JPH06101951A - Refrigerator - Google Patents

Refrigerator

Info

Publication number
JPH06101951A
JPH06101951A JP13263891A JP13263891A JPH06101951A JP H06101951 A JPH06101951 A JP H06101951A JP 13263891 A JP13263891 A JP 13263891A JP 13263891 A JP13263891 A JP 13263891A JP H06101951 A JPH06101951 A JP H06101951A
Authority
JP
Japan
Prior art keywords
temperature
freezing
food
refrigerating
quick
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13263891A
Other languages
Japanese (ja)
Inventor
Michiko Uemura
通子 植村
Yoshinori Ohashi
祥記 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP13263891A priority Critical patent/JPH06101951A/en
Publication of JPH06101951A publication Critical patent/JPH06101951A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/042Air treating means within refrigerated spaces
    • F25D17/045Air flow control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2400/00General features of, or devices for refrigerators, cold rooms, ice-boxes, or for cooling or freezing apparatus not covered by any other subclass
    • F25D2400/28Quick cooling

Landscapes

  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

PURPOSE:To perform a refrigerating and storing with less deterioration in the quality in a refrigerator having a fast refrigerating chamber for use in rapidly refrigerating a food irrespective of an environmental condition, a temperature of food or its size. CONSTITUTION:An inlet port of a fast refrigerating chamber is provided with a damper unit. A compressor 9 and a blower 11 and started to perform a forced operation in concurrent with a starting of fast refrigerating operation. The damper unit 30 is at first controlled to be opened or closed with a second temperature sensing means 45 arranged at one corner within the fast refrigerating chamber so as to stabilize a food substantially at about -1 deg.C just before a maximum ice crystal producing region and to perform a uniform temperature processing. Subsequently, there is provided a control means 38 for forcedly releasing the damper unit 30, continuously refrigerating sufficient cooled cold air to perform a refrigerating operation and automatically finishing the operation in response to the outputs of the first and second temperature sensing means 44 and 45.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、冷凍室内に急速冷凍室
を備えた強制通風方式の冷蔵庫に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a forced ventilation type refrigerator provided with a quick freezing compartment in a freezing compartment.

【0002】[0002]

【従来の技術】急速冷凍室を備えた冷蔵庫としては、そ
の一例が実開昭58−041464号公報に示されてお
り、以下その構成について図6、7に従い説明する。
2. Description of the Related Art An example of a refrigerator provided with a quick freezing compartment is shown in Japanese Utility Model Laid-Open No. 58-041464, and its construction will be described below with reference to FIGS.

【0003】1は冷蔵庫本体で外箱2、内箱3及び前記
外箱2、内箱3間に充填された断熱材4により構成され
ている。5は前記冷蔵庫本体1の内部を上下に仕切る区
画壁であり、上部に冷凍室6、下部に冷蔵室7を仕切っ
て形成している。また、冷蔵室7の上部には生鮮食品の
保存を目的として、パーシャルフリージングなど冷凍と
冷蔵の中間の温度帯に設定された低温室8が区画形成さ
れている。9は前記冷蔵庫本体1の底部後方に収めた冷
凍サイクルの圧縮機である。10は前記冷凍室6の背面
に収めた冷凍サイクルの冷却器であり、11は前記冷却
器10で冷却した冷気を前記冷凍室6、冷蔵室7及び低
温室8に強制通風するための送風機である。12は前記
冷蔵室7、低温室8に冷気を導くためのダクト、13、
14はそれぞれ前記冷蔵室7、低温室8の入口に設けて
電気的入力で冷気流入量を調節するダンパ装置(以下電
動ダンパ13、14という)である。15、16、17
はそれぞれ前記冷凍室6、冷蔵室7、低温室8の室内に
設けた温度センサである。
A refrigerator body 1 is composed of an outer box 2, an inner box 3 and a heat insulating material 4 filled between the outer box 2 and the inner box 3. Reference numeral 5 denotes a partition wall that divides the inside of the refrigerator body 1 into upper and lower parts, and is formed by partitioning a freezer compartment 6 at an upper part and a refrigerating compartment 7 at a lower part. In addition, a low temperature chamber 8 which is set in an intermediate temperature zone between freezing and refrigeration such as partial freezing is formed in the upper part of the refrigerating chamber 7 for the purpose of storing fresh food. Reference numeral 9 is a refrigeration cycle compressor housed in the bottom rear portion of the refrigerator body 1. Reference numeral 10 is a cooler for the refrigeration cycle housed in the back surface of the freezer compartment 6, and 11 is a blower for forcedly ventilating the cool air cooled by the cooler 10 to the freezer compartment 6, the refrigerating compartment 7 and the low temperature compartment 8. is there. 12 is a duct for guiding cold air to the refrigerating chamber 7 and the low temperature chamber 8;
Reference numeral 14 denotes a damper device (hereinafter referred to as electric dampers 13 and 14) provided at the entrances of the refrigerating chamber 7 and the low temperature chamber 8 to adjust the amount of cold air inflow by electric input. 15, 16, 17
Are temperature sensors provided in the freezing room 6, the refrigerating room 7, and the low temperature room 8, respectively.

【0004】次に18は前記冷凍室6の下部に区画した
急速冷凍室(以下急凍室18という)であり、前部に開
閉自在の扉19と、底部に例えばアルミニウム製の金属
板20が設けられている。21は前記金属板20上に載
置して急速冷凍する食品である。また22は室内背面に
設けた冷気吐出口、23は室内前部の底面に設けた冷気
吸い込み口である。24は前記冷蔵庫本体1の外殻の前
面部に設けた急凍スイッチであり、前記急凍スイッチ2
4を押すと、前記圧縮機9と前記送風機11が所定時間
連続運転するように構成されている。
Next, 18 is a quick freezing compartment (hereinafter referred to as a quick freezing compartment 18) defined in the lower portion of the freezing compartment 6, which has a door 19 which can be opened and closed at the front and a metal plate 20 made of, for example, aluminum at the bottom. It is provided. Reference numeral 21 is a food that is placed on the metal plate 20 and is rapidly frozen. Reference numeral 22 is a cold air discharge port provided on the back surface of the room, and 23 is a cold air suction port provided on the bottom surface of the front part of the room. Reference numeral 24 denotes a quick freeze switch provided on the front surface of the outer shell of the refrigerator main body 1.
When 4 is pressed, the compressor 9 and the blower 11 are continuously operated for a predetermined time.

