JPH06102036A - Method for detecting warp of plate in lateral and longitudinal direction - Google Patents

Method for detecting warp of plate in lateral and longitudinal direction

Info

Publication number
JPH06102036A
JPH06102036A JP4276756A JP27675692A JPH06102036A JP H06102036 A JPH06102036 A JP H06102036A JP 4276756 A JP4276756 A JP 4276756A JP 27675692 A JP27675692 A JP 27675692A JP H06102036 A JPH06102036 A JP H06102036A
Authority
JP
Japan
Prior art keywords
plate
width direction
warp
shape
moment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4276756A
Other languages
Japanese (ja)
Inventor
Kazunari Ishizaki
一成 石崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP4276756A priority Critical patent/JPH06102036A/en
Publication of JPH06102036A publication Critical patent/JPH06102036A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To obtain a method for detecting warp, in lateral and longitudinal directions, of a plate under nonrestrained state in production line. CONSTITUTION:Residual moments Mx0, My0 in longitudinal and lateral directions of a plate to be inspected are determined by the method of least squares based on lateral shape, tensile force, predetermined thickness, width, and material constant of the plate such that the difference from the lateral shape (w) calculated according to formula (1) is minimized and then warps Ll, Lc in the longitudinal and lateral directions are calculated according to formulas (2), (3). w(y)=Mx0.wx(y)+My0.wy(y)...(1) Ll=Mx0.10<2>/4D...(2) Lc= My0.b<2>/4D...(3) This method allows highly accurate on-line detection of the warp of band member and produces a highly accurate band steel when it is fed back to actual operation.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、鋼板の圧延・形状矯正
等,金属鋼帯の処理に際して、処理板材の無張力,無拘
束の切り板状態での板幅方向及び板長手方向の形状を、
ライン内で評価するための検出方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention determines the shape in the width direction and the plate length direction of a processed plate material in the state of a non-tensioned and unconstrained cut plate when processing a steel strip such as rolling and straightening a steel plate. ,
It relates to a detection method for in-line evaluation.

【0002】[0002]

【従来の技術】被検材例えば缶用鋼板等の分野では、拘
束通板・塗装性確保の観点から形状,特に反りの除去が
必要である。
2. Description of the Related Art In the field of materials to be inspected, such as steel plates for cans, it is necessary to remove the shape, especially warpage, from the viewpoint of securing the passing plate and ensuring coatability.

【0003】従来鋼板の圧延・形状矯正において、鋼板
の板幅方向反りを検出する方法としては、図3(a)の
正面図及び図3(b)の側面図に示すように、操業終了
後もしくはある操業条件下での操業が終了した時点で、
鋼板を所定の長さだけ切り出し、板幅方向の反りを計測
する方法がある。
In the conventional rolling and shape correction of a steel sheet, a method for detecting the warp in the sheet width direction is as shown in the front view of FIG. 3A and the side view of FIG. Or at the end of operation under certain operating conditions,
There is a method of cutting a steel plate to a predetermined length and measuring the warp in the plate width direction.

【0004】これは図3(b)に示すように、垂直に吊
り下げた時の鋼板1と支柱2との間隔である反りLを測
定する方法である。現状、一般的にはこの方法で板幅方
向の反りを管理し、反り量Lが許容範囲内を満足するよ
うに操業条件を変更する。
As shown in FIG. 3B, this is a method of measuring a warp L which is a distance between the steel plate 1 and the support 2 when vertically suspended. At present, in general, the warp in the plate width direction is managed by this method, and the operating condition is changed so that the warp amount L satisfies the allowable range.

【0005】しかしこのような検査方法では、操業終了
後のライン外での検査となるので単に反り加工精度の摘
出に留まり、検査の結果、反りが許容範囲外であればそ
れを元に改めて操業条件を調整し直す以外になく、従っ
てそれまでの鋼板はすべて不良品として処分するか、も
しくは形状矯正機能のあるラインに再度通板する必要が
生じる。
However, in such an inspection method, since the inspection is performed outside the line after the operation is completed, only the accuracy of the warpage processing is extracted, and if the inspection shows that the warpage is out of the allowable range, the operation is restarted based on that. There is no choice but to adjust the conditions again, so it is necessary to dispose of all the steel sheets up to that point as defective products, or to re-pass them to the line having a shape correcting function.

【0006】一方ライン内で反りを検査する方法とし
て、図4に示すように、蛍光灯等の棒状光源3をライン
の横に垂直に設置し、鋼板1に映る投影像の曲がりを目
視により検査する方法がある。
On the other hand, as a method of inspecting the warp in the line, as shown in FIG. 4, a rod-shaped light source 3 such as a fluorescent lamp is installed vertically to the side of the line, and the bending of the projected image on the steel plate 1 is visually inspected. There is a way to do it.

