JPH06100947A - Production of steel for welded structure excellent in fatigue strength - Google Patents

Production of steel for welded structure excellent in fatigue strength

Info

Publication number
JPH06100947A
JPH06100947A JP8810492A JP8810492A JPH06100947A JP H06100947 A JPH06100947 A JP H06100947A JP 8810492 A JP8810492 A JP 8810492A JP 8810492 A JP8810492 A JP 8810492A JP H06100947 A JPH06100947 A JP H06100947A
Authority
JP
Japan
Prior art keywords
steel
fatigue strength
steel sheet
cooling
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8810492A
Other languages
Japanese (ja)
Inventor
Yoichiro Kobayashi
林 洋 一 郎 小
Soichi Ikeda
田 惣 一 池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP8810492A priority Critical patent/JPH06100947A/en
Publication of JPH06100947A publication Critical patent/JPH06100947A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

PURPOSE:To effectively produce a steel having excellent fatigue strength to withstand repeated loads as to a steel sheet requiring mechanical properties and weldability for a vessel, marine structure, building, bridge, storage tank or the like. CONSTITUTION:The steel sheet is subjected to off-line heat treatment such as hardening and normalizing or on-line heat treatment such as direct hardening and accelerated cooling, and after that, tempering is executed at the Ac1 point or below. In the case of the subsequent cooling, forced cooling in which the maximum value T of the temp. difference between the surface of the steel sheet and the central part of the sheet thickness of the steel sheet in each time is regulated to >=200 deg.C is executed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は疲労強度の優れた溶接構
造用鋼の製造方法に関し、さらに詳しくは、船舶、海洋
構造物、建築物、橋梁、貯槽等に使用される疲労強度の
優れた溶接構造用鋼の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing welded structural steel having excellent fatigue strength, and more particularly, to excellent fatigue strength used for ships, offshore structures, buildings, bridges, storage tanks and the like. The present invention relates to a method for manufacturing welded structural steel.

【0002】[0002]

【従来技術】一般に、船舶、海洋構造物、建築物、橋
梁、貯槽等に使用する鋼板には、機械的性質および溶接
性に優れていることが要求されると共に、海洋波浪、通
過車輛、または、内容物の搬入、搬出等による繰り返し
荷重に耐えることができる疲労強度を保持することが強
く要求される。
2. Description of the Related Art In general, steel sheets used for ships, offshore structures, buildings, bridges, storage tanks, etc. are required to have excellent mechanical properties and weldability, as well as ocean waves, passing vehicles, or It is strongly required to maintain the fatigue strength capable of withstanding repeated loading and unloading of contents.

【0003】しかしながら、鋼板の疲労強度は、静的強
度によって略一義的に決定されるというのが通説であ
り、そのため、疲労強度だけが高い鋼板は未だ開発され
ていないのが現状である。
However, it is generally accepted that the fatigue strength of a steel sheet is substantially uniquely determined by the static strength. Therefore, at present, a steel sheet having only a high fatigue strength has not been developed.

【0004】従って、静的強度の高い鋼板を使用するこ
とにより、高い疲労強度の鋼板が得られるが、静的強度
の高い鋼板は一般的には含有される合金成分の量が多く
なり、溶接性が比較的に劣る傾向があり、かつ、コスト
が高くなるという問題がある。
Therefore, by using a steel plate having a high static strength, a steel plate having a high fatigue strength can be obtained. There is a problem that the property tends to be relatively inferior and the cost becomes high.

【0005】[0005]

【発明が解決しようとする課題】本発明は上記に説明し
たように、従来の船舶、海洋構造物、建築物、橋梁、貯
槽等に使用する鋼板における問題点に鑑み、本発明者が
鋭意研究を行い、検討を重ねた結果、静的強度は従来の
鋼板と同程度であって、かつ、疲労強度に優れ、さら
に、機械的性質、溶接性にも優れている溶接構造用鋼の
製造方法を開発したのである。
DISCLOSURE OF THE INVENTION As described above, the present invention has been conducted by the present inventors in view of the problems in the conventional steel plates used for ships, offshore structures, buildings, bridges, storage tanks, etc. As a result of repeated investigations, a method for producing a welded structural steel having a static strength comparable to that of a conventional steel sheet, excellent fatigue strength, and excellent mechanical properties and weldability. Was developed.