【0005】かかる構成において、以下その動作を説明
する。通常時は、冷凍室6内に設けた温度センサ15の
設定値に基づいて圧縮機9及び送風機11がON・OF
Fし、冷却器10によって冷却された冷気が、送風機1
1により送風されて冷凍室6及び急凍室18が一定温度
(例えば−20℃)を保つように冷却される。一方、送
風機11による冷気送風はダクト12を介して冷蔵室
7、低温室8に対しても行われ、電動ダンパ13、14
によって冷気流入量が調節されて、一定温度(例えば4
℃と−3℃)を保つよう冷却される。
The operation of the above arrangement will be described below. Normally, the compressor 9 and the blower 11 are turned on / off based on the set value of the temperature sensor 15 provided in the freezer compartment 6.
F, and the cool air cooled by the cooler 10 is blower 1
1 to cool the freezing chamber 6 and the quick freezing chamber 18 so as to maintain a constant temperature (for example, −20 ° C.). On the other hand, cool air is blown by the blower 11 to the refrigerating chamber 7 and the low temperature chamber 8 through the duct 12, and the electric dampers 13 and 14
The inflow of cold air is adjusted by a constant temperature (for example, 4
C. and -3.degree. C.).

【0006】次に、使用者が食品21を冷凍保存する目
的で、急凍室18内の金属板20上に食品21を置いて
急凍スイッチ24を押した場合は、圧縮機9と送風機1
1が所定時間Tmin(例えば180min)連続運転
され、急凍室18の冷気吐出口22から連続的に冷気が
導入されて、底面の金属板20の熱伝導冷却効果とも合
わせて食品21が比較的短時間で凍結する。そして、所
定時間が経過すると、通常安定時の運転にもどるもので
ある。
Next, when the user puts the food 21 on the metal plate 20 in the freezing compartment 18 and presses the quick freeze switch 24 for the purpose of freezing and storing the food 21, the compressor 9 and the blower 1
1 is continuously operated for a predetermined time Tmin (for example, 180 min), cold air is continuously introduced from the cold air discharge port 22 of the freezing chamber 18, and the food 21 is comparatively combined with the heat conduction cooling effect of the metal plate 20 on the bottom surface. Freeze in a short time. Then, after a lapse of a predetermined time, the operation returns to normal stable operation.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上記の
ような構成では、急凍スイッチ24を押すと、単純に所
定時間圧縮機9及び送風機11が連続運転し、食品21
の外表面から一定の冷気量で連続的に冷却する間接冷却
方式であるため、専用の冷却器を用いて熱伝導冷却で凍
結を促進する直接冷却方式に比べて凍結時間が長くかか
る欠点があった。
However, in the above-mentioned structure, when the quick freeze switch 24 is pushed, the compressor 9 and the blower 11 are continuously operated for a predetermined time, and the food 21
Since it is an indirect cooling method that continuously cools the outer surface of the unit with a constant amount of cold air, it has the drawback that the freezing time is longer than the direct cooling method that promotes freezing by heat conduction cooling using a dedicated cooler. It was

【0008】また、冷凍しようとする食品21の大きさ
や形、初期温度などに関係なく一定の急凍運転を行うこ
とになるため、例えば体積の大きい食品や厚みの厚い食
品、或いは初期温度の高い食品などでは、図7に示すよ
うに、食品21の個体内の凍結時間むらが大きくなっ
て、冷凍品質の目安とされる最大氷結晶生成帯の実質的
な通過時間が長くなってしまう。即ち、例えば初期温度
20℃として、食品21内で最も凍結が速く進行する表
面部が既に最大氷結晶生成帯に入る直前の−1℃に到達
しているのに対して、最も凍結の進行が遅い中心部はま
だ10℃付近であり、最大氷結晶生成帯通過時点での両
者の時間的な差はさらに拡大し、結果として食品21の
最終的な凍結時間が長くかかることになる。
Further, since a certain quick-freezing operation is carried out regardless of the size and shape of the food 21 to be frozen, the initial temperature, etc., for example, food having a large volume, food having a large thickness, or high initial temperature. As shown in FIG. 7, in the case of foods, the freezing time unevenness in the individual foods 21 becomes large, and the substantial passage time of the maximum ice crystal formation zone, which is a measure of the freezing quality, becomes long. That is, for example, while the initial temperature is 20 ° C., the surface portion where the freezing proceeds most quickly in the food 21 has already reached −1 ° C. immediately before entering the maximum ice crystal formation zone, whereas the progress of the freezing progresses most. The late center is still around 10 ° C., and the time difference between the two at the time of passing through the maximum ice crystal formation zone is further widened, and as a result, the final freezing time of the food 21 is long.