【0007】[0007]

【発明が解決しようとする課題】この方法は、検査員に
よる目視判定であるため検査員によるばらつきが大きく
1定性的な判断に留まるばかりか、反りの見落としを生
む危険性がある。更に通常の張力付与状態及びロールで
被検材が拘束されている状態では、反りは顕在化しにく
いので微細な反りを判定しなければならず、反りの判定
には熟練を要するといった様々な欠点がある。
Since this method is a visual judgment by the inspector, there is a large variation among the inspectors and not only a qualitative judgment but also a risk of overlooking the warp. Further, in the normal tension application state and the state in which the test material is constrained by the roll, the warp is difficult to be manifested, so it is necessary to judge a fine warp, and there are various drawbacks such as requiring skill to judge the warp. is there.

【0008】また特開平1−2023142号公報に
は、図5に示すように板幅方向に変位計4を複数台並
べ、それぞれと鋼板の板幅方向各点との反りを算出する
方法やレーザー光を鋼板に垂直に板幅方向に照射し、鋼
板上のレーザー光の輝線を低い角度からカメラで撮像
し、画像処理によって反りを算出する方法がある。
Further, Japanese Patent Laid-Open No. 1-2023142 discloses a method of arranging a plurality of displacement gauges 4 in the plate width direction as shown in FIG. 5 and calculating a warp between each of them and each point in the plate width direction and a laser. There is a method of irradiating light on a steel plate vertically in the plate width direction, capturing a bright line of a laser beam on the steel plate from a low angle with a camera, and calculating a warp by image processing.

【0009】さらには図6に示すようにレーザー投射器
6を板幅方向に低い角度で斜めから照射できるよう設置
し、その反射光をスクリーン7に投影し、撮像器8で得
られる画像から画像処理によって反りを算出する方法等
が提案されているが、これらの場合検出される板幅方向
形状は、張力付与状態及びロールで鋼板が拘束されてい
る状態での形状であるため、張力の変化に影響されて検
出形状が変化する。
Further, as shown in FIG. 6, a laser projector 6 is installed so that it can be obliquely illuminated in the plate width direction at a low angle, the reflected light is projected on a screen 7, and an image is obtained from an image obtained by an image pickup device 8. A method of calculating warpage by processing has been proposed, but in these cases, the shape in the width direction detected is the shape in the state where the steel plate is tensioned and the steel plate is constrained by rolls, so the change in tension The detection shape changes due to

【0010】またこれらの場合板長手方向での鋼板の拘
束状態が強いため、板長手方向反りが板幅方向反りとし
て現れる。従って、切り板状態,即ち無張力,無拘束状
態での板幅方向反りが同じでも、長手方向反りが異なる
場合、検出検出形状は変化するため十分な精度が得られ
ないばかりでなく、板長手方向反りと板幅方向反りを弁
別できないため、適正な形状矯正が行えない欠点を有し
ている。
In these cases, since the steel plate is strongly restrained in the plate longitudinal direction, the warp in the plate longitudinal direction appears as a warp in the plate width direction. Therefore, even if the warp in the width direction is the same in the cut plate state, that is, in the no-tension or unconstrained state, if the warp in the longitudinal direction is different, the detection and detection shape will change and not only sufficient accuracy will not be obtained, but also the plate longitudinal direction. Since the direction warp and the plate width direction warp cannot be discriminated from each other, there is a drawback that proper shape correction cannot be performed.

【0011】本発明は、このような従来技術の欠点を解
消するもので、ライン内での被検材の板幅方向反りを検
出し、この形状から張力値をもとに無張力,無拘束状態
での反り板状態の板長手方向反り及び板幅方向反りを算
出し、その結果をすぐ操業条件にフィードバックできる
実操業に適した鋼板の反り検出方法を提供する。
The present invention solves the above-mentioned drawbacks of the prior art by detecting the warp in the plate width direction of the material to be inspected in the line, and based on this shape, tension-free and unconstrained based on the tension value. Provided is a method for detecting a warp of a steel plate suitable for actual operation, in which the warp in the plate longitudinal direction and the warp in the plate width direction in a warped plate state are calculated, and the results can be immediately fed back to the operating conditions.

【0012】[0012]

【課題を解決するための手段】本発明は、通板されてい
る被検材の基準通板位置からの変位を板幅方向に検出す
る手段から得られる板幅方向形状と、被検材の張力を検
出する手段から得られる張力及び予め得られる被検材の
厚み,幅,材料定数をもとに、下記(1)式で算出され
る板幅方向形状wとの偏差が最小になるように板長手方
向残留モーメントMx0及び板幅方向残留モーメントM
y0を最小二乗法で求め、ついで下記(2)及び(3)
式に基づいて切り板状態での板長手方向反りLl及び板
幅方向反りLcを算出することを特徴とする板幅方向反
り及び板長手方向反り検出方法である。
DISCLOSURE OF THE INVENTION According to the present invention, a shape in the plate width direction obtained from a means for detecting a displacement of a material to be tested, which is passed from a reference plate passing position, in a plate width direction and a material to be tested. Based on the tension obtained from the means for detecting the tension and the thickness, width, and material constants of the test material obtained in advance, the deviation from the plate width direction shape w calculated by the following equation (1) should be minimized. The longitudinal residual moment Mx0 and the transverse residual moment M
y0 is obtained by the least squares method, and then the following (2) and (3)
A plate width direction warp and plate length direction warp detection method is characterized in that a plate length direction warp Ll and a plate width direction warp Lc in a cut plate state are calculated based on an equation.