【0006】[0006]

【課題を解決するための手段】本発明に係る疲労強度の
優れた溶接構造用鋼の製造方法の特徴するところは、鋼
板を焼入れ、焼ならし等のオフライン熱処理を行うか、
或いは、直接焼入れ、加速冷却等のオンライン熱処理を
行った後、Ac1点以下の温度において焼戻しを行い、
その後の冷却過程において、冷却過程の各時刻における
鋼板表面と鋼板板厚中心部の温度差の最大値△Tを20
0℃以上とする強制冷却を行うことにある。
The feature of the method for producing a welded structural steel having excellent fatigue strength according to the present invention is that the steel sheet is subjected to quenching, off-line heat treatment such as normalizing,
Alternatively, after performing online heat treatment such as direct quenching and accelerated cooling, tempering is performed at a temperature of Ac 1 point or less,
In the subsequent cooling process, the maximum value ΔT of the temperature difference between the steel plate surface and the steel plate thickness center at each time of the cooling process is set to 20
The purpose is to perform forced cooling at 0 ° C or higher.

【0007】本発明に疲労強度の優れた溶接構造用鋼の
製造方法について、以下詳細に説明する。即ち、本発明
者等は、鋼板に対して高い疲労強度を保持させることに
ついて、研究、検討を重ねていく過程において、溶接継
手部における疲労強度は鋼板母材よりも低く、その一因
としては、溶接によって発生する引張残留応力にあるこ
とに着目した。
The method for producing a welded structural steel having excellent fatigue strength according to the present invention will be described in detail below. That is, the present inventors, in the process of repeatedly researching and studying about maintaining a high fatigue strength for a steel sheet, the fatigue strength in the welded joint portion is lower than that of the steel sheet base metal, and one of the causes is Attention was paid to the tensile residual stress generated by welding.

【0008】そして、溶接により発生する引張の残留応
力により鋼板の疲労強度が低下する理由としては、亀裂
先端が外力と残留応力との両者をプラスした力により開
口されることにより、外力だけの場合よりも亀裂の進展
が早くなるためである。従って、予め、鋼板に残留応力
を付与しておけば、亀裂の進展が遅くなり、疲労強度が
上昇するものと考えられる。
The reason why the fatigue strength of the steel sheet is lowered by the tensile residual stress generated by welding is that the crack tip is opened by a force that is a combination of both the external force and the residual stress This is because the crack progresses faster than before. Therefore, if residual stress is given to the steel sheet in advance, it is considered that the propagation of cracks slows down and the fatigue strength increases.

【0009】従って、鋼板に圧縮の残留応力を付与させ
るためには、鋼板に焼戻し熱処理を行った後に、強制冷
却を行うことによって鋼板の表層部に圧縮の残留応力が
発生することがわかった。
Therefore, it has been found that in order to impart a compressive residual stress to the steel sheet, a compressive residual stress is generated in the surface layer portion of the steel sheet by carrying out tempering heat treatment and then forced cooling.

【0010】このようにして製造された鋼板を使用して
疲労試験を行い、2×106回疲労強度を求めた。図1
にその結果を示す。なお、使用した鋼はHT50,板厚
50mm,加速冷却+焼戻し処理を行った。この図1か
ら、強制冷却を行うことにより通常の空冷の場合と比較
して、2×106回疲労強度は上昇しており、これは、
冷却過程の各時刻における鋼板表面と鋼板の板厚中心部
の温度差の最大値△Tが200℃以上の時に顕著である
ことがわかる。
A fatigue test was conducted using the steel sheet thus manufactured, and the fatigue strength was determined 2 × 10 6 . Figure 1
The results are shown in. The steel used was HT50, plate thickness 50 mm, accelerated cooling + tempering treatment. From FIG. 1, the fatigue strength is increased by 2 × 10 6 times as compared with the case of normal air cooling by performing forced cooling.
It can be seen that the maximum value ΔT of the temperature difference between the surface of the steel sheet and the central portion of the thickness of the steel sheet at each time in the cooling process is remarkable when the temperature difference ΔT is 200 ° C. or higher.