【0009】最大氷結晶生成帯の通過時間が長くかかる
こと自体、食品内に生じる氷結晶の大きさが大きくな
り、且つ、主として細胞外に成長するため細胞組織を損
傷して食品の品質を劣化させる。これに加えて、凍結時
間むらが大きくなると、食品内では大小さまざまな大き
さの氷結晶が取り混ぜて存在することになり、冷凍保存
中に比較的大きな氷結晶は、近在する蒸気圧の高い小さ
な氷結晶や水分(通常の冷凍温度でも凍らず残っている
水)を吸収してさらに成長し、細胞の組織破壊やタンパ
ク変性を促進して食品品質を一層劣化させてしまうとい
う問題点があった。
It takes a long time to pass through the maximum ice crystal production zone, so that the size of the ice crystals generated in the food becomes large, and the cells grow mainly outside the cell to damage the cell tissue and deteriorate the quality of the food. Let In addition to this, if the freezing time unevenness becomes large, ice crystals of various sizes will be mixed and present in the food, and relatively large ice crystals will have a high vapor pressure in the vicinity during frozen storage. There is a problem that it absorbs small ice crystals and water (water that remains without freezing even at normal freezing temperature) and grows further, promoting tissue destruction and protein denaturation of cells and further degrading food quality. It was

【0010】さらに、食品の初期温度や冷蔵庫の庫内温
度、外気温度などに関係なく一定の急凍運転を行うこと
になるため、図7のように、食品21が凍結完了しない
まま(最大氷結晶生成帯を完全に通過しないまま)に急
凍運転を終了してしまうことがある。初期温度が高かっ
たり(夏期や調理後のホームフリージングなど)、ドア
開閉が多い場合やデフロストの直後などで庫内温度が高
かったり、夏期など外気温度が高くて冷却能力の余裕が
ない場合などにそのケースが増える。また、これとは逆
に、初期温度が低かったり(冬期や冷蔵中の食品の冷凍
など)、庫内温度が低かったり(前回の急凍に引き続い
て行う場合など)、冬期など外気温度が低い場合などの
ケースでは、既に凍結しているにもかかわらず無駄な急
凍運転を続行したりする問題点も有していた。
Further, since a certain quick-freezing operation is performed regardless of the initial temperature of the food, the refrigerator internal temperature, the outside air temperature, etc., as shown in FIG. The freezing operation may be terminated without completely passing through the crystal formation zone). When the initial temperature is high (in summer, home freezing after cooking, etc.), when the doors are opened / closed frequently, the temperature inside the refrigerator is high immediately after defrosting, or when the outside air temperature is high during summer and there is not enough cooling capacity. The cases increase. On the contrary, the initial temperature is low (in winter or freezing foods in refrigeration), the temperature inside the refrigerator is low (such as when following the last freezing), and the outside temperature is low in winter. In some cases, there is a problem in that useless rapid freezing operation is continued even though it has already been frozen.

【0011】本発明は、上述した問題点に鑑み、環境条
件や食品の温度や大きさに関わらず、品質劣化が少なく
効率のよい急速冷凍を行わせることを目的としている。
In view of the above-mentioned problems, an object of the present invention is to perform efficient quick freezing with little quality deterioration regardless of environmental conditions, temperature and size of food.

【0012】[0012]

【課題を解決するための手段】上記課題を解決するため
に本発明の冷蔵庫は、断熱壁で区画形成した急速冷凍室
の冷気流入部にダンパ装置を設けるとともに、底面の金
属板上に載置した食品温度を検知する第1の温度検知手
段と、急速冷凍室内の一画に設置して空気温度を検知す
る第2の温度検知手段を設けた構成に、急速冷凍運転の
工程を、圧縮機及び送風機を強制運転させるとともに、
第2の温度検知手段の出力により食品温度を約−1℃に
略安定させる均温処理工程と、これに続いて圧縮機と送
風機は強制運転させたままダンパ装置を強制開放させる
とともに、第1及び第2の温度検知手段の出力に基づい
て圧縮機及び送風機の強制運転を解除する凍結処理工程
により構成した制御手段を付加するものである。
In order to solve the above-mentioned problems, the refrigerator of the present invention is provided with a damper device in the cold air inflow portion of the quick freezing compartment defined by the heat insulating wall and is mounted on the metal plate on the bottom surface. The process of quick freezing operation is provided with a compressor in which the first temperature detecting means for detecting the food temperature and the second temperature detecting means for detecting the air temperature installed in one screen of the quick freezing chamber are provided. And forcibly operating the blower,
A soaking process for stabilizing the food temperature to about -1 ° C by the output of the second temperature detecting means, and subsequently, forcibly opening the damper device while the compressor and the blower are forcibly operated, and And a control means constituted by a freezing process step for canceling the forced operation of the compressor and the blower based on the output of the second temperature detecting means.

【0013】[0013]

【作用】本発明は上記した構成によって、急速冷凍室に
食品を入れて急速冷凍運転を開始すると、まず一定時間
の均温処理工程で、圧縮機及び送風機は強制運転に入
り、第2の温度検知手段の出力に応じてダンパ装置が開
閉制御され、冷気流入量を調節して食品温度を約−1℃
に略安定させる。この時、食品の大きさや初期温度に関
わらず食品個体内の温度むらが均一化される。次に凍結
処理工程で、圧縮機と送風機はそのまま強制運転され、
ダンパ装置が強制開放されることによって急速冷凍室内
に十分に冷却された冷気が連続的に送りこまれる。この
時、食品は最大氷結晶生成帯に入る直前の約−1℃に均
温化されているため、最大氷結晶生成帯の通過時間むら
が少なくなり、実質的な凍結時間も短くなる。又、第1
及び第2の温度検知手段の出力に基づいて強制運転を解
除するため、効率のよい凍結ができるものである。
According to the present invention, when food is put in the quick freezing chamber and the quick freezing operation is started, the compressor and the blower enter the forced operation in the soaking process for a certain time, and the second temperature is set. The damper device is controlled to open and close according to the output of the detection means, and the cold air inflow amount is adjusted to keep the food temperature at about -1 ° C.
Almost stabilize. At this time, the temperature unevenness inside the food is uniformed regardless of the size of the food and the initial temperature. Next, in the freezing process, the compressor and blower are forcibly operated as they are,
By forcibly opening the damper device, sufficiently cooled cold air is continuously sent into the quick freezing chamber. At this time, since the food is soaked to about -1 ° C just before entering the maximum ice crystal formation zone, unevenness in passing time through the maximum ice crystal formation zone is reduced and the freezing time is also shortened substantially. Also, the first
Since the forced operation is canceled based on the output of the second temperature detection means, efficient freezing can be performed.

