JPH06103626B2 - Mass spectrometer for focused ion beam - Google Patents

Mass spectrometer for focused ion beam

Info

Publication number
JPH06103626B2
JPH06103626B2 JP3126039A JP12603991A JPH06103626B2 JP H06103626 B2 JPH06103626 B2 JP H06103626B2 JP 3126039 A JP3126039 A JP 3126039A JP 12603991 A JP12603991 A JP 12603991A JP H06103626 B2 JPH06103626 B2 JP H06103626B2
Authority
JP
Japan
Prior art keywords
magnetic pole
electrode
ion beam
magnetic
gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3126039A
Other languages
Japanese (ja)
Other versions
JPH04351839A (en
Inventor
清隆 石橋
憲一 井上
豊 川田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP3126039A priority Critical patent/JPH06103626B2/en
Publication of JPH04351839A publication Critical patent/JPH04351839A/en
Publication of JPH06103626B2 publication Critical patent/JPH06103626B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electron Tubes For Measurement (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は,集束イオンビームを用
いて微小領域の物性,組成分析,微細加工,表面改質等
をなす装置における質量分析器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a mass spectrometer in an apparatus for performing physical properties, composition analysis, fine processing, surface modification, etc. of a minute region by using a focused ion beam.

【0002】[0002]

【従来の技術】半導体分野においては膨大な量の情報を
コンピュータ処理するため,記憶・演算能力を増大し情
報処理速度を高速化することが求められている。そのた
め,ICの高集積化がLSIからVLSIへ,また3次
元ICへと開発が進められている。このようなICプロ
セスの研究において,ミクロサイズに集束されたイオン
ビームが極めて有力な手段となる。一方,分析において
は,ミクロな領域における原子分布の分析が極めて重要
であり,そのために高エネルギーの集束イオンビームを
使った1μm以下の分解能をもつラザフォード後方散乱
法(RBS)や粒子励起X線法(PIXE)などの分析
手法の機能向上が図られつつある。図7は分析装置とし
て用いた従来技術の高エネルギー・集束イオンビーム装
置の構成の一例である。図7において、静電型加速器1
では,イオン源2に例えばヘリウムガスを用いるとHe
+ ,He2+を含むイオンがつくられ,加速管3に例えば
1MVの加速電圧を印加すると,加速されてHe+ は1
MeV,He2+は2MeVの高エネルギー・イオンビー
ム4となって高速,高エネルギーで出てくる。それらは
対物コリメータ5に供給され10数μmに絞られ,イオ
ン種ビームエネルギーの分析コンポーネントとしてのウ
ィーン(E×B)型質量分析器6に入る。ウィーン型質
量分析器6では,電磁石コイル7、窓型電磁石ヨーク8
でつくられる磁場Bおよび側壁の分析電極9,9にそれ
ぞれ電圧+V/2,−V/2を印加して電極距離dのも
とにつくられる電場上の一定の条件のもとに,He+
オンだけが直進し、他のイオンは偏向されて分析電極9
または出口側のイオン選別スリット10に衝突し電荷を
中和され,排気ガスとして排出される。11はHe+
ームの偏向電極で,直進したHe+ イオンだけが四重極
電磁石レンズ12に入り集束され、試料チャンバー13
内のターゲット(測定試料)14上にビームスポットと
なって入射される。He+ イオンが測定試料14と相互
作用して散乱されたイオンまたは励起された蛍光X線は
チャンバー13内の検出器15によってエネルギー分析
され、試料の物性データを得ることができる。また偏向
電極11に電圧を印加することでスポット位置を走査さ
せることができ,2次元分析が可能となる。
2. Description of the Related Art In the field of semiconductors, since a huge amount of information is processed by a computer, it is required to increase the memory / calculation ability and the information processing speed. Therefore, the development of high integration of IC is progressing from LSI to VLSI and to three-dimensional IC. In studying such an IC process, an ion beam focused to a micro size is an extremely effective means. On the other hand, in the analysis, it is extremely important to analyze the atomic distribution in the microscopic region. Therefore, the Rutherford backscattering method (RBS) and the particle excitation X-ray method with a resolution of less than 1 μm using a focused ion beam with high energy are used. (PIXE) and other analytical techniques are being improved in function. FIG. 7 shows an example of the configuration of a conventional high-energy focused ion beam device used as an analyzer. In FIG. 7, the electrostatic accelerator 1
Then, if helium gas is used for the ion source 2, for example, He
Ions containing + and He 2+ are generated, and when an accelerating voltage of, for example, 1 MV is applied to the accelerating tube 3, the ions are accelerated and He + becomes 1
MeV and He 2+ become a high energy ion beam 4 of 2 MeV and emerge at high speed and high energy. They are supplied to the objective collimator 5, narrowed down to a few tens of μm, and enter the Wien (E × B) type mass analyzer 6 as an analysis component of ion species beam energy. In the Wien type mass spectrometer 6, the electromagnet coil 7 and the window electromagnet yoke 8 are used.
He + under a certain condition on the electric field created under the electrode distance d by applying a voltage + V / 2, −V / 2 to the magnetic field B created by Only the ions go straight, the other ions are deflected and the analysis electrode 9
Alternatively, it collides with the ion selection slit 10 on the outlet side to neutralize the electric charge and is discharged as exhaust gas. Denoted at 11 is a He + beam deflecting electrode. Only the straight He + ions enter the quadrupole electromagnet lens 12 and are focused.
A beam spot is made incident on a target (measurement sample) 14 therein. The ions scattered by the interaction of the He + ions with the measurement sample 14 or the excited fluorescent X-rays are energy-analyzed by the detector 15 in the chamber 13, and the physical property data of the sample can be obtained. Further, by applying a voltage to the deflection electrode 11, the spot position can be scanned, and two-dimensional analysis can be performed.