【0011】しかして、焼戻し後に強制冷却を行った鋼
板の板厚方向の残留応力分布は、図2に示すように表層
部は圧縮残留応力であるが、板厚内部は引張残留応力で
ある。従って、亀裂発生時、或いは、亀裂深さが浅い間
は圧縮の残留応力の影響により、亀裂の進展は減速され
るが、亀裂が鋼板の板厚内部にまで進展した場合には、
引張の残留応力の影響により、亀裂の進展が加速され、
全体としては残留応力の影響が相殺されると考えられ
る。
As shown in FIG. 2, the residual stress distribution in the plate thickness direction of the steel sheet subjected to forced cooling after tempering shows that the surface layer portion has compressive residual stress, but the inside of the plate thickness has tensile residual stress. Therefore, at the time of crack occurrence, or while the crack depth is shallow, due to the effect of the residual stress of compression, the progress of the crack is slowed down, but when the crack propagates to the inside of the plate thickness of the steel sheet,
The propagation of cracks is accelerated by the effect of residual tensile stress,
It is considered that the effect of residual stress is canceled out as a whole.

【0012】しかし、図1において説明したように、疲
労強度は大きく上昇しており、このことは、図3に示し
てあるように、亀裂が鋼板の板厚内部にまで進展した時
点においても、残留応力の再配分により亀裂先端は、圧
縮の残留応力が作用すると考えられる。
However, as described with reference to FIG. 1, the fatigue strength is greatly increased, which means that, as shown in FIG. 3, even when the crack propagates to the inside of the thickness of the steel sheet, It is considered that compressive residual stress acts on the crack tip due to redistribution of residual stress.

【0013】本発明に係る疲労強度の優れた溶接構造用
鋼の製造方法は、上記に説明した事実から発明がなされ
たものであり、この観点から本発明に係る疲労強度の優
れた溶接構造用鋼の製造方法において使用する鋼の代表
的な好ましい含有成分と成分割合について説明する(し
かし、この鋼に限定されるものではない。)。即ち、溶
接構造用鋼板として優れた機械的性質、溶接性を具備さ
せるためには、C 0.01〜0.20wt%、Si
0.01〜0.50wt%、Mn 0.10〜2.00wt
%、P 0.0020wt%以下、S 0.0010wt
%以下、Al 0.001〜0.100wt%を含有し、
さらに、Cu、Ni、Cr、Mo、Nb、V、Ti、R
EM、Caの特定含有量を1種または2種以上を含有
し、残部Feおよび不可避不純物からな鋼である。
The method for producing a welded structure steel having excellent fatigue strength according to the present invention has been invented from the facts described above. From this viewpoint, the method for manufacturing a welded structure steel having excellent fatigue strength according to the present invention is provided. Typical preferable components and component ratios of the steel used in the method for producing steel will be explained (but not limited to this steel). That is, in order to have excellent mechanical properties and weldability as a welded structural steel sheet, C 0.01 to 0.20 wt%, Si
0.01 to 0.50 wt%, Mn 0.10 to 2.00 wt
%, P 0.0020 wt% or less, S 0.0010 wt%
% Or less, Al 0.001 to 0.100 wt% is contained,
Furthermore, Cu, Ni, Cr, Mo, Nb, V, Ti, R
It is a steel containing one or more specific contents of EM and Ca and the balance Fe and unavoidable impurities.

【0014】さらに、本発明に係る疲労強度の優れた溶
接構造用鋼の製造方法において、焼入れ、焼ならし等の
オフライン熱処理、或いは、直接焼入れ、加速冷却等の
オンライン熱処理を行い、その後、Ac1点以下の温度
において焼戻しを行うのは、鋼板の金属組織を調整し、
必要な機械的性質を付与するためであり、Ac1を越え
る温度ではこのような効果は得られない。
Further, in the method for manufacturing a welded structural steel having excellent fatigue strength according to the present invention, off-line heat treatment such as quenching and normalizing, or on-line heat treatment such as direct quenching and accelerated cooling is performed, and then Ac Tempering at a temperature of 1 point or less adjusts the metal structure of the steel plate,
This is because it imparts the necessary mechanical properties, and such effects cannot be obtained at temperatures above Ac 1 .