【0014】[0014]

【実施例】以下、本発明の一実施例を図1から図5に従
い説明する。尚、従来と同一構成については同一符合を
付し、その詳細な説明を省略し、異なる部分についての
み述べる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. The same components as those of the conventional one are designated by the same reference numerals, detailed description thereof will be omitted, and only different portions will be described.

【0015】25は急速冷凍室(以下急凍室25とい
う)であり、断熱壁26及び開閉自在の断熱扉27によ
って冷凍室6の下部に区画形成されている。28は前記
急凍室25への冷気導入口、29は冷気吸込み口であ
り、前記冷気導入口28には冷気流入量を調節するダン
パ装置30(以下電動ダンパ30という)が設けられて
いる。なお、前記電動ダンパ30は通常時は開放されて
いる。31は前記急凍室25の内壁を4面(天面、底
面、両側面)で構成するアルミニウムなどの金属板であ
り、両側面上方に複数の冷気吐出口32が形成されてい
る。33は前記急凍室25の背面に設けた冷気吐出口で
あり、前記冷気吐出口32とともに、前記断熱壁26の
内部に形成した冷気通路34に連通してある。上記冷却
通路34は前記電動ダンパ30に連通している。
Reference numeral 25 is a quick freezing chamber (hereinafter referred to as a quick freezing chamber 25), which is partitioned and formed in the lower portion of the freezing chamber 6 by a heat insulating wall 26 and a heat insulating door 27 that can be opened and closed. Reference numeral 28 is a cold air inlet to the freezing compartment 25, 29 is a cold air inlet, and the cold air inlet 28 is provided with a damper device 30 (hereinafter referred to as an electric damper 30) for adjusting the cold air inflow amount. The electric damper 30 is normally open. Reference numeral 31 denotes a metal plate such as aluminum which forms the inner wall of the freezing chamber 25 with four surfaces (top surface, bottom surface, both side surfaces), and a plurality of cool air discharge ports 32 are formed above both side surfaces. Reference numeral 33 denotes a cold air discharge port provided on the back surface of the quick freezing chamber 25, which communicates with the cold air discharge port 32 to a cold air passage 34 formed inside the heat insulating wall 26. The cooling passage 34 communicates with the electric damper 30.

【0016】35は前記金属板31の底面の裏側に熱伝
導的に固定した第1の温度センサであり、36は前記急
凍室25の天面に気中温度を検知するように設けた第2
の温度センサである。37は冷凍しようとする食品21
を載置するために、出し入れ自在に前記金属板31上に
備えつけたアルミニウムなど金属製の冷凍皿である。次
に制御関係について説明する。38はマイクロコンピュ
ータなどより成る制御手段(以下マイコン38という)
であり、急速冷凍運転時間の中で、均温処理工程の一定
制御時間T1 (例えば120min)をカウントするタ
イマ39と、それに続く凍結処理工程のタイムセーフ時
間T2 (例えば120min)をカウントするタイマ4
0などが内蔵されている。
Reference numeral 35 is a first temperature sensor fixed to the back side of the bottom surface of the metal plate 31 in a heat conductive manner, and reference numeral 36 is a first temperature sensor provided on the top surface of the freezing chamber 25 so as to detect the air temperature. Two
Temperature sensor. 37 is food 21 to be frozen
It is a freezing plate made of metal such as aluminum, which is mounted on the metal plate 31 so that the plate can be placed in and out freely. Next, the control relationship will be described. 38 is a control means including a microcomputer (hereinafter referred to as a microcomputer 38)
In the quick freezing operation time, the timer 39 that counts the constant control time T1 (for example, 120 min) of the soaking process and the timer 4 that counts the time safe time T2 (for example, 120 min) of the subsequent freezing process.
0, etc. are built in.

【0017】前記マイコン38の入力端子には冷凍室の
温度センサ15を備えた温度検知手段41、冷蔵室の温
度センサ16を備えた温度検知手段42、低温室の温度
センサ17を備えた温度検知手段43と、急凍室の第1
の温度センサ35を備えた第1の温度検知手段44、第
2の温度センサ36を備えた第2の温度検知手段45が
接続されており、出力端子には圧縮機9、送風機11、
冷蔵室、低温室、急凍室の電動ダンパ13、14、30
を駆動するための電磁リレーなどの駆動手段46、4
7、48、49、50及び、運転用コンデンサ(図示せ
ず)の容量を切り換えて送風機11の回転数を変化させ
る回転数制御手段51が接続されている。
At the input terminal of the microcomputer 38, a temperature detecting means 41 having a temperature sensor 15 for the freezing compartment, a temperature detecting means 42 having a temperature sensor 16 for the refrigerating compartment, and a temperature detecting means having a temperature sensor 17 for the low temperature compartment are provided. Means 43 and first of the freezing compartment
The first temperature detecting means 44 having the temperature sensor 35 and the second temperature detecting means 45 having the second temperature sensor 36 are connected, and the output terminal includes the compressor 9, the blower 11,
Electric dampers 13, 14, 30 for refrigerating room, low temperature room, and freezing room
Drive means 46, 4 such as an electromagnetic relay for driving
7, 48, 49, 50 and a rotation speed control means 51 for changing the rotation speed of the blower 11 by switching the capacities of operating capacitors (not shown) are connected.

【0018】かかる構成において、通常時は、冷凍室の
温度センサ15の温度をもとにした温度検知手段41に
よって、圧縮機9、送風機11がON・OFFの断続運
転をして、冷凍室6及び急凍室25が所定の温度(例え
ば−20℃)に冷却維持される。この時、送風機11の
回転数制御手段は通常の回転数となるよう作用する。
In such a structure, normally, the temperature detecting means 41 based on the temperature of the temperature sensor 15 in the freezer compartment carries out the intermittent operation of turning the compressor 9 and the blower 11 on and off, and the freezer compartment 6 The freezing chamber 25 is maintained at a predetermined temperature (for example, -20 ° C). At this time, the rotation speed control means of the blower 11 operates so as to keep the normal rotation speed.