【0013】[0013]

【数4】 w(y)=Mx0・wx(y)+My0・wy(y) ………(1)## EQU00004 ## w (y) = Mx0.wx (y) + My0.wy (y) ... (1)

【0014】[0014]

【数5】 Ll=Mx0・l02 /4D ………(2)[Formula 5] Ll = Mx0 · 10 2 / 4D ... (2)

【0015】[0015]

【数6】 Lc=My0・b2 /4D ………(3)[Formula 6] Lc = My0 · b 2 / 4D ………… (3)

【0016】但し:W :板幅方向形状関数 y :板幅方向位置 Mx0 :板長手方向残留モーメント My0 :板幅方向残留モーメント wx(y):幅方向位置yでの板長手方向残留モーメン
トにより現れる単位モーメント当たりの変位量 wy(y):幅方向位置yでの板幅方向残留モーメント
により現れる単位モーメント当たりの変位量 l0 :切り板長さ b :被検材の板幅 D :材料定数及び被検材厚で決まる曲げ剛さ
However, W: shape function in the width direction of the plate y: position in the width direction of the plate Mx0: residual moment in the plate longitudinal direction My0: residual moment in the plate width wx (y): residual moment in the plate longitudinal direction at the position y Displacement amount per unit moment wy (y): Displacement amount per unit moment that appears due to residual moment in strip width direction at position y in width direction 10: Cut plate length b: Strip width of test material D: Material constant and target Bending stiffness determined by inspection thickness

【0017】以下に本発明の内容について具体的に説明
する。
The contents of the present invention will be specifically described below.

【0018】切り板状態での金属鋼帯の反りは、鋼帯内
に残留する応力が解放され各方向のモーメントの釣り合
う状態で発生する。しかしライン内での鋼帯は、張力付
与状態及びロールで鋼帯が拘束されている状態にあり、
張力や拘束によって発生する応力によって、切り板状態
とは異なるモーメントの釣合状態となるため、発生する
反り形状も切り板状態とは異なるものとなる。そこで張
力付与状態及びロールで鋼帯が拘束されている状態で
の、板形状を求める方法について述べる。
The warp of the metal steel strip in the cut plate state occurs when the residual stress in the steel strip is released and the moments in each direction are balanced. However, the steel strip in the line is in a state where tension is applied and the steel strip is constrained by rolls,
Due to the tension and the stress generated by the restraint, the balance of the moment is different from that of the cut plate state, and thus the warped shape generated is also different from that of the cut plate state. Therefore, a method for obtaining the plate shape in the tension applied state and the state where the steel strip is restrained by the roll will be described.

【0019】まず座標系を板長手方向をx軸,板幅方向
をy軸,板法線方向をz軸とし、座標原点を基準通板位
置でのロール拘束点間及び板幅間の中点とする。反りに
よるz方向への変位をwとし、wが十分小さいので変位
と歪の関係は次(4)式で与えられる。
First, the coordinate system has the plate longitudinal direction as the x-axis, the plate width direction as the y-axis, and the plate normal direction as the z-axis, and the coordinate origin is the midpoint between the roll restraint points and the plate width at the reference plate passing position. And Let w be the displacement in the z direction due to warpage, and w is sufficiently small, so the relationship between displacement and strain is given by the following equation (4).

【0020】[0020]

【数7】 [Equation 7]

【0021】鋼帯の厚みが十分薄く、板方向の応力,歪
を無視できるので、応力と歪の関係式から(5)a,
(5)b,(5)c式が成立する。
Since the thickness of the steel strip is sufficiently thin and the stress and strain in the plate direction can be ignored, from the relational expression of stress and strain, (5) a,
Equations (5) b and (5) c are established.

【0022】[0022]

【数8】 [Equation 8]

【0023】[0023]

【数9】 [Equation 9]

【0024】[0024]

【数10】 [Equation 10]

【0025】ただし, However,

【0026】従って、各モーメントは(5)a,(5)
b,(5)cを板厚方向で積分して(6)a〜(6)c
次式で表せる。
Therefore, each moment is (5) a, (5)
b, (5) c are integrated in the plate thickness direction to obtain (6) a to (6) c.
It can be expressed by the following formula.