【0015】上記、オフライン熱処理における焼入れ温
度は、Ac3点以上で、完全にγ化して焼入れ組織とす
るためであり、冷却温度は、焼入れ組織とするためMf
点以下とする。また、焼ならし温度はAc3以上で、完
全にγ化し、フェライトの整細粒化を図るためであり、
冷却温度はフェライトの整細粒化を図るため常温とす
る。また、オンライン熱処理における直接焼入れ温度
は、冷却開始温度がAr3点以上であり、焼入れ組織を
得るためであり、冷却温度は焼入れ組織を得るためにM
f点以下とする。また、加速冷却の冷却開始温度はAr
1点以上であり、フェライトの成長を抑制する、この加
速冷却処理は熱間圧延終了後速やかに行う必要があり、
冷却温度はAr1点以下としてフェライトの成長を抑制
する。
The quenching temperature in the above-mentioned off-line heat treatment is Ac 3 point or more, and is for completely γ-converting into a quenched structure, and the cooling temperature is Mf for obtaining a quenched structure.
Below the point. In addition, the normalizing temperature is Ac 3 or more, and it is for completely γ-forming to achieve ferrite fine-graining,
The cooling temperature is room temperature in order to refine the ferrite particles. Further, the direct quenching temperature in the online heat treatment is for obtaining the quenching structure because the cooling start temperature is Ar 3 point or higher, and the cooling temperature is M for obtaining the quenching structure.
The number of points is f or less. The cooling start temperature of accelerated cooling is Ar
The number of points is 1 or more, and the growth of ferrite is suppressed.This accelerated cooling treatment needs to be performed promptly after the end of hot rolling.
The cooling temperature is set to Ar 1 point or lower to suppress the growth of ferrite.

【0016】さらに、焼戻し後の冷却過程において強制
冷却を行うのは、鋼板の表層部に圧縮の残留応力を付与
して疲労強度を上昇させるためであり、その時、冷却過
程の各時刻における鋼板表面の板厚中心部の温度差の最
大値△Tを200℃以上とするのは、充分に大きな残留
応力を付与し、疲労強度の優れたな改善効果を得るため
であり、この温度未満ではこのような効果を期待するこ
とができない。また、冷却速度は板厚によって異なるも
のであり、例えば、板厚25mmの場合においては、約
1℃/secとし、板厚50mmの場合では、約0.6
℃/secとするのがよい。
Further, the reason why forced cooling is performed in the cooling process after tempering is to impart residual compressive stress to the surface layer of the steel sheet to increase the fatigue strength, and at that time, the steel sheet surface at each time of the cooling process. The maximum temperature difference ΔT at the center of the plate thickness of 200 ° C. or more is to impart a sufficiently large residual stress and to obtain an excellent effect of improving fatigue strength. Below this temperature, You cannot expect such an effect. Further, the cooling rate varies depending on the plate thickness. For example, when the plate thickness is 25 mm, it is about 1 ° C./sec, and when the plate thickness is 50 mm, it is about 0.6.
C./sec is preferable.

【0017】[0017]

【実 施 例】本発明に係る疲労強度の優れた溶接構造
用鋼の製造方法の実施例を比較例と共に説明する。
[Examples] Examples of the method for producing a welded structural steel having excellent fatigue strength according to the present invention will be described together with comparative examples.

【0018】[0018]

【実 施 例】静的強度を種々変化させた鋼を使用した場
合の、板厚、熱処理、熱処理後の冷却方法、△T(℃)
および2×106回疲労強度について、本発明に係る疲
労強度の優れた溶接構造用鋼の製造方法と比較例につい
て表1に示す。
[Examples] Thickness, heat treatment, cooling method after heat treatment when using steels with variously changed static strength, ΔT (° C)
Table 1 shows a method for producing a welded structural steel having excellent fatigue strength according to the present invention and a comparative example regarding 2 × 10 6 times fatigue strength and a comparative example.

【0019】本発明に係る疲労強度の優れた溶接構造用
鋼の製造方法においては、何れも焼戻し後に強制冷却を
行って、△Tを200℃以上としている。しかし、比較
例は何れも焼戻し後、空冷を行っている。表1から本発
明に係る疲労強度の優れた溶接構造用鋼の製造方法で
は、比較例に比べて疲労強度が大幅に上昇していること
がわかる。
In each of the methods for manufacturing a welded structural steel having excellent fatigue strength according to the present invention, the ΔT is set to 200 ° C. or more by performing forced cooling after tempering. However, in each of the comparative examples, air cooling is performed after tempering. It can be seen from Table 1 that in the method for manufacturing a welded structural steel having excellent fatigue strength according to the present invention, the fatigue strength is significantly increased as compared with the comparative example.