【0019】また一方、冷蔵室及び低温室の温度センサ
16、17の温度をもとにした温度検知手段42、43
によって電動ダンパ13、14が開閉制御されて冷気流
入量が調節され、冷蔵室7、低温室8がそれぞれ所定の
温度(例えば4℃、−3℃)に冷却維持される。
On the other hand, temperature detecting means 42, 43 based on the temperatures of the temperature sensors 16, 17 in the refrigerating room and the low temperature room.
The electric dampers 13 and 14 are controlled to be opened and closed to adjust the inflow amount of cold air, and the refrigerating chamber 7 and the low temperature chamber 8 are cooled and maintained at predetermined temperatures (for example, 4 ° C. and −3 ° C.).

【0020】次に急凍時の動作について図4のフローチ
ャート、図5のタイムチャートをもとに説明する。
Next, the operation at the time of rapid freezing will be described with reference to the flowchart of FIG. 4 and the time chart of FIG.

【0021】まず、冷凍しようとする食品21を冷凍皿
37上に載置して金属板31上に設置すると、食品21
の熱が冷凍皿37、金属板38を介して素早く伝導さ
れ、第1の温度センサ35の温度が急激に上昇する。そ
して、STEP1で第1の温度センサ35の温度が所定
値t1 ℃(例えば0℃)より高いか低いかを判断し、低
ければSTEP1で高くなるまで待機する。STEP1
で温度が高いと判断されると、急凍運転制御が自動的に
開始される。
First, when the food 21 to be frozen is placed on the freezing plate 37 and placed on the metal plate 31, the food 21
Is quickly conducted through the freezing dish 37 and the metal plate 38, and the temperature of the first temperature sensor 35 rapidly rises. Then, in STEP 1, it is determined whether the temperature of the first temperature sensor 35 is higher or lower than a predetermined value t1 ° C. (for example, 0 ° C.), and if it is low, the process waits until it rises in STEP 1. STEP1
If it is determined that the temperature is high in, the freezing operation control is automatically started.

【0022】制御がスタートするとまず均温処理工程に
入り、STEP2でタイマ39が一定時間の積算カウン
トを開始する。これに続いてSTEP3で圧縮機9、送
風機11が連続運転され、急凍室の電動ダンパ30が第
2の温度検知手段45の出力に基づいて開閉制御され
る。すなわち、第2の温度センサ36の温度によって、
所定値t2 、t3 ℃でダンパ30を開閉制御して冷気流
入量を調節し、急凍室25内の温度を食品の最大氷結晶
生成帯に入る直前の約−1℃に略安定させるように作用
する。
When the control is started, first, the temperature equalizing process is started, and in STEP 2, the timer 39 starts counting for a fixed time. Following this, in STEP 3, the compressor 9 and the blower 11 are continuously operated, and the electric damper 30 of the freezing compartment is controlled to open and close based on the output of the second temperature detecting means 45. That is, depending on the temperature of the second temperature sensor 36,
The damper 30 is controlled to be opened / closed at predetermined values t2 and t3 ° C. to adjust the inflow amount of cold air so that the temperature in the freezing chamber 25 is substantially stabilized at about −1 ° C. just before entering the maximum ice crystal production zone of food. To work.

【0023】そして、STEP4でタイマ39のカウン
ト時間がT1 minに達したがどうか判断し、到達して
いればその時点で均温処理工程は終了しSTEP5に移
る。到達していなければSTEP4で一定時間T1 mi
nに到達するまで待機する。この時、一定時間内T1 m
inの範囲内で食品21の温度はほぼむらがなく、全体
的に約−1℃に安定するよう予め種々の相関がとられて
いる。
Then, in STEP 4, it is judged whether or not the count time of the timer 39 has reached T1 min, and if it has reached, the temperature soaking process is terminated at that point and the process proceeds to STEP 5. If it has not arrived, in STEP 4 a certain time T1 mi
Wait until n is reached. At this time, within a certain time T1 m
Within the range of in, the temperature of the food 21 is substantially uniform, and various correlations are preliminarily set so as to be stabilized at about -1 ° C as a whole.

【0024】又、食品21の温度がT1 min内に−1
℃に略安定していても、そのままT1 minまで均温処
理工程は続けられるので、圧縮機9及び送風機11は連
続運転を継続し、冷気は十分低温に冷却された状態とな
る。
Further, the temperature of the food 21 is -1 within T1 min.
Even if the temperature is substantially stable at 0 ° C, the soaking process is continued until T1 min, so the compressor 9 and the blower 11 continue to operate continuously, and the cold air is cooled to a sufficiently low temperature.

【0025】均温処理工程が終了すると同時に凍結処理
工程に入り、STEP5でタイマ40が時間カウントを
開始する。これに続いてSTEP6で圧縮機は引き続い
て強制運転が継続されるとともに、回転数制御手段51
が作用して運転用のコンデンサ(図示せず)が高い容量
に切り換わり、送風機11が高回転で運転される。さら
に急凍室25の電動ダンパ30が強制的に開放されるこ
とによって前述の低温化されて待機していた冷却力の高
い多量の冷気が急凍室25内に連続的に導入される。そ
してSTEP7に進む。
At the same time when the soaking process is finished, the freezing process is started, and in STEP 5, the timer 40 starts time counting. Following this, in STEP 6, the compressor continues to be forcedly operated, and the rotation speed control means 51
Acts, the operating capacitor (not shown) is switched to a high capacity, and the blower 11 is operated at high speed. Further, by forcibly opening the electric damper 30 of the quick-freezing chamber 25, a large amount of cold air having a high cooling power that has been cooled down and is on standby is continuously introduced into the quick-freezing chamber 25. And it progresses to STEP7.