【0027】[0027]

【数11】 [Equation 11]

【0028】[0028]

【数12】 [Equation 12]

【0029】[0029]

【数13】 [Equation 13]

【0030】ただしMx:板長手方向モーメント,
MxO:板長手方向残留モーメント,My:板幅方向
モーメント, MyO:板幅方向残留モーメン
ト,Mxy,Myx:ねじれモーメント,
However, Mx: moment in the longitudinal direction of the plate,
MxO: Residual moment in plate longitudinal direction, My: Moment in plate width direction, MyO: Residual moment in plate width direction, Mxy, Myx: Torsional moment,

【0031】次に鋼帯上の微小要素を考え、この微小要
素のxy面に働く剪断力をQx,Qyとすれば、図2に
示すようにこの微小要素におけるx軸回りのモーメント
の釣り合いから次(7)式が得られる。
Next, considering a minute element on the steel strip, and letting the shearing forces acting on the xy plane of this minute element be Qx and Qy, from the balance of the moment around the x axis in this minute element as shown in FIG. The following expression (7) is obtained.

【0032】[0032]

【数14】 [Equation 14]

【0033】同様にy軸回りのモーメントの釣合から、
次の(8)式が得られる。
Similarly, from the balance of the moment about the y-axis,
The following expression (8) is obtained.

【0034】[0034]

【数15】 [Equation 15]

【0035】またこの微小要素に作用するz方向の力の
釣合より、(9)式が得られる。
The equation (9) is obtained from the balance of the forces in the z direction acting on the minute elements.

【0036】[0036]

【数16】 [Equation 16]

【0037】ここでfは変位wによってこの微小要素に
生じる張力影響であり、張力があらゆるところで一定で
あるとして次式で表せる。
Here, f is the influence of the tension generated on this minute element due to the displacement w, and can be expressed by the following equation assuming that the tension is constant at all positions.

【0038】[0038]

【数17】 ただしT:ユニット張力[Equation 17] However, T: Unit tension

【0039】上記(6)a,(6)b,(6)c,
(7),(8),(10)式を(9)式に代入すること
により、鋼帯形状に関する次の偏微分方程式を得る。
The above (6) a, (6) b, (6) c,
By substituting the equations (7), (8), and (10) into the equation (9), the following partial differential equation regarding the steel strip shape is obtained.

【0040】[0040]

【数18】 [Equation 18]

【0041】[0041]

【数19】ただし [Equation 19]

【0042】この偏微分方程式を所望の境界条件で解く
ことにより、張力付与状態下の残留応力によって現れる
あらゆる鋼帯形状を表すことができる。
By solving this partial differential equation under desired boundary conditions, it is possible to represent all steel strip shapes that appear due to residual stress under tension.

【0043】ロール拘束状態にある鋼帯形状を求めるた
めには、上記(11)式の偏微分方程式を、鋼帯エッジ
は自由端,ロール拘束は単純支持端の境界条件のもとに
解けば、所望の板形状関数w(x,y)が得られる。具
体的にこの境界条件を数式で表せば(12)a〜(1
2)dのようになる。
In order to obtain the shape of the steel strip in the roll restrained state, the partial differential equation (11) is solved by solving the strip condition under the boundary conditions of the steel strip edge being the free end and the roll restraining being the simple supporting end. , The desired plate shape function w (x, y) is obtained. Specifically, if this boundary condition is expressed by a mathematical expression, (12) a to (1
2) It becomes like d.

【0044】[0044]

【数20】 (My)y=±b/2 =0 at ∀x ……(12)a(My) y = ± b / 2 = 0 at ∀x (12) a

【0045】[0045]

【数21】 [Equation 21]

【0046】[0046]

【数22】 w(±l/2,y) =0 at ∀y ……(12)c[Equation 22] w (± l / 2, y) = 0 at ∀y (12) c

【0047】[0047]

【数23】 (Mx)x=±l/2 =0 at ∀y ……(12)d(Mx) x = ± l / 2 = 0 at ∀y (12) d

【0048】ただしb:鋼帯幅, l:鋼帯を拘束す
るロールの拘束点間距離
Where b: width of steel strip, l: distance between restraint points of rolls for restraining steel strip

【0049】(11)式の偏微分方程式を(12)a〜
(12)d式の境界条件下で解いた張力付与状態及びロ
ール拘束状態下での鋼帯形状関数wは次の(13)式の
ようになる。
The partial differential equation of the equation (11) is given by (12) a-
(12) The steel strip shape function w under the tension applied state and the roll restrained state solved under the boundary condition of the equation (d) is expressed by the following equation (13).

【0050】[0050]

【数24】 w(x,y)=Mx0・wx(x,y)+My0・wy(x,y)…(13)[Mathematical formula-see original document] w (x, y) = Mx0.wx (x, y) + My0.wy (x, y) ... (13)

【0051】ここでwxは板長手方向残留モーメントに
よって現れる単位モーメント当たりの変位を表す形状関
数、wyは板幅方向残留モーメントによって現れる単位
モーメント当たりの変位を表す形状関数であり、次(1
4)a〜(14)f式で表される。
Here, wx is a shape function that represents the displacement per unit moment that appears due to the residual moment in the plate longitudinal direction, and wy is a shape function that represents the displacement per unit moment that appears due to the residual moment in the plate width direction.
4) a to (14) f.

