JPH06104200A - Heating apparatus for ion-implantation substrate - Google Patents

Heating apparatus for ion-implantation substrate

Info

Publication number
JPH06104200A
JPH06104200A JP27657792A JP27657792A JPH06104200A JP H06104200 A JPH06104200 A JP H06104200A JP 27657792 A JP27657792 A JP 27657792A JP 27657792 A JP27657792 A JP 27657792A JP H06104200 A JPH06104200 A JP H06104200A
Authority
JP
Japan
Prior art keywords
thermocouple
temperature
ion
power supply
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27657792A
Other languages
Japanese (ja)
Inventor
Hajime Yamazaki
山崎  肇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP27657792A priority Critical patent/JPH06104200A/en
Publication of JPH06104200A publication Critical patent/JPH06104200A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To provide a heating apparatus for an ion-implantation substrate with a small leak of an ion current when the ion reaches a wafer. CONSTITUTION:A heating apparatus for an ion-implantation substrate comprises a first member 3 made of a material with high electrical and thermal conductivity, a second member 4 provided closely under the first member 3 and made of a material with high insulation even at high temperatures, and a third member 5 provided closely under the second member 4 and included in a heater block. The second member 4 has a thermocouple 7.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体基板を室温より
高い温度に昇温した状態で注入する際、リーク電流によ
るイオン電流値の変動がなく、かつノイズ電流振幅のな
い状態で正確にモニターできるイオン注入用基板加熱装
置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention, when a semiconductor substrate is implanted at a temperature higher than room temperature, is accurately monitored without fluctuation of ion current value due to leak current and without noise current amplitude. The present invention relates to a substrate heating device for ion implantation that can be performed.

【0002】[0002]

【従来の技術】図3(a)および(b)に従来技術によ
る基板加熱装置の概略図およびヒーター電源部の概略図
を示す。図において、1はクランパー、2はウェハ、3
は第1の部材、4は第2の部材、5は第3の部材、6は
熱電対挿入孔、7は熱電対、8は熱電対用絶縁管、9は
交流電源入力端子、12は熱電対信号入力端子、13は
ヒータ電源出力端子、14は電源入力端子、15は温度
コントローラ部、16は電源コントローラ部を示す。次
に作動について説明すると、イオン電流は、基板加熱部
にセットされたウェハ2に到達したイオンビームをクラ
ンパー1より取り出し、電流積分計に導入し計測する方
法を選んだ。これはウェハ2に到達したイオンビームを
直接計測できるため構成が単純なためである。しかし、
十分なノイズ対策が必要とされる。熱電対7はウェハ2
に近い部分の温度を計測するため第1の部材3に設けて
ある。第2の部材4は絶縁性材料が用いられ、第3の部
材5のヒーターブロックには交流電源を供給している。
ここで図3(b)温度コントローラ部15や電源コント
ローラ部16に電源を投入し、実際に図に示した装置を
動作させた時、高温時における抵抗低下により外部にイ
オン電流の一部がリークしてしまうことや、上記温度コ
ントローラ部15や電源コントローラ部16からの種々
のノイズが電流積分計に回り込むことが生じる。一般的
にノイズ対策については各種の手法が知られているが個
々の装置について独自の対策が必要となる。従来装置に
ついてもラインフィルタ,絶縁トランス等通常の対策を
試みたが、基板加熱装置におけるリーク電流およびノイ
ズ電流は共に数nA〜数100nA程度で、これら通常
の対策の前後でほとんど変化がなかった。従って、数1
0μA以下のイオン電流で注入を行った場合、パーセン
トオーダーの誤差を生じ、再現性が得られないことにな
る。またノイズには50Hzの商用電源周波数成分が含
まれていることも判明した。これらのことから従来技術
による基板加熱装置ではイオン電流を正確に計測ができ
ず、再現性の高いイオン注入ができなかった。
2. Description of the Related Art FIGS. 3 (a) and 3 (b) show a schematic view of a substrate heating apparatus and a schematic view of a heater power supply unit according to the prior art. In the figure, 1 is a clamper, 2 is a wafer, 3
Is a first member, 4 is a second member, 5 is a third member, 6 is a thermocouple insertion hole, 7 is a thermocouple, 8 is a thermocouple insulating tube, 9 is an AC power input terminal, and 12 is a thermoelectric A pair signal input terminal, 13 is a heater power output terminal, 14 is a power input terminal, 15 is a temperature controller section, and 16 is a power controller section. Next, the operation will be described. For the ion current, a method was selected in which the ion beam reaching the wafer 2 set in the substrate heating unit was taken out from the clamper 1 and introduced into the current integrator. This is because the ion beam that has reached the wafer 2 can be directly measured and the configuration is simple. But,
Sufficient noise countermeasures are required. Thermocouple 7 is wafer 2
It is provided on the first member 3 in order to measure the temperature of the portion close to. An insulating material is used for the second member 4, and AC power is supplied to the heater block of the third member 5.
Here, when power is turned on to the temperature controller unit 15 and the power supply controller unit 16 in FIG. 3B and the device shown in the figure is actually operated, a part of the ion current leaks to the outside due to the resistance drop at a high temperature. In addition, various noises from the temperature controller unit 15 and the power supply controller unit 16 may flow into the current integrator. Generally, various methods are known as noise countermeasures, but each device needs its own countermeasures. Although conventional measures such as a line filter and an insulation transformer have been tried for the conventional device, the leak current and the noise current in the substrate heating device are about several nA to several 100 nA, and there is almost no change before and after these normal measures. Therefore, the number 1
If the implantation is performed with an ion current of 0 μA or less, an error of the percent order occurs and reproducibility cannot be obtained. It was also found that the noise contains a commercial power supply frequency component of 50 Hz. For these reasons, the conventional substrate heating device cannot accurately measure the ion current, and ion implantation with high reproducibility cannot be performed.

【0003】[0003]

【発明が解決しようとする課題】本発明は上記の欠点を
改善するために提案されたもので、その目的は、基板
加熱部を高温に昇温し、温度制御させた状態においてイ
オン注入した時、ウェハに到達したイオン電流をリーク
のない、正確なモニターができること、及び温度モニ
ター系およびヒーターブロック系からのノイズ電流をな
くすることのできるイオン注入用基板加熱装置を提供す
ることにある。
SUMMARY OF THE INVENTION The present invention has been proposed in order to improve the above-mentioned drawbacks, and its purpose is to increase the temperature of the substrate heating portion to a high temperature and to perform ion implantation in a temperature-controlled state. An object of the present invention is to provide an ion implantation substrate heating apparatus capable of accurately monitoring an ion current reaching a wafer without leakage and eliminating noise currents from a temperature monitor system and a heater block system.

【0004】[0004]

【課題を解決するための手段】上記の目的を達成するた
め、本発明は電気伝導率および熱伝導率の大きい材料か
らなる第1の部材と、前記第1の部材の下部に密着して
設けられ、高温時においても高絶縁性を有する材料から
なる第2の部材と、前記第2の部材の下部に密着して設
けられ、ヒーターブロックを構成する第3の部材とを備
え、かつ前記第2の部材に熱電対を設けたことを特徴と
するイオン注入用基板加熱装置を発明の要旨とするもの
である。
In order to achieve the above-mentioned object, the present invention provides a first member made of a material having a high electric conductivity and a high thermal conductivity and a lower part of the first member in close contact with each other. A second member made of a material having a high insulating property even at a high temperature, and a third member that is provided in close contact with a lower portion of the second member and constitutes a heater block, and The gist of the invention is an ion implantation substrate heating device characterized in that a thermocouple is provided on the second member.

【0005】[0005]

【作用】本発明によるイオン注入用基板加熱装置によれ
ば、高温においても高い絶縁抵抗を保つ第2の部材中に
絶縁管に挿入した熱電対を装着することによって、30
0℃程度に昇温した場合でも1μAの電流レンジで電流
値の増減およびノイズが観測されない。従って、室温時
のイオン注入電流と同じ精度で高温注入ができる作用を
有するものである。
According to the substrate heating apparatus for ion implantation of the present invention, by mounting the thermocouple inserted in the insulating tube in the second member that maintains high insulation resistance even at high temperature,
Even when the temperature is raised to about 0 ° C., increase / decrease in current value and noise are not observed in the current range of 1 μA. Therefore, it has the effect that high temperature implantation can be performed with the same accuracy as the ion implantation current at room temperature.

【0006】[0006]

【実施例】次に本発明の実施例について説明する。従
来、高絶縁性材料として、Al2 3 ,SiO2 ,BN
等各種セラミック材料が用いられていた。これら材料の
うち、室温付近では抵抗率(ρ)がρ>1012Ωcmと
高抵抗率が得られているものでも、300℃付近ではρ
<1011Ωcmになるものも少なくない。本発明におい
ては、300℃においてもほぼρが1012Ωcmを有す
るAl2 3 を用いることにより、リーク電流によるイ
オン電流値の変動を実施例1では20nAと従来の1/
3程度にできることを見いだしたことによるものであ
る。 (実施例1)図1(a)は、本発明によるイオン注入用
基板加熱装置の基板ホルダー部の概略図である。図にお
いて、1はクランパー、2はウェハ、3は第1の部材、
4は第2の部材、5は第3の部材、6は熱電対挿入孔、
7は熱電対、8は熱電対用絶縁管、9は交流電源入力端
子を示す。基板ホルダーは3層構造となっている。ま
ず、第1の部材3にはカーボンを、次いで第2の部材4
には絶縁温度特性の良いアルミナを用いた。第3の部材
5はヒーターブロックである。ウェハ2は、第1の部材
3に置いた後、クランパー1で固定した。イオン電流は
クランパー1から引き出し、電流積分計に導入し、計測
した。熱電対7はイオン電流のリークおよびノイズを低
減するため、アルミナ製絶縁管8でシールし、第2の部
材4に挿入した。この場合、まず熱電対を第1の部材3
に挿入した場合に比べ、設定温度とウェハ表面温度との
差が問題となる。しかし、ある設定温度に昇温し、ウェ
ハを装着してから10分後のウェハ表面温度は、50℃
低いことを確認した。この値は第1の部材3に熱電対を
挿入し、同じシーケンスを行った場合と同じ値であり、
300℃前後まで安定に使用できることが判った。図1
(b)は、ヒーター電源の概略図である。図において、
12は熱電対よりの信号の入力端子、13はヒータ電源
出力端子、14は電源入力端子、15は温度コントロー
ラ部、16は電源コントローラ部、17はホトカプラー
を示す。温度コントローラ部15と電源コントローラ部
16はホトカプラー17で電気的に絶縁した。温度コン
トローラ部には熱電対よりの出力を、予めきめられた設
定温度と比較して得られた信号と電源コントローラ部に
入力するようになっている。電源部の入力は100Vの
交流(単相)であるが、電源コントローラ部には交流−
直流交換部を内蔵させて、出力は70V,15Aの直流
とした。このような構成にすることにより、300℃程
度に昇温した場合でも1μAの電流レンジで50Hz商
用電源周波数成分も含めノイズがまったく観測されない
ことを確認した。実際に数μAのイオン電流を引き出し
た場合でも、電流値の増減およびノイズのない注入波形
が観測された。図2(a)は熱電対装着時、ヒータ電源
投入時、およびヒータ昇温時(300℃)に対するリー
ク電流値を従来例と本発明とを比較して示した。従来技
術の場合は40−60nA程度のリーク電流値が測定さ
れたが、本発明(実施例1)では10−20nAに低減
できた。また同様にノイズ電流振幅も従来技術の場合は
5−20nAとヒータ電源投入により増加したが、本技
術では検出感度以下となっている。図2(b)はノイズ
電流振幅を示す。
EXAMPLES Next, examples of the present invention will be described. Conventionally, Al 2 O 3 , SiO 2 and BN have been used as highly insulating materials.
Various ceramic materials were used. Among these materials, even if the resistivity (ρ) near room temperature is as high as ρ> 10 12 Ωcm, it is ρ near 300 ° C.
Not less than 10 11 Ωcm. In the present invention, by using Al 2 O 3 having ρ of 10 12 Ωcm even at 300 ° C., the fluctuation of the ion current value due to the leak current is 20 nA in Example 1, which is 1/1 / the conventional value.
This is due to the fact that we have found that we can do about three. (Embodiment 1) FIG. 1A is a schematic view of a substrate holder portion of an ion implantation substrate heating apparatus according to the present invention. In the figure, 1 is a clamper, 2 is a wafer, 3 is a first member,
4 is a second member, 5 is a third member, 6 is a thermocouple insertion hole,
Reference numeral 7 is a thermocouple, 8 is a thermocouple insulating tube, and 9 is an AC power input terminal. The substrate holder has a three-layer structure. First, the first member 3 is made of carbon, and then the second member 4 is made of carbon.
Alumina, which has a good insulation temperature characteristic, was used for this. The third member 5 is a heater block. The wafer 2 was placed on the first member 3 and then fixed by the clamper 1. The ionic current was drawn from the clamper 1, introduced into a current integrator, and measured. The thermocouple 7 was sealed with an alumina insulating tube 8 and inserted into the second member 4 in order to reduce ion current leakage and noise. In this case, first the thermocouple is attached to the first member 3
However, the difference between the set temperature and the wafer surface temperature becomes a problem as compared with the case where it is inserted into the wafer. However, the wafer surface temperature 10 minutes after the temperature is raised to a certain set temperature and the wafer is mounted is 50 ° C.
It was confirmed to be low. This value is the same as when the thermocouple was inserted into the first member 3 and the same sequence was performed,
It was found that it can be used stably up to around 300 ° C. Figure 1
(B) is a schematic diagram of a heater power supply. In the figure,
Reference numeral 12 is a signal input terminal from the thermocouple, 13 is a heater power supply output terminal, 14 is a power supply input terminal, 15 is a temperature controller section, 16 is a power supply controller section, and 17 is a photocoupler. The temperature controller unit 15 and the power supply controller unit 16 are electrically insulated by a photo coupler 17. A signal obtained by comparing the output from the thermocouple with a preset temperature is input to the temperature controller unit and the power supply controller unit. The input of the power supply is 100V AC (single phase), but the power supply controller is AC-
A direct current exchange section was built in, and the output was a direct current of 70V, 15A. With such a configuration, it was confirmed that no noise including the 50 Hz commercial power source frequency component was observed at a current range of 1 μA even when the temperature was raised to about 300 ° C. Even when an ion current of several μA was actually drawn, an increase / decrease in current value and an injection waveform without noise were observed. FIG. 2A shows leakage current values when the thermocouple was attached, when the heater power was turned on, and when the heater was heated (300 ° C.), comparing the conventional example with the present invention. In the case of the conventional technique, a leak current value of about 40-60 nA was measured, but in the present invention (Example 1), it could be reduced to 10-20 nA. Similarly, the noise current amplitude was 5-20 nA in the case of the conventional technique, which was increased by turning on the heater power, but in the present technique, it is below the detection sensitivity. FIG. 2B shows the noise current amplitude.