【0003】[0003]

【発明が解決しようとする課題】上記集束イオンビーム
装置において,静電加速器1から入射されたイオンビー
ム4から,特定のイオン種(He+ イオン)のみを直進
させるウィーン型質量分析器6は,断面形状で示すと図
3のようになり,真空ダクト30,電極対34,35を
内包するため磁極間隙Mgを大きくせざるを得ず,装置
全体が大型化する問題点があった。また,電極34,3
5を磁極対36,37に対して電磁場直交型に精度よく
固定することが困難であった。即ち,円筒型の真空ダク
ト30に対し,電極対34,35と真空ダクト30,磁
極36,37と真空ダクト30との精度のよい固定が困
難であるため,真空ダクト30に円周方向に調整機構を
設けて微調整しており、装置の複雑化,大型化をきたし
ていた。前記した磁極間隙Mgを小さくできないことに
起因する装置全体の大型化の問題点について説明する。
図4は質量分析器6の模式図を示し,図5および図6は
イオンビーム方向に対し垂直および平行な断面図を示し
ている。質量分析器6は図4に示すようにイオンビーム
方向に対し互いに直行する磁極36,37と,電極3
4,35で,電磁場直交型として構成されている。図5
において,イオンビームが通過する領域33は電極3
4,35および磁極36,37で囲まれた中心位置に在
る。この領域33における電気力線42,磁力線43
は,それぞれ対向する電極34,35,磁極36,37
に垂直且つ一様な分布密度になっている。しかし,領域
33の中心から離れると,電気力線42,磁力線43は
曲線状になり分布密度が一様でなくなる。前記のような
一様な分布密度を得るための領域33の大きさは,電極
間隙Egと電極断面アパーチャ比(電極間すきEg/電
極幅Ew)で決められる。磁極間隙Mgと磁極断面アパ
ーチャ比についても同じことがいえる。もし,イオンビ
ームの通過領域33が一様な電磁場分布領域より大きい
場合には,集束後の最小イオンビーム径に収査として影
響を与えることになる。図5に示すような構造において
は磁極間隙Mgが大きくなるので,断面アパーチャ比を
小さくするには,磁極幅Mwを大きくする必要がある。
このことは,図6に示すビーム軸に平行な方向では,磁
極の端面で磁場の不均一領域をビームが通過せざるを得
ないので,より深刻となり長手方向のアパーチャ比(磁
極間隙Mg/分析器長L)を十分小さくする必要があ
る.従来装置では,磁極間隙Mgは4cm程度もあるの
で,分析器長40cm程度としている。従って,装置の小
型化のためには,磁極間隙Mg,電極間隙Egを共に小
さくする必要がある。本発明は,上記磁極間隙Mgおよ
び電極間隙Egを共に小さくすることを実現し,従来の
課題であった小型化および電磁場直交型の設定を容易に
した質量分析器を提供することを目的とする。
In the above focused ion beam apparatus, the Wien type mass analyzer 6 for directly advancing only a specific ion species (He + ion) from the ion beam 4 incident from the electrostatic accelerator 1 is The cross-sectional shape is as shown in FIG. 3, and since the vacuum duct 30 and the electrode pairs 34 and 35 are included, the magnetic pole gap Mg has to be increased, and there is a problem that the entire device becomes large. Also, the electrodes 34, 3
It was difficult to accurately fix No. 5 to the magnetic pole pairs 36 and 37 in the electromagnetic field orthogonal type. That is, since it is difficult to fix the electrode pair 34, 35 and the vacuum duct 30, and the magnetic poles 36, 37, and the vacuum duct 30 to the cylindrical vacuum duct 30 with high precision, the vacuum duct 30 is adjusted in the circumferential direction. A mechanism was provided for fine adjustment, which made the device complicated and large. The problem of increasing the size of the entire device due to the fact that the magnetic pole gap Mg cannot be reduced will be described.
