプの両極に接続した電源とを有する
レーザー発振装置において、前記電源が、整流電源と、
該整流電源の正極または負極に接続された高周波電子開
閉装置と、該高周波電子開閉装置に接続されこれを制御
するための前記レーザー媒質内の励起物質の固有緩和時
間より短いパルス幅にパルス電流を制御するパルス制御
回路とからなることを特徴とするレーザー発振装置。
1. A laser medium, a pumping lamp placed in the same direction and parallel to the laser medium, total reflection mirrors and partial reflection mirrors placed at both ends of the laser medium, the laser medium and the pumping. In a laser oscillating device having a reflection box for housing a lamp and a power source connected to both electrodes of the exciting lamp, the power source is a rectified power source,
A high-frequency electronic switchgear connected to the positive electrode or the negative electrode of the rectifying power source, and a pulse current having a pulse width shorter than the intrinsic relaxation time of the excitable substance in the laser medium for controlling the high-frequency electronic switchgear. A laser oscillator comprising a pulse control circuit for controlling.
【請求項2】 励起用ランプを発光させてレーザー媒質
を励起し、レーザー光を連続発振させるレーザー発振方
法において、上記励起用ランプをレーザー媒質内の固有
緩和時間より短いパルス幅のパルス電流で連続発光させ
ることを特徴とするレーザー発振方法。
2. A laser oscillation method in which an exciting lamp is caused to emit light to excite a laser medium to continuously oscillate laser light, wherein the exciting lamp is continuously pulsed with a pulse current having a pulse width shorter than an intrinsic relaxation time in the laser medium. A laser oscillation method characterized by causing light emission.
JP27347492A 1992-09-18 1992-09-18 Laser oscillator and its oscillating method Pending JPH06104514A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27347492A JPH06104514A (en) 1992-09-18 1992-09-18 Laser oscillator and its oscillating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27347492A JPH06104514A (en) 1992-09-18 1992-09-18 Laser oscillator and its oscillating method

Publications (1)

Publication Number Publication Date
JPH06104514A true JPH06104514A (en) 1994-04-15

Family

ID=17528423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27347492A Pending JPH06104514A (en) 1992-09-18 1992-09-18 Laser oscillator and its oscillating method

Country Status (1)

Country Link
JP (1) JPH06104514A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6674970B1 (en) * 1999-05-21 2004-01-06 The United States Of America As Represented By The Secretary Of The Navy Plasma antenna with two-fluid ionization current

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6674970B1 (en) * 1999-05-21 2004-01-06 The United States Of America As Represented By The Secretary Of The Navy Plasma antenna with two-fluid ionization current

Similar Documents

Publication Publication Date Title
US6288499B1 (en) Electromagnetic energy distributions for electromagnetically induced mechanical cutting
JPH05102580A (en) Pre-ionizing device of gas pulse laser
JP6562464B2 (en) Passive Q-switched laser device
JP2003198019A (en) Laser light source
US5255282A (en) Open waveguide excimer laser
JPH1093167A (en) Laser oscillator and laser drive method
Saiki et al. Effective fluorescence lifetime and stimulated emission cross-section of Nd/Cr: YAG ceramics under CW lamplight pumping
JPH06104514A (en) Laser oscillator and its oscillating method
JPS639393B2 (en)
JPH0145225B2 (en)
Bokhan et al. Investigation of a He-Eu+ laser excited by short pumping pulses
JPH0422182A (en) Output device of q-switched pulse laser
JP3819181B2 (en) Laser equipment
Kim et al. Output performance of a Nd: YAG laser with mixed operation in the cw and pulsed modes
JP3159528B2 (en) Discharge pumped excimer laser device
JPS6341233B2 (en)
JPH05327078A (en) Solid laser device
RU2230409C2 (en) Pulsed chemical element vapor laser
JPH08153925A (en) Continuous exciting q switch laser oscillation method and its equipment
JPS63249386A (en) Excitation method for solid state laser
JPH0423375A (en) Solid laser
Sona European activities and approaches to high power laser technology
JPH0636448B2 (en) Discharge excitation laser device
JPS6041277A (en) Laser oscillator
Nishimura et al. High-energy flash-lamp-pumped Ti-sapphire laser for Yb: glass CPA