【0026】STEP7では、冷蔵室の温度センサ16
の温度が所定値t4 ℃(例えば10℃)より高いか低い
かを判断し、低ければSTEP8に進んで冷蔵室の電動
ダンパ13が強制的に閉塞される。一方、高いと判断さ
れるとSTEP8はバイパスされ通常の温度制御によっ
て電動ダンパ13は制御される。
In STEP 7, the temperature sensor 16 in the refrigerator compartment is
It is judged whether the temperature is higher or lower than a predetermined value t4 ° C. (for example, 10 ° C.). On the other hand, if it is determined to be high, STEP 8 is bypassed and the electric damper 13 is controlled by normal temperature control.

【0027】STEP8を通過あるいはバイパスされる
とSTEP9に進み、低温室の温度センサ17の温度が
所定値t5 ℃(例えば5℃)より高いか低いかを判断
し、低ければSTEP10に進んで低温室の電動ダンパ
14が強制的に閉塞される。一方、高いと判断されると
STEP10はバイパスされ通常の温度制御によって電
動ダンパ14は制御される。
When STEP 8 is passed or bypassed, the routine proceeds to STEP 9, where it is judged whether the temperature of the temperature sensor 17 in the low temperature chamber is higher or lower than a predetermined value t5 ° C. (for example, 5 ° C.). The electric damper 14 is forcibly closed. On the other hand, if it is determined to be high, STEP 10 is bypassed and the electric damper 14 is controlled by normal temperature control.

【0028】このように冷蔵室、低温室の電動ダンパ1
3、14が強制的に閉塞されると、その分急凍室25へ
の送風量が増加するとともに、冷蔵室7あるいは低温室
8を冷却しない分だけ相対的に冷却能力が高まる。この
時、食品21は急凍室両側面の複数の冷気吐出口32、
及び背面の冷気吐出口33からの冷気で全包囲的に冷却
されると同時に、急凍室内面の金属板38の底面からの
伝導冷却及び天面、両側面からの放射冷却が加えられる
ことと、均温処理工程の時間中に圧縮機9の連続運転に
より冷却器8の温度が低下し、より低温化された冷気が
与えられることとも合わせて凍結が集中的に、且つ急速
に進行する。
Thus, the electric damper 1 for the refrigerating room and the low temperature room
When 3 and 14 are forcibly closed, the amount of air blown to the freezing chamber 25 increases correspondingly, and the cooling capacity is relatively increased because the refrigerating chamber 7 or the low temperature chamber 8 is not cooled. At this time, the food 21 has a plurality of cold air outlets 32 on both sides of the freezing compartment,
And that the cooling air from the cold air discharge port 33 on the back side is totally cooled, and at the same time, the conduction cooling from the bottom surface of the metal plate 38 inside the quick freeze chamber and the radiation cooling from the top surface and both side surfaces are added. During the time of the soaking process, the temperature of the cooler 8 is lowered by continuous operation of the compressor 9, and colder air having a lower temperature is given, so that the freezing proceeds intensively and rapidly.

【0029】また、最大氷結晶生成帯直前の約−1℃に
食品21が均温処理されていることと前述の全包囲冷却
で、部位による凍結時間むらが抑制された形で最大氷結
晶生成帯を通過していく。このことも凍結速度を速める
一因になる。即ち、従来では食品21内で最も凍結の進
行が遅く、凍結の進行が速い表面部が既に−1℃に達し
た時点でまだプラス温度(例えば10℃)で、結果とし
て全体の最大氷結晶生成帯の通過時間を遅らせていた中
心部が、均温処理によって表面部と同様に−1℃のスタ
ートラインに並ぶためである。こうして凍結速度が大き
く速まることにより、食品21内に生じる氷結晶は小さ
く抑えられ細胞組織を損傷することが少ないため、タン
パク質の変性や解凍後のドリップの流出、歯ざわりなど
の食感を損ねるといった食品の品質劣化が抑制される。
Further, the food 21 is soaked at about -1 ° C. immediately before the maximum ice crystal formation zone, and the maximum ambient temperature ice crystal formation is suppressed by the above-mentioned total surrounding cooling while suppressing the freezing time unevenness depending on the site. Pass through the belt. This also contributes to increasing the freezing rate. That is, conventionally, the freezing process is slowest in the food product 21 and the freezing process is still at a positive temperature (for example, 10 ° C.) when the surface portion has already reached −1 ° C., and as a result, the maximum formation of ice crystals in the whole is achieved. This is because the central part, which has delayed the passage time of the strip, is aligned with the start line at -1 ° C as with the surface part by the soaking treatment. Since the freezing speed is greatly increased in this way, the ice crystals generated in the food 21 are suppressed to a small extent and the cell tissue is less likely to be damaged, so that protein denaturation, drip outflow after thawing, and texture such as texture are impaired. Deterioration of food quality is suppressed.

【0030】次にSTEP11でタイマ40のカウント
時間がT2 minに達したかどうか判断し、到達してい
なければSTEP12に移る。STEP12で第1の温
度センサ35の温度が所定値t6 ℃(例えば−15℃)
より高いか低いかを判断し、高ければSTEP7に戻っ
て作用を繰り返す。STEP12で温度が低いと判断さ
れるとSTEP13に進む。STEP13では、第2の
温度センサ36の温度が所定値t7 ℃(例えば−15
℃)より高いか低いか判断し、高ければSTEP7に戻
って作用を繰り返す。STEP13で温度が低いと判断
されるとSTEP14に進む。
Next, at STEP 11, it is judged whether or not the count time of the timer 40 has reached T2 min, and if not, the routine proceeds to STEP 12. In STEP 12, the temperature of the first temperature sensor 35 is a predetermined value t6 ° C (for example, -15 ° C).
It is judged whether it is higher or lower, and if it is higher, the process returns to STEP 7 and the operation is repeated. When it is determined in STEP 12 that the temperature is low, the process proceeds to STEP 13. In STEP 13, the temperature of the second temperature sensor 36 is a predetermined value t7 ° C (for example, -15).
C)) or lower, and if higher, return to STEP 7 and repeat the operation. When it is determined in STEP 13 that the temperature is low, the process proceeds to STEP 14.