【0052】[0052]

【数25】 [Equation 25]

【0053】[0053]

【数26】 [Equation 26]

【0054】ただし (12)a,(12)b式におい
て、n=1,3,5・・・,∞
However, in the equations (12) a and (12) b, n = 1, 3, 5, ..., ∞

【0055】[0055]

【数27】 [Equation 27]

【0056】[0056]

【数28】 [Equation 28]

【0057】[0057]

【数29】 [Equation 29]

【0058】[0058]

【数30】[Equation 30]

【0059】 [0059]

【0060】ライン内における板幅方向形状を検出する
位置をl’とすれば、(13)式は前記(1)式のよう
に書き直せる。
If the position for detecting the shape in the plate width direction in the line is l ', then equation (13) can be rewritten as equation (1).

【0061】[0061]

【数31】 w(y)=Mx0・wx(y)+My0・wy(y) ………(1)## EQU00003 ## w (y) = Mx0.wx (y) + My0.wy (y) ... (1)

【0062】ただしw(y) =w(l’,y),
wx(y)=wx(l’,y),wy(y)=wy
(l’,y)
However, w (y) = w (l ', y),
wx (y) = wx (l ′, y), wy (y) = wy
(L ', y)

【0063】この(1)式に示すように、鋼帯形状は板
長手方向及び板幅方向の各々の残留モーメントと、張力
及び予め判る鋼帯の厚み,幅,材料定数によって決まる
各方向モーメントに依存する板幅方向形状関数との一次
結合で表すことができる。
As shown in the equation (1), the steel strip shape has a residual moment in each of the plate longitudinal direction and the strip width direction, and a moment in each direction determined by the tension and the thickness, width, and material constants of the steel strip which are known in advance. It can be expressed by a linear combination with the dependent shape function in the plate width direction.

【0064】従って、ライン内における板幅方向形状を
検出し、得られた各板幅方向位置yでのz方向変位量
と、検出時点の実張力または張力変動が無視できる程度
であれば、設定張力より算出されるwx(y),wy
(y)とを比較し、最小二乗法等の数学的手法により検
出各点と(1)式で表される板幅方向形状関数wとの偏
差の合計を最小にするよう残留モーメントMx0,My
0を分離算出することができる。
Therefore, if the plate width direction shape in the line is detected and the obtained z direction displacement amount at each plate width direction position y and the actual tension or tension fluctuation at the time of detection are negligible, the setting is made. Wx (y), wy calculated from tension
(Y) is compared, and residual moments Mx0, My are set so as to minimize the total deviation between the respective points detected by a mathematical method such as the least square method and the plate width direction shape function w represented by the equation (1).
0 can be calculated separately.

【0065】この残留モーメントから切り板状態での鋼
帯形状w0が次式で得られることが公知である。
It is known that the steel strip shape w0 in the cut plate state can be obtained from this residual moment by the following equation.

【0066】[0066]

【数32】 w0(x,y)=(Mx0/D)・x2 +(My0/D)・y2 …(15)[Number 32] w0 (x, y) = ( Mx0 / D) · x 2 + (My0 / D) · y 2 ... (15)

【0067】これより管理値である板長手方向反り量s
l及び板幅方向反り量scは、前記(2),(3)式の
ようになる。
From this, the warp amount s in the longitudinal direction of the plate which is a control value
The amount of warp l and the amount of warp sc in the plate width direction are expressed by the above equations (2) and (3).

【0068】[0068]

【数33】 Ll=Mx0・l02 /4D ……(2)[Expression 33] Ll = Mx0 · 10 2 / 4D (2)

【0069】[0069]

【数33】 Lc=My0・b2 /4D ……(3) ただし l0: 切り板長さ[Equation 33] Lc = My0 · b 2 / 4D (3) where l0: cut plate length

【0070】以上のように板長手方向反り量、及び板幅
方向反り量を通板中に精度良く求めることができるた
め、Ll,LcあるいはMx0,My0を実操業中にフ
ィードバック,またはフィードフォワードでき、板形状
の良い成品の製造が可能となる他、成品の全長品質管理
・保証が可能となる。
As described above, since the warp amount in the plate longitudinal direction and the warp amount in the plate width direction can be accurately obtained in the passing plate, Ll, Lc or Mx0, My0 can be fed back or feed forward during the actual operation. In addition to being able to manufacture products with good plate shape, it is also possible to control and guarantee the full-length quality of products.

【0071】なお(1)式に示すwxおよびwyは無限
級数関数であるが、例えばnを5程度で打ち切って計算
しても十分な精度が得られる。また関数自体がかなり複
雑になるため、鋼帯通板時の張力や鋼帯の厚み,幅,材
料定数が予め判る場合には、wxおよびwyを高次関
数,例えば4次関数や6次関数等で近似しておき、検出
時の計算時間を短縮することが可能である。
Although wx and wy shown in the equation (1) are infinite series functions, sufficient accuracy can be obtained even if n is cut off at about 5. In addition, since the function itself becomes quite complicated, wx and wy are higher-order functions, such as a quartic function and a 6th-order function, when the tension at the time of passing the steel strip, the thickness, width, and material constant of the steel strip are known in advance. It is possible to shorten the calculation time at the time of detection by approximating with, for example.