【0020】[0020]

【表1】 [Table 1]

【0021】[0021]

【発明の効果】以上説明したように、本発明に係る疲労
強度の優れた溶接構造用鋼の製造方法は上記の構成であ
るから、船舶、海洋構造物、建築物、橋梁、貯槽等の機
械的性質および溶接性が要求されている鋼板に、繰り返
し荷重に耐えられる優れた疲労強度を有する鋼を効果的
に製造することができるという効果を有するものであ
る。
As described above, the method for producing a welded structural steel having excellent fatigue strength according to the present invention has the above-described structure, and therefore is used for machines such as ships, offshore structures, buildings, bridges and storage tanks. It has an effect that a steel having excellent fatigue strength capable of withstanding repeated loads can be effectively produced for a steel sheet required to have high mechanical properties and weldability.

【図面の簡単な説明】[Brief description of drawings]

【図1】△Tと2×106回疲労強度(N/mm2)との
関係を示す図である。
FIG. 1 is a diagram showing the relationship between ΔT and 2 × 10 6 times fatigue strength (N / mm 2 ).

【図2】焼戻し後に強制冷却を行った鋼板の板厚方向の
残留応力分布を示す図である。
FIG. 2 is a diagram showing a residual stress distribution in a plate thickness direction of a steel plate that has been subjected to forced cooling after tempering.

【図3】焼戻し後に強制冷却を行った鋼板の板厚方向の
残留応力分布を示す図である。
FIG. 3 is a diagram showing a residual stress distribution in a plate thickness direction of a steel plate that has been subjected to forced cooling after tempering.

【符号の説明】[Explanation of symbols]

1・・・疲労試験片 2・・・切欠 3・・・疲労亀裂 1 ... Fatigue test piece 2 ... Notch 3 ... Fatigue crack

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成5年9月27日[Submission date] September 27, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0021[Correction target item name] 0021

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0021】[0021]

【発明の効果】以上説明したように、本発明に係る疲労
強度の優れた溶接構造用鋼の製造方法は上記の構成であ
るから、船舶、海洋構造物、建築物、橋梁、貯槽等の機
械的性質および溶接性が要求されている鋼板に、繰り返
し荷重に耐えられる優れた疲労強度を有する鋼を効果的
に製造することができるという効果を有するものであ
る。
As described above, the method for producing a welded structural steel having excellent fatigue strength according to the present invention has the above-described structure, and therefore is used for machines such as ships, offshore structures, buildings, bridges and storage tanks. It has an effect that a steel having excellent fatigue strength capable of withstanding repeated loads can be effectively produced for a steel sheet required to have high mechanical properties and weldability.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図面の簡単な説明[Name of item to be corrected] Brief description of the drawing

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図面の簡単な説明】[Brief description of drawings]

【図1】△Tと2×10回疲労強度(N/mm)と
の関係を示す図である。
FIG. 1 is a diagram showing the relationship between ΔT and 2 × 10 6 times fatigue strength (N / mm 2 ).

【図2】焼戻し後に強制冷却を行った鋼板の板厚方向の
残留応力分布を示す図である。
FIG. 2 is a diagram showing a residual stress distribution in a plate thickness direction of a steel plate that has been subjected to forced cooling after tempering.

【図3】焼戻し後に強制冷却を行った鋼板の板厚方向の
残留応力分布を示す図である。
FIG. 3 is a diagram showing a residual stress distribution in a plate thickness direction of a steel plate that has been subjected to forced cooling after tempering.

【符号の説明】 1・・・疲労試験片 2・・・切欠 3・・・疲労亀裂[Explanation of symbols] 1 ... Fatigue test piece 2 ... Notch 3 ... Fatigue crack

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 鋼板を焼入れ、焼ならし等のオフライン
熱処理を行うか、或いは、直接焼入れ、加速冷却等のオ
ンライン熱処理を行った後、Ac1点以下の温度におい
て焼戻しを行い、その後の冷却過程において、冷却過程
の各時刻における鋼板表面と鋼板板厚中心部の温度差の
最大値△Tを200℃以上とする強制冷却を行うことを
特徴とする疲労強度の優れた溶接構造用鋼の製造方法。
1. A steel sheet is subjected to off-line heat treatment such as quenching and normalizing, or is subjected to online heat treatment such as direct quenching and accelerated cooling, followed by tempering at a temperature of Ac 1 point or lower and subsequent cooling. In the process, a steel for welded structure having excellent fatigue strength is characterized by performing forced cooling so that the maximum value ΔT of the temperature difference between the steel plate surface