【0031】一方、STEP11でタイマ40のカウン
ト時間がT2 minに達していれば、そのままSTEP
14に進む。
On the other hand, if the count time of the timer 40 has reached T2 min in STEP11, then STEP is left unchanged.
Proceed to 14.

【0032】STEP14では圧縮機9の強制運転、送
風機11の高回転の強制運転、冷蔵室及び低温室の電動
ダンパ13、14の強制閉塞状態がそれぞれ解除され、
急凍室の電動ダンパ30は開放状態のまま維持される。
そして自動的に凍結処理工程が終了し、同時に一連の急
凍運転制御が終了する。
In STEP 14, the forced operation of the compressor 9, the forced operation of the blower 11 at high rotation, and the forced closed state of the electric dampers 13 and 14 in the refrigerating compartment and the low temperature compartment are released,
The electric damper 30 of the quick freeze compartment is maintained in an open state.
Then, the freezing process step automatically ends, and at the same time, a series of quick freeze operation control ends.

【0033】即ち、食品温度と相関を持った第1の温度
センサ35と、急凍室25内の雰囲気温度を代表する第
2の温度センサ36がそれぞれ一定の低温状態に到達し
た時点をもって、食品21は最大氷結晶生成帯を完全に
通過し凍結を完了していると判断して急凍運転を終了
し、そのまま冷凍保存に入る。このため急凍時間が不足
したり、無駄な急凍運転をしたりすることがなく、食品
21の状態や環境条件に応じて、自動的に最も効率のよ
い急凍運転が選択されることになり、使い勝手が極めて
よい。
That is, when the first temperature sensor 35 having a correlation with the food temperature and the second temperature sensor 36 representing the ambient temperature in the freezing chamber 25 have reached a certain low temperature state, the food product In No. 21, it is judged that it has completely passed through the maximum ice crystal production zone and the freezing is completed, and the quick freezing operation is terminated, and the frozen storage is directly started. Therefore, the quick freeze time is not insufficient and the wasteful quick freeze operation is not performed, and the most efficient quick freeze operation is automatically selected according to the state of the food 21 and the environmental conditions. It is very easy to use.

【0034】このようにして、自動的に凍結が終了した
食品21は凍結速度が速く、且つむらが小さいため、個
体内に生成された氷結晶の大きさが小さく均一な状態で
分布しており、冷凍保存中の氷の再結晶成長が促進され
にくい。このため細胞組織の損傷やタンパク質の変性も
抑制され、食品品質の劣化の少ない冷凍保存が可能とな
る。保存期間が長くなるほど従来との品質差は広がる傾
向となり、長期の冷凍保存が品質よく活用できること
で、食生活の自由度も大きくなる。
In this way, the food 21, which has been automatically frozen, has a high freezing speed and a small unevenness, so that the size of the ice crystals formed in the individual is small and distributed uniformly. , It is difficult to promote recrystallization growth of ice during frozen storage. Therefore, damage to cell tissues and protein denaturation are suppressed, and frozen storage with little deterioration in food quality becomes possible. The longer the storage period is, the wider the quality difference from the conventional one tends to be, and the long-term frozen storage can be used with good quality, and the degree of freedom of eating habits is also increased.

【0035】[0035]

【発明の効果】以上のように、本発明の冷蔵庫によると
次のような効果が得られる。
As described above, according to the refrigerator of the present invention, the following effects can be obtained.

【0036】(1)凍結処理前に最大氷結晶生成帯直前
の約−1℃に略安定させる均温処理を行わせることによ
って、食品内の凍結速度むらを抑制した形で凍結を進行
させるため、食品全体としてみた凍結速度が速くなる。
又、均温処理中に一定時間圧縮機及び送風機が強制運転
されることにより、低温の冷気が凍結工程で集中して与
えられるため、急凍時間の設定も短くて済む。
(1) In order to advance the freezing in a form in which the unevenness of the freezing rate in the food is suppressed by carrying out the soaking process which is substantially stabilized at about -1 ° C immediately before the maximum ice crystal formation zone before the freezing process. , The freezing speed of the food as a whole becomes faster.
Further, since the compressor and the blower are forcibly operated for a certain period of time during the soaking process, low-temperature cold air is concentrated and given in the freezing process, so that the quick freeze time can be set short.

【0037】(2)均温処理による凍結時間の短縮と食
品個体内の凍結時間むらの抑制で、生成される氷結晶の
大きさは小さく、且つ均一化されたものとなるため、凍
結進行時や、冷凍保存時の氷の再結晶作用による細胞損
傷に起因する食品品質の劣化が少なく長期の冷凍保存が
可能となる。
(2) The size of the ice crystals produced is small and uniform due to the shortening of the freezing time by the soaking treatment and the suppression of the freezing time unevenness in the food individual. Moreover, deterioration of food quality due to cell damage due to ice recrystallization during frozen storage is small, and long-term frozen storage is possible.

【0038】(3)第1及び第2の温度検知手段の出力
に基づいて急速冷凍運転を自動的に終了させるため、効
率が良く無駄のない急速冷凍ができる。
(3) Since the quick freezing operation is automatically terminated based on the outputs of the first and second temperature detecting means, efficient and lean quick freezing can be performed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す冷蔵庫の縦断面図FIG. 1 is a vertical sectional view of a refrigerator showing an embodiment of the present invention.

【図2】図1の冷蔵庫に備えた急速冷凍室の平面断面の
拡大図
FIG. 2 is an enlarged view of a plane cross section of a quick freezing compartment provided in the refrigerator of FIG.

【図3】図1の冷蔵庫の制御ブロック図FIG. 3 is a control block diagram of the refrigerator shown in FIG.

【図4】図1の冷蔵庫の急速冷凍制御のフローチャートFIG. 4 is a flowchart of quick freezing control of the refrigerator shown in FIG.

【図5】図1の冷蔵庫の急速冷凍制御のタイムチャート5 is a time chart of quick freezing control of the refrigerator shown in FIG.

【図6】従来例を示す冷蔵庫の縦断面図FIG. 6 is a vertical sectional view of a conventional refrigerator.

【図7】図6の冷蔵庫の急速冷凍制御のタイムチャートFIG. 7 is a time chart of quick freezing control of the refrigerator shown in FIG.

【符号の説明】[Explanation of symbols]

6 冷凍室 7 冷蔵室 9 圧縮機 10 冷却器 11 送風機 13、30 電動ダンパ(ダンパ装置) 25 急凍室(急速冷凍室) 31 金属板 32、33 冷気吐出口 35 第1の温度センサ 36 第2の温度センサ 38 マイコン(制御装置) 41 冷凍室温度検知手段 42 冷蔵室温度検知手段 44 第1の温度検知手段 45 第2の温度検知手段 51 回転数制御手段 6 Freezing Room 7 Refrigerating Room 9 Compressor 10 Cooler 11 Blower 13, 30 Electric Damper (Damper Device) 25 Quick Freezing Room (Quick Freezing Room) 31 Metal Plate 32, 33 Cold Air Discharge Port 35 First Temperature Sensor 36 Second Temperature sensor 38 Microcomputer (control device) 41 Freezer temperature detecting means 42 Refrigerating room temperature detecting means 44 First temperature detecting means 45 Second temperature detecting means 51 Rotation speed controlling means

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 冷凍サイクルを構成する圧縮機、冷却器
と、冷凍室と、冷蔵室と、前記両室内の温度を検知する
温度検知手段と、前記冷凍室内の一画に設けられ、断熱
壁で区画形成された急速冷凍室と、前記冷却器により冷
却された冷気を前記冷凍室、冷蔵室、急速冷凍室に強制
送風する送風機と、前記冷蔵室及び急速冷凍室の入口に
設けて冷気流入量を調節するダンパ装置と、前記急速冷
凍室内の少なくとも底面に備えた金属板と、前記金属板
上に載置した食品の温度を検知する第1の温度検知手段
と、前記急速冷凍室内の温度を検知する第2の温度検知
手段と、急速冷凍運転中は、前記圧縮機及び送風機を強
制運転させるとともに、前記第2の温度検知手段の出力
に基づいて、食品温度を約−1℃に略安定させる一定時
間の均温処理工程と、続いて前記圧縮機及び送風機はそ
のまま強制運転させながら、前記急速冷凍室のダンパ装
置を強制開放させるとともに、前記第1及び前記第2の
温度検知手段の出力に基づいて、前記強制運転を解除さ
せる凍結処理工程により食品を冷凍する制御手段とより
成る冷蔵庫。
1. A compressor, a cooler, a freezer compartment, a refrigerating compartment, a temperature detecting means for detecting a temperature in the both compartments, which constitutes a refrigerating cycle, and a heat insulating wall provided in an area of the freezer compartment. , A blower for forcedly blowing the cool air cooled by the cooler to the freezer compartment, the refrigerating compartment, and the quick freezer compartment, and cold air inflow provided at the inlets of the refrigerating compartment and the quick freezer compartment. A damper device for adjusting the amount, a metal plate provided at least on the bottom surface in the quick freezing chamber, a first temperature detecting means for detecting the temperature of food placed on the metal plate, and a temperature in the quick freezing chamber During the quick freezing operation, the second temperature detecting means for detecting the temperature is forced to operate the compressor and the blower, and based on the output of the second temperature detecting means, the food temperature is approximately -1 ° C. With a constant temperature soaking process to stabilize Then, while the compressor and the blower are forcibly operated as they are, the damper device of the quick freezing chamber is forcibly opened, and the forcible operation is canceled based on the outputs of the first and second temperature detection means. A refrigerator comprising control means for freezing food by a freezing process.
JP13263891A 1991-06-04 1991-06-04 Refrigerator Pending JPH06101951A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13263891A JPH06101951A (en) 1991-06-04 1991-06-04 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13263891A JPH06101951A (en) 1991-06-04 1991-06-04 Refrigerator

Publications (1)

Publication Number Publication Date
JPH06101951A true JPH06101951A (en) 1994-04-12

Family

ID=15086012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13263891A Pending JPH06101951A (en) 1991-06-04 1991-06-04 Refrigerator

Country Status (1)

Country Link
JP (1) JPH06101951A (en)

Similar Documents

Publication Publication Date Title
JP2567616Y2 (en) Refrigerator with pickle room
JP4647047B2 (en) Supercooling control refrigerator
JPH07174453A (en) Refrigerator
KR0117183Y1 (en) Kimchi chamber air circuit structure for a refrigerator
KR100568060B1 (en) Refrigerator
JP2004301493A (en) Temperature control method for refrigerator
JPH04369375A (en) Refrigerator
JPH10288440A (en) Refrigerator
JP4985833B2 (en) Supercooling control refrigerator
JPH06101949A (en) Refrigerator
JP4840469B2 (en) Supercooling control refrigerator
JPH06185847A (en) Refrigerator
JP3461531B2 (en) refrigerator
JP3549358B2 (en) refrigerator
JP3354165B2 (en) Refrigerator refrigerator temperature control device
JPH06101951A (en) Refrigerator
JPH06101952A (en) Refrigerator
CN114576903A (en) Method for controlling refrigerator
JPH06101953A (en) Refrigerator
JPH06101950A (en) Refrigerator
JPH063021A (en) Refrigerator
JP2003222453A (en) Method for controlling refrigerator disposed with weak freezing chamber
KR100377765B1 (en) Method and apparatus for quick freeze in refrigerator
JPH07253265A (en) Defreezing method and defreezing device for frozen food
JPH10332242A (en) Refrigerator