【0072】本発明を実ライン操業に適用した結果、従
来のライン内形状検出方法で操業した場合に、切り板検
査で反り不合が発生していたものを反り不合の発生を零
にすることができた。
As a result of applying the present invention to the actual line operation, when the conventional in-line shape detecting method is used, the occurrence of the warp disagreement can be made zero even if the warp disagreement occurs in the cutting plate inspection. did it.

【0073】[0073]

【実施例】以下本発明の実施例を、図面に基づいて詳細
に説明する。
Embodiments of the present invention will now be described in detail with reference to the drawings.

【0074】図1は本発明の一実施例を表す。1は被検
材,5,5aはデフレクターロール,10は板幅方向形
状検出器,11は張力検出器,12は形状演算器,13
は表示装置を示す。
FIG. 1 shows an embodiment of the present invention. 1 is a material to be inspected, 5 and 5a are deflector rolls, 10 is a width direction shape detector, 11 is a tension detector, 12 is a shape calculator, 13
Indicates a display device.

【0075】図1に示すようにこの実施例では、通板さ
れる被検材1が平行な軸心を有する1対のデフレクター
ロール5,5a間を垂直に通板し得るように設置する。
これは水平通板状態では、重力によるたわみの影響で鋼
帯形状が精度良く検出できないためで、垂直通板する事
により重力影響を通常張力に比べて十分小さく無視でき
る程度にできるためである。
As shown in FIG. 1, in this embodiment, the test material 1 to be passed is installed so that it can pass vertically between a pair of deflector rolls 5, 5a having parallel axes.
This is because the shape of the steel strip cannot be accurately detected due to the effect of deflection due to gravity in the horizontal threading state, and the effect of gravity can be made sufficiently small and negligible compared to normal tension by vertically threading.

【0076】また被検材1には過大な張力を与えないよ
う通板し、鋼帯形状を顕在化させる。デフレクターロー
ル5,5a間のほぼ中央部の板幅方向形状を検出できる
よう形状検出器10を設置する。形状検出器10は離散
的な変位測定方法でも可能であるが、検出精度を向上さ
せるためには図6に示すような連続鋼帯形状が検出でき
るものが良い。
Further, the test material 1 is passed through so as not to give an excessive tension, so that the shape of the steel strip becomes visible. The shape detector 10 is installed so as to detect the shape in the plate width direction at the substantially central portion between the deflector rolls 5 and 5a. The shape detector 10 may be a discrete displacement measuring method, but in order to improve the detection accuracy, it is preferable that the shape detector 10 be capable of detecting a continuous steel strip shape as shown in FIG.

【0077】また原理上基準通板位置からの変位が必要
となるため、基準通板位置からの変位が同時検出不可能
な形状検出器では別に変位計を1台設置し、形状検出値
を補正する必要がある。
Further, since the displacement from the reference plate passing position is required in principle, another displacement sensor is installed for the shape detector that cannot simultaneously detect the displacement from the reference plate passing position, and the detected shape value is corrected. There is a need to.

【0078】形状演算器12は、まず張力検出器11よ
り得られた張力値と通板中の被検材の厚み,幅,材料定
数より(14)a〜(14)f式で表される板長手方向
および板幅方向モーメントによって現れる形状関数w
x,wyを算出する。張力がほぼ一定の場合は張力検出
器4は必要なく、またwx,wyの演算も設定張力をも
とに通板直前に1度だけ行っておけば良い。
The shape calculator 12 is first expressed by the equations (14) a to (14) f from the tension value obtained from the tension detector 11, the thickness, width and material constant of the material to be tested in the strip. Shape function w that appears due to the moment in the plate longitudinal direction and the plate width direction
Calculate x and wy. When the tension is almost constant, the tension detector 4 is not necessary, and the calculation of wx and wy may be performed once just before the threading based on the set tension.

【0079】また対象となる鋼帯の種類が限定できるの
であれば、4次関数や6次関数で近似しておけば計算時
間が短縮可能である。このwx,wyをもとに、(1)
式で表される板幅方向形状関数と、形状検出器10から
得られた板幅方向形状の偏差を最小にするよう、残留モ
ーメントMx0、My0が求まる。さらに(2)式及び
(3)式により切り板状態での反り量Ll,Lcを算出
し、結果をCRT等の表示装置13に出力する。
If the type of the target steel strip can be limited, the calculation time can be shortened by approximating with a quartic function or a hexagonal function. Based on these wx and wy, (1)
The residual moments Mx0 and My0 are obtained so as to minimize the deviation between the shape function in the plate width direction expressed by the equation and the shape in the plate width direction obtained from the shape detector 10. Further, the warp amounts Ll and Lc in the cut plate state are calculated by the equations (2) and (3), and the result is output to the display device 13 such as a CRT.