【0007】(実施例2)上記実施例1において第1の
部材3あるいは第2の部材4に熱電対の代わりにバイロ
メータを挿入し、このバイロメータにより温度制御を行
った場合(実施例2)は、リーク電流値が5nAと低減
し、ノイズ電流振幅は実施例1の場合と同様に検出感度
以下となっている。
(Embodiment 2) In the above-mentioned Embodiment 1, when a bimeter is inserted in place of the thermocouple in the first member 3 or the second member 4 and the temperature is controlled by this bimeter (Embodiment 2), The leak current value is reduced to 5 nA, and the noise current amplitude is below the detection sensitivity as in the case of the first embodiment.

【0008】[0008]

【発明の効果】本発明によれば、電気伝導率および熱伝
導率の大きい材料からなる第1の部材と、前記第1の部
材の下部に密着して設けられ、高温時においても高絶縁
性を有する材料からなる第2の部材と、前記第2の部材
の下部に密着して設けられ、ヒーターブロックを構成す
る第3の部材とを備え、かつ前記第2の部材に熱電対を
設けたことにより、高温イオン注入時のイオン電流を室
温時と同じ精度で計測できるため、制御性と再現性に優
れた高温イオン注入が実現できる効果を有する。
According to the present invention, a first member made of a material having a high electric conductivity and a high thermal conductivity and a lower portion of the first member are provided in close contact with each other, and have a high insulating property even at a high temperature. A second member made of a material having a: and a third member that is provided in close contact with the lower portion of the second member and that constitutes a heater block, and a thermocouple is provided on the second member. As a result, the ion current at the time of high temperature ion implantation can be measured with the same accuracy as at room temperature, which has the effect of realizing high temperature ion implantation with excellent controllability and reproducibility.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の基板加熱装置を示すもので、(a)は
装置の概略図、(b)はヒータ電源の概略図を示す。
1A and 1B show a substrate heating apparatus of the present invention, wherein FIG. 1A is a schematic view of the apparatus, and FIG. 1B is a schematic view of a heater power supply.

【図2】熱電対装着時,ヒータ電源投入時,ヒータ昇温
時における(a)はリーク電流値、(b)はノイズ電流
振幅を示す。
FIG. 2A shows a leak current value and FIG. 2B shows a noise current amplitude when the thermocouple is attached, when the heater power is turned on, and when the heater is heated.

【図3】従来の基板加熱装置を示すもので、(a)は装
置の概略図、(b)はヒータ電源部の概略図を示す。
3A and 3B show a conventional substrate heating apparatus, wherein FIG. 3A is a schematic view of the apparatus, and FIG. 3B is a schematic view of a heater power supply unit.

【符号の説明】[Explanation of symbols]

1 クランパー 2 ウェハ 3 第1の部材 4 第2の部材 5 第3の部材 6 熱電対挿入孔 7 熱電対 8 熱電対用絶縁管 9 直流電源入力端子 12 熱電対信号入力端子 13 ヒータ電源出力端子 14 電源入力端子 15 温度コントローラ部 16 電源コントローラ部 17 ホトカプラー 1 Clamper 2 Wafer 3 First Member 4 Second Member 5 Third Member 6 Thermocouple Insertion Hole 7 Thermocouple 8 Thermocouple Insulation Tube 9 DC Power Input Terminal 12 Thermocouple Signal Input Terminal 13 Heater Power Output Terminal 14 Power input terminal 15 Temperature controller 16 Power controller 17 Photocoupler

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 電気伝導率および熱伝導率の大きい材料
からなる第1の部材と、前記第1の部材の下部に密着し
て設けられ、高温時においても高絶縁性を有する材料か
らなる第2の部材と、前記第2の部材の下部に密着して
設けられ、ヒーターブロックを構成する第3の部材とを
備え、かつ前記第2の部材に熱電対を設けたことを特徴
とするイオン注入用基板加熱装置。
1. A first member made of a material having a high electric conductivity and a high thermal conductivity, and a first member made of a material which is provided in close contact with a lower portion of the first member and has a high insulating property even at a high temperature. 2 and a third member which is provided in close contact with the lower part of the second member and constitutes a heater block, and the second member is provided with a thermocouple. Substrate heating device for injection.
【請求項2】 温度コントローラ部の信号出力側と電源
コントローラ部の信号入力側とは電気的に絶縁して構成
するとともに、熱電対の出力を温度コントローラ部に入
力し、これを設定温度と比較して得られた信号を電源コ
ントローラ部に制御信号として送る手段と、前記の電源
コントローラ部からヒーターブロックに直流電力として
供給する手段とを具備することを特徴とする請求項1記
載のイオン注入用基板加熱装置。
2. The signal output side of the temperature controller section and the signal input side of the power supply controller section are electrically insulated from each other, and the output of the thermocouple is input to the temperature controller section and compared with the set temperature. 2. The ion implanting apparatus according to claim 1, further comprising: a unit that sends the signal obtained as a control signal to a power supply controller unit and a unit that supplies the power supply controller unit as a DC power to the heater block. Substrate heating device.
JP27657792A 1992-09-21 1992-09-21 Heating apparatus for ion-implantation substrate Pending JPH06104200A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27657792A JPH06104200A (en) 1992-09-21 1992-09-21 Heating apparatus for ion-implantation substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27657792A JPH06104200A (en) 1992-09-21 1992-09-21 Heating apparatus for ion-implantation substrate

Publications (1)

Publication Number Publication Date
JPH06104200A true JPH06104200A (en) 1994-04-15

Family

ID=17571410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27657792A Pending JPH06104200A (en) 1992-09-21 1992-09-21 Heating apparatus for ion-implantation substrate

Country Status (1)

Country Link
JP (1) JPH06104200A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100269579B1 (en) * 1996-03-15 2000-10-16 니시히라 순지 Substrate processing apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100269579B1 (en) * 1996-03-15 2000-10-16 니시히라 순지 Substrate processing apparatus

Similar Documents

Publication Publication Date Title
JP3892609B2 (en) Hot plate and method for manufacturing semiconductor device
US5147497A (en) Plasma apparatus, and method and system for extracting electrical signal of member to which high-frequency wave is applied
JP4169792B2 (en) Unbalanced bipolar electrostatic chuck power supply device and method
US5351551A (en) Convection thermocouple vacuum gauge
JP2625108B2 (en) Plasma equipment for plasma enhanced chemical vapor deposition.
JPH06104200A (en) Heating apparatus for ion-implantation substrate
JP3931357B2 (en) Manufacturing method of semiconductor device
JP2002252276A (en) Method and device for measuring self bias, and electrostatic attraction device
JP2912616B1 (en) Plate heating device
JP2648871B2 (en) Heat treatment equipment
JPH02129373A (en) Heater for high-frequency impressing electrode in dry-process device
JP3422017B2 (en) Constant temperature bath
JPH1123521A (en) Driving method for heated chemical sensor
CN108260283A (en) The constant temperature microscope carrier of FPC bonding machines
JPS5837674B2 (en) Hei Menjiyou Hatsunetsouchi
JPH0866071A (en) Electrostatic attraction apparatus
JPS6237624A (en) Electronic cooking range with piezoelectric element sensor
JPH0549904A (en) Vacuum treatment and equipment therefor
JPS6135113A (en) Leakage detector of high temperature furnace
SU1751703A1 (en) Method of checking electric parameters of radioelectronic components
JPH02110917A (en) Heat treatment device
JPH0275983A (en) Method for measuring temperature characteristics of iron loss of magnetic substance
JPH0897130A (en) Sample temperature adjuster for charged beam lithography system or the like, and sample holder used for the device
JPH09264912A (en) Space charge measuring device
JPH05142274A (en) Probe type contact resistance measurement device