FIG. 4 shows a schematic diagram of the mass spectrometer 6, and FIGS. 5 and 6 show sectional views perpendicular to and parallel to the ion beam direction. As shown in FIG. 4, the mass spectrometer 6 includes magnetic poles 36, 37 and electrodes 3 which are orthogonal to each other in the direction of the ion beam.
4 and 35, the electromagnetic field orthogonal type is configured. Figure 5
In the region 33 where the ion beam passes, the electrode 3
It is located at a central position surrounded by 4, 35 and magnetic poles 36, 37. Electric force lines 42 and magnetic force lines 43 in this region 33
Are electrodes 34, 35 and magnetic poles 36, 37, which are opposed to each other.
The distribution density is vertical and uniform. However, as the distance from the center of the region 33 increases, the lines of electric force 42 and lines of magnetic force 43 become curved and the distribution density is not uniform. The size of the region 33 for obtaining the above-mentioned uniform distribution density is determined by the electrode gap Eg and the electrode cross-section aperture ratio (interelectrode gap Eg / electrode width Ew). The same applies to the magnetic pole gap Mg and the magnetic pole sectional aperture ratio. If the passage area 33 of the ion beam is larger than the uniform electromagnetic field distribution area, it affects the minimum ion beam diameter after focusing as an inspection. In the structure as shown in FIG. 5, the magnetic pole gap Mg becomes large, so that the magnetic pole width Mw needs to be made large in order to reduce the sectional aperture ratio.
This becomes more serious in the direction parallel to the beam axis shown in FIG. 6 because the beam must pass through the non-uniform region of the magnetic field at the end face of the magnetic pole, which becomes more serious. It is necessary to make the vessel length L) sufficiently small. In the conventional device, since the magnetic pole gap Mg is about 4 cm, the analyzer length is about 40 cm. Therefore, in order to downsize the device, it is necessary to reduce both the magnetic pole gap Mg and the electrode gap Eg. SUMMARY OF THE INVENTION It is an object of the present invention to provide a mass spectrometer that realizes both the magnetic pole gap Mg and the electrode gap Eg to be small, and that has the conventional problems of miniaturization and easy setting of the electromagnetic field orthogonal type. .

【0004】[0004]

【課題を解決するための手段】上記目的を達成するため
の本発明は,イオン加速器から入射されるイオンビーム
方向に対し,互いに直交する方向に電界と磁界とを与え
て特定イオン種のみを直進させる電磁場直交型の質量分
析器において,前記イオンビームのビーム方向に対し直
交する方向に一様な電界分布密度を与え得る電極断面ア
パーチャ比(電極間隙/電極幅)を有する平行平板電極
対と,前記イオンビームのビーム方向と前記電界分布方
向とに直交する方向に一様な磁界分布密度を与え得る磁
極断面アパーチャ比(磁極間隙/磁極幅)を有する平行
磁極対とを,電極対の磁界方向の幅が磁極対間隙より大
で,磁極対の電界方向の空隙幅が電極対間隙より大にな
るよう構成したことを特徴とする集束イオンビーム用質
量分析器として構成されている。
According to the present invention for achieving the above object, an electric field and a magnetic field are applied in directions orthogonal to the direction of an ion beam incident from an ion accelerator so that only a specific ion species travels straight. And a parallel plate electrode pair having an electrode cross-sectional aperture ratio (electrode gap / electrode width) capable of giving a uniform electric field distribution density in a direction orthogonal to the beam direction of the ion beam, A parallel magnetic pole pair having a magnetic pole cross-section aperture ratio (magnetic pole gap / magnetic pole width) capable of giving a uniform magnetic field distribution density in a direction orthogonal to the beam direction of the ion beam and the electric field distribution direction is set in the magnetic field direction of the electrode pair. Of the magnetic pole pair is larger than the gap of the magnetic pole pair, and the gap width of the magnetic pole pair in the direction of the electric field is larger than the gap of the electrode pair. It is.

【0005】[0005]

【作用】本発明によれば,イオンビームのビーム方向に
対し直交する方向に一様な電界分布密度を与え得る電極
断面アパーチャ比を有する電極対と,イオンビーム方向
と電界分布方向とに直交する方向に一様な磁界分布密度
を与え得る磁極断面アパーチャ比を有する磁極対とを,
前記条件はを満たして配置するために,イオンビーム通
過領域幅を凌ぐ電極幅を有する電極対の一部を,同じく
イオンビーム通過領域幅を凌ぐ磁極幅を有する磁極対の
中に埋設することで実現する。このとき,電極間の電気
的導通を避けるため,磁極材料に体積抵抗率の高い材料
を用いることで,これを可能とした。従って,電極およ
び磁極の断面アパーチャ比を損なうことなく電極および
磁極間隙を共に小さくできるので,装置の断面サイズお
よび長手方向サイズを小さくすることができる。この構
成を実現するために,磁極に設けたスリットに電極の一
部を挿入して固定すれば,電極の磁極の相対的な位置決
め精度を向上する。さらに,電極の磁極に埋設される部
分を強磁性体で構成すれば,スリットを設けことによる
磁場の乱れを抑えることができる。
According to the present invention, an electrode pair having an electrode sectional aperture ratio capable of providing a uniform electric field distribution density in a direction orthogonal to the beam direction of an ion beam, and an electrode pair orthogonal to the ion beam direction and the electric field distribution direction. A magnetic pole pair having a magnetic pole cross-sectional aperture ratio capable of giving a uniform magnetic field distribution density in a direction,
In order to arrange the above condition, a part of the electrode pair having an electrode width exceeding the ion beam passage region width is embedded in a magnetic pole pair having a magnetic pole width also exceeding the ion beam passage region width. To be realized. At this time, in order to avoid electrical conduction between the electrodes, this was made possible by using a material having a high volume resistivity as the magnetic pole material. Therefore, both the electrode and the magnetic pole gap can be reduced without impairing the sectional aperture ratio of the electrode and the magnetic pole, so that the sectional size and the longitudinal size of the device can be reduced. In order to realize this configuration, if a part of the electrode is inserted and fixed in the slit provided in the magnetic pole, the relative positioning accuracy of the magnetic pole of the electrode is improved. Further, if the portion of the electrode embedded in the magnetic pole is made of a ferromagnetic material, the disturbance of the magnetic field due to the provision of the slit can be suppressed.

【0006】[0006]

【実施例】次に具体的な実施例を示し,本発明の理解に
供する,図1は本発明の一実施例質量分析装置の断面
図.図2は電極の構成例を示す斜視図である。図1に示
すように本実施例において,磁極の構成は,磁極21,
21とこれを励磁するための永久磁石22,22とで窓
型に構成し,その中央に真空ダクト26が配置されてい
る。磁極材料には,例えばフェライト材料(体積抵抗率
1×107 Ω/m)を用いると,図示するように,電極
23,23の一部を磁極21,21の中に埋設して構成
することができる。本構成によれば,電極間の電気抵抗
はMΩ単位となり,電極23,23間の絶縁を保つこと
ができる。この磁極の体積抵抗率の値は,少なくとの1
4 Ω/m以上の高抵抗率を必要とする。さもなくば電
極23,23間の抵抗値がkΩ単位となり,電極電圧が
数百ボルトのときで数百mAにのぼり,消費電力も数ワ
ット以上になるので,大容量の電源や磁極の冷却等の課
題が発生する。図示するように本実施例構成によれば,
イオンビームの通過領域である真空ダクト26に対し,
十分な大きさで断面アパーチャ比を損なうことなく間隙
を小さくでき,電極23,23を磁極21,21との直
交配置関係も精度よく実施される。電極23,23が磁
極21,21内に埋設されることによる磁場分布の乱れ
については,スリットの幅が磁極間隙Mgよりも十分に
小さければ問題は生じない。従って,電極23,23の
厚みは極力薄く製作されることが望ましい。尚,図2に
示すように,電極23,23の露出部分を例えば銅など
の導電材で構成し,磁極21,21に埋設される部分を
フェライトに近似の透磁率を有する鉄材で構成する複合
材料とすれば,前記の磁極21,21における磁場の乱
れは無視できるほどにすることができる。また,本実施
例においては,真空ダクト26を電極23,23および
磁極21,21の間に設けた例を示したが,本構成によ
る質量分析器は小型に構成できるので,全体を真空ダク
トに収納することも可能である。
EXAMPLES Next, specific examples will be shown to provide an understanding of the present invention. FIG. 1 is a sectional view of a mass spectrometer according to an embodiment of the present invention. FIG. 2 is a perspective view showing a configuration example of electrodes. As shown in FIG. 1, in this embodiment, the magnetic poles are composed of the magnetic poles 21,
21 and permanent magnets 22 and 22 for exciting this are window-shaped, and a vacuum duct 26 is arranged in the center thereof. If, for example, a ferrite material (volume resistivity 1 × 10 7 Ω / m) is used as the magnetic pole material, a part of the electrodes 23, 23 is embedded in the magnetic poles 21, 21 as shown in the figure. You can According to this configuration, the electric resistance between the electrodes is in the unit of MΩ, and the insulation between the electrodes 23 and 23 can be maintained. The volume resistivity of this magnetic pole should be at least 1
A high resistivity of 0 4 Ω / m or more is required. Otherwise, the resistance value between the electrodes 23, 23 will be in the unit of kΩ, and when the electrode voltage is several hundred volts, it will reach several hundred mA, and the power consumption will be several watts or more. Issues arise. As shown in the figure, according to the configuration of this embodiment,
For the vacuum duct 26, which is the passage area of the ion beam,
With a sufficient size, the gap can be made small without impairing the sectional aperture ratio, and the orthogonal arrangement relationship between the electrodes 23, 23 and the magnetic poles 21, 21 can be carried out accurately. The disturbance of the magnetic field distribution due to the electrodes 23, 23 being buried in the magnetic poles 21, 21 does not cause a problem if the width of the slit is sufficiently smaller than the magnetic pole gap Mg. Therefore, it is desirable that the electrodes 23, 23 be manufactured as thin as possible. Note that, as shown in FIG. 2, the exposed portions of the electrodes 23, 23 are made of a conductive material such as copper, and the portions embedded in the magnetic poles 21, 21 are made of an iron material having a magnetic permeability close to that of ferrite. If the material is used, the disturbance of the magnetic field in the magnetic poles 21 and 21 can be made negligible. Further, in the present embodiment, the example in which the vacuum duct 26 is provided between the electrodes 23, 23 and the magnetic poles 21, 21 has been shown, but the mass analyzer according to the present configuration can be constructed in a small size, so that the whole vacuum duct is used. It can also be stored.

【0007】[0007]

【発明の効果】以上の説明のように本発明によれば,電
極と磁極とを断面アパーチャ比を小さく保ったまま,こ
れらの間隙を小さくできるので,装置全体のサイズを従
来の1/2〜1/4に小型化することができ,また,電
極と磁極間に真空ダクトを介さないので,互いに精度よ
く位置決め固定することができる.従って,集束イオン
ビーム装置への組込後のアライメントが容易であり,得
られるビームスポット径を小さくすることができる効果
を奏する。
As described above, according to the present invention, the gap between the electrode and the magnetic pole can be made small while keeping the sectional aperture ratio small, so that the size of the entire device can be reduced to 1/2 of the conventional size. The size can be reduced to 1/4, and since no vacuum duct is interposed between the electrode and the magnetic pole, they can be positioned and fixed with high precision. Therefore, the alignment after the incorporation into the focused ion beam device is easy, and the obtained beam spot diameter can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る実施例装置の断面図。FIG. 1 is a sectional view of an apparatus according to an embodiment of the present invention.

【図2】実施例装置の電極斜視図。FIG. 2 is a perspective view of an electrode of the embodiment apparatus.

【図3】従来例装置の断面図。FIG. 3 is a cross-sectional view of a conventional device.

【図4】従来例装置の模式図。FIG. 4 is a schematic diagram of a conventional device.

【図5】従来例装置の横断面説明図。FIG. 5 is a cross-sectional explanatory view of a conventional device.

【図6】従来例装置の縦断面説明図。FIG. 6 is a vertical cross-sectional explanatory view of a conventional device.

【図7】従来例集束イオンビーム装置の構成図。FIG. 7 is a configuration diagram of a conventional focused ion beam apparatus.

【符号の説明】[Explanation of symbols]

21…磁極 23…電極 26…真空ダクト Eg…電極間隙 Ew…電極幅 Mg…磁極間隙 Mw…磁極幅 21 ... Magnetic pole 23 ... Electrode 26 ... Vacuum duct Eg ... Electrode gap Ew ... Electrode width Mg ... Magnetic pole gap Mw ... Magnetic pole width

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 イオン加速器から入射されるイオンビー
ム方向に対し,互いに直交する方向に電界と磁界とを与
えて特定イオン種のみを直進させる電磁場直交型の質量
分析器において,前記イオンビームのビーム方向に対し
直交する方向に一様な電界分布密度を与え得る電極断面
アパーチャ比(電極間隙/電極幅)を有する平行平板電
極対と,前記イオンビームのビーム方向と前記電界分布
方向とに直交する方向に一様な磁界分布密度を与え得る
磁極断面アパーチャ比(磁極間隙/磁極幅)を有する平
行磁極対とを,電極対の磁界方向の幅が磁極対間隙より
大で,磁極対の電界方向の空隙幅が電極対間隙より大に
なるよう構成したことを特徴とする集束イオンビーム用
質量分析器。
1. A mass spectrometer of an electromagnetic field orthogonal type in which an electric field and a magnetic field are applied in a direction orthogonal to the direction of an ion beam incident from an ion accelerator to cause only a specific ion species to go straight, A parallel plate electrode pair having an electrode cross-sectional aperture ratio (electrode gap / electrode width) capable of giving a uniform electric field distribution density in a direction orthogonal to the direction, and orthogonal to the beam direction of the ion beam and the electric field distribution direction A parallel magnetic pole pair having a magnetic pole cross-sectional aperture ratio (magnetic pole gap / magnetic pole width) capable of giving a uniform magnetic field distribution density in a magnetic field direction. A mass spectrometer for a focused ion beam, characterized in that the gap width thereof is larger than the electrode pair gap.
【請求項2】 磁極対を体積抵抗率が104 Ω/m以上
の強磁性体で構成すると共に,該磁極対に磁界方向のス
リットを形成し,該スリットに前記電極対の両端部を挿
入した請求項1記載の集束イオンビーム用質量分析器。
2. The magnetic pole pair is made of a ferromagnetic material having a volume resistivity of 10 4 Ω / m or more, and a slit in the magnetic field direction is formed in the magnetic pole pair, and both ends of the electrode pair are inserted into the slit. The mass spectrometer for a focused ion beam according to claim 1.
【請求項3】 電極対の両端部を強磁性の導電体で構成
し、その他の部位を非磁性の導電体で構成した請求項2
記載の集束イオンビーム用質量分析器。
3. An electrode pair, both ends of which are made of a ferromagnetic conductor, and the other portions are made of a non-magnetic conductor.
A focused ion beam mass spectrometer as described.
JP3126039A 1991-05-29 1991-05-29 Mass spectrometer for focused ion beam Expired - Lifetime JPH06103626B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3126039A JPH06103626B2 (en) 1991-05-29 1991-05-29 Mass spectrometer for focused ion beam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3126039A JPH06103626B2 (en) 1991-05-29 1991-05-29 Mass spectrometer for focused ion beam

Publications (2)

Publication Number Publication Date
JPH04351839A JPH04351839A (en) 1992-12-07
JPH06103626B2 true JPH06103626B2 (en) 1994-12-14

Family

ID=14925154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3126039A Expired - Lifetime JPH06103626B2 (en) 1991-05-29 1991-05-29 Mass spectrometer for focused ion beam

Country Status (1)

Country Link
JP (1) JPH06103626B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002190273A (en) * 2000-12-22 2002-07-05 Anelva Corp Electromagnetic field superimposed sector type spectroscope

Also Published As

Publication number Publication date
JPH04351839A (en) 1992-12-07

Similar Documents

Publication Publication Date Title
White MASS SPECTROMETER
JP4795847B2 (en) Electron lens and charged particle beam apparatus using the same
US7064325B2 (en) Apparatus with permanent magnetic lenses
EP0832497B1 (en) System and method for producing superimposed static and time-varying magnetic fields
Cobble et al. High-resolution Thomson parabola for ion analysis
US3644731A (en) Apparatus for producing an ion beam by removing electrons from a plasma
EP0069750A1 (en) Emission-electron microscope.
Kojima et al. Compact Thomson parabola spectrometer with variability of energy range and measurability of angular distribution for low-energy laser-driven accelerated ions
JP4606270B2 (en) Time-of-flight measurement device for sample ions, time-of-flight mass spectrometer, time-of-flight mass spectrometry method
US3471694A (en) Charge particle barrier consisting of magnetic means for removing electrons from an x-ray beam
JPH01296558A (en) Mass spectrometer
Debernardi et al. Measurement of the temperature of an ultracold ion source using time-dependent electric fields
JPH0313702B2 (en)
Hogg et al. The 100 MeV electron scattering facility at the University of Glasgow
JPH06103626B2 (en) Mass spectrometer for focused ion beam
JP3273844B2 (en) Analyzer using scattered ions
Aoki et al. Development of novel projection-type imaging mass spectrometer
JP3904483B2 (en) Ion scattering analyzer
JP3394120B2 (en) Secondary charged particle detector
White et al. Four‐Stage Mass Spectrometer of Large Radius
JP2561486B2 (en) Electron beam irradiation device
Tchórz et al. Capabilities of Thomson parabola spectrometer in various laser-plasma-and laser-fusion-related experiments
US5969354A (en) Electron analyzer with integrated optics
JP4073839B2 (en) Magnetic field generator for analyzer
Boechat-Roberty et al. A Wien Filter velocity analyzer for intermediate energy electron impact spectroscopy