【0080】例えば本装置の前面に、テンションレベラ
ー等の形状矯正装置が設置してあれば、各方向の反り量
が零になるようにレベラーユニットの調整を行うように
すればよい。
For example, if a shape correcting device such as a tension leveler is installed on the front surface of the present device, the leveler unit may be adjusted so that the warp amount in each direction becomes zero.

【0081】[0081]

【発明の効果】以上説明したように本発明の検出方法に
よれば、帯状被検材の板長手方向反りおよび板長手方向
反りがオンラインで精度良く検出され、実操業にフィー
ドバックあるいはフィードフォワードし、精度の良い鋼
帯を得ることができる。
As described above, according to the detection method of the present invention, the longitudinal warpage and the longitudinal warpage of the strip-shaped test material are accurately detected online, and feedback or feedforward to the actual operation is performed. It is possible to obtain a highly accurate steel strip.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の検出方法を実施するに好適な装置の一
例を示す模式図である。
FIG. 1 is a schematic view showing an example of an apparatus suitable for carrying out the detection method of the present invention.

【図2】鋼帯上の微小要素に働くモーメントと力の模式
図である。
FIG. 2 is a schematic diagram of a moment and force acting on minute elements on a steel strip.

【図3】従来の鋼帯の反り測定法を示し、(a)は正面
図,(b)は側面図である。
3A and 3B show a conventional method for measuring the warp of a steel strip, where FIG. 3A is a front view and FIG. 3B is a side view.

【図4】従来の他の例の棒状光源を用いた反り測定法で
用いられる照明光源の配置位置を示す斜視図である。
FIG. 4 is a perspective view showing an arrangement position of an illumination light source used in a warpage measuring method using another conventional rod-shaped light source.

【図5】従来の他の例の変位計を用いた反り測定法で用
いられる計器の配置位置を示す平面図であり、被検材は
横断面を示す。
FIG. 5 is a plan view showing an arrangement position of an instrument used in a warpage measuring method using a displacement gauge of another example of the related art, and a test material shows a cross section.

【図6】従来のさらに他の反り測定法を示し、ここで用
いられる検出端部を示す斜視図である。
FIG. 6 is a perspective view showing a detection end portion used in another conventional warpage measuring method.

【符号の説明】[Explanation of symbols]

1 鋼帯(被検材) 2 支柱 3 棒状光源 4 変位計 5,5a デフレクターロール 6 レーザー投射器 7 スクリーン 8 撮像器 9 レーザー投射像位置 10 板幅方向形状検出器 11 張力検出器 12 形状演算器 13 表示装置 DESCRIPTION OF SYMBOLS 1 Steel strip (material to be inspected) 2 Support 3 Bar light source 4 Displacement meter 5, 5a Deflector roll 6 Laser projector 7 Screen 8 Imager 9 Laser projected image position 10 Plate width direction shape detector 11 Tension detector 12 Shape calculator 13 Display

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 通板されている被検材の基準通板位置か
らの変位を板幅方向に検出する手段から得られる板幅方
向形状と、被検材の張力を検出する手段から得られる張
力及び予め得られる被検材の厚み,幅,材料定数をもと
に、下記数1で算出される板幅方向形状wとの偏差が最
小になるように板長手方向残留モーメントMx0及び板
幅方向残留モーメントMy0を最小二乗法で求め、つい
で下記数2及び数3に基づいて切り板状態での板長手方
向反りLl及び板幅方向反りLcを算出することを特徴
とする板幅方向反り及び板長手方向反り検出方法。 【数1】 w(y)=Mx0・wx(y)+My0・wy(y) 【数2】Ll=Mx0・l02 /4D 【数3】Lc=My0・b2 /4D 但し:W :板幅方向形状関数 y :板幅方向位置 Mx0 :板長手方向残留モーメント My0 :板幅方向残留モーメント wx(y):幅方向位置yでの板長手方向残留モーメン
トにより現れる単位モーメント当たりの変位量 wy(y):幅方向位置yでの板幅方向残留モーメント
により現れる単位モーメント当たりの変位量 l0 :切り板長さ b :被検材の板幅 D :材料定数及び被検材厚で決まる曲げ剛さ
1. A plate width direction shape obtained from a means for detecting a displacement of a material to be inspected being passed from a reference threading position in a plate width direction, and a means for detecting a tension of the material to be inspected. Based on the tension and the thickness, width, and material constants of the test material obtained in advance, the residual moment Mx0 and the width of the plate in the plate longitudinal direction are minimized so that the deviation from the shape w in the plate width direction calculated by the following equation 1 is minimized. The direction residual moment My0 is obtained by the least squares method, and then the plate longitudinal warp Ll and the plate width direction warp Lc in the cut plate state are calculated based on the following Equations 2 and 3, and Warp detection method in the longitudinal direction of the plate. [Formula 1] w (y) = Mx0 · wx (y) + My0 · wy (y) [Formula 2] Ll = Mx0 · 10 2 / 4D [Formula 3] Lc = My0 · b 2 / 4D where: W: plate Width direction shape function y: Plate width direction position Mx0: Plate longitudinal direction residual moment My0: Plate width direction residual moment wx (y): Displacement amount per unit moment that appears due to plate longitudinal direction residual moment at width direction position y wy ( y): Displacement amount per unit moment that appears due to the residual moment in the sheet width direction at position y in the sheet width direction l0: Cutting plate length b: Sheet width of the test material D: Bending stiffness determined by the material constant and the thickness of the test material
JP4276756A 1992-09-22 1992-09-22 Method for detecting warp of plate in lateral and longitudinal direction Withdrawn JPH06102036A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4276756A JPH06102036A (en) 1992-09-22 1992-09-22 Method for detecting warp of plate in lateral and longitudinal direction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4276756A JPH06102036A (en) 1992-09-22 1992-09-22 Method for detecting warp of plate in lateral and longitudinal direction

Publications (1)

Publication Number Publication Date
JPH06102036A true JPH06102036A (en) 1994-04-12

Family

ID=17573912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4276756A Withdrawn JPH06102036A (en) 1992-09-22 1992-09-22 Method for detecting warp of plate in lateral and longitudinal direction

Country Status (1)

Country Link
JP (1) JPH06102036A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002322572A (en) * 2001-04-23 2002-11-08 Nippon Steel Corp Method and apparatus for suppressing uneven appearance of steel sheet
JP2015117979A (en) * 2013-12-17 2015-06-25 コニカミノルタ株式会社 Sheet shape measurement apparatus and image forming apparatus
CN112199832A (en) * 2020-09-29 2021-01-08 首钢集团有限公司 Strip steel warping height online evaluation method and device
JP7401040B1 (en) * 2022-09-21 2023-12-19 Jfeスチール株式会社 Metal strip warp shape estimation method, metal strip pass/fail judgment method, metal strip manufacturing method, and metal strip warp shape estimation equipment
WO2024062767A1 (en) * 2022-09-21 2024-03-28 Jfeスチール株式会社 Warped metal belt shape estimation method, metal belt acceptance determination method, metal belt manufacturing method, and warped metal belt shape estimation facility

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002322572A (en) * 2001-04-23 2002-11-08 Nippon Steel Corp Method and apparatus for suppressing uneven appearance of steel sheet
JP2015117979A (en) * 2013-12-17 2015-06-25 コニカミノルタ株式会社 Sheet shape measurement apparatus and image forming apparatus
CN112199832A (en) * 2020-09-29 2021-01-08 首钢集团有限公司 Strip steel warping height online evaluation method and device
JP7401040B1 (en) * 2022-09-21 2023-12-19 Jfeスチール株式会社 Metal strip warp shape estimation method, metal strip pass/fail judgment method, metal strip manufacturing method, and metal strip warp shape estimation equipment
WO2024062767A1 (en) * 2022-09-21 2024-03-28 Jfeスチール株式会社 Warped metal belt shape estimation method, metal belt acceptance determination method, metal belt manufacturing method, and warped metal belt shape estimation facility

Similar Documents

Publication Publication Date Title
DE19826319B4 (en) Optical devices for measuring profiles of a wafer
EP2492634B1 (en) Method of measuring flatness of sheet and method of manufacturing steel sheet using same
CN104936713B (en) Flatness measuring and measuring of residual stresses for a metallic flat product
KR101106045B1 (en) Method for calibrating steel sheet
EP2998695B1 (en) Method and device for measuring flatness of plate material
EP0483362B1 (en) System for measuring length of sheet
JPH06102036A (en) Method for detecting warp of plate in lateral and longitudinal direction
DE102018132461B3 (en) Handheld device and method for optical non-contact determination of the thickness of a rolled metal strip
DE102006051538B4 (en) Method and device for determining the waviness of glass panes
JP3217843B2 (en) Method and apparatus for online non-destructive measurement of properties of continuously manufactured products
JP3289869B2 (en) Surface distortion judgment method
AT502548B1 (en) METHOD AND DEVICE FOR DETERMINING THE CURING OF A SURFACE OF AN OBJECT, FOR EXAMPLE, PAPER OR CARTON, AND THE USE THEREOF
JP2018065190A (en) Steel plate shape correction device, correction method, and continuous acid cleaning device for steel plate
JP3873505B2 (en) Roll position adjustment method and roll position adjustment guidance device for rolling roll for steel bars
JP7171535B2 (en) Surface shape measuring device
JP2007168949A (en) Article inspection device
JP2021146351A (en) Laser welding device and laser beam position deviation detection method in laser welding device
JPH04160304A (en) Detecting apparatus of warp in widthwise direction of plate
JPH06258027A (en) Position detecting method of plate member using tv camera
JP2007139630A (en) Surface inspection device and method
JP3599013B2 (en) Method for measuring camber shape of rolled metal strip, camber shape measuring device and rolling device
JPS6073309A (en) Measurement of surface roughness pattern of running sheet material
CN112005104A (en) Image acquisition method, measurement method, and image acquisition apparatus
KR20240065454A (en) Flatness measurement system for improving the quality of the surface shape of steel plate
JPH0233445B2 (en)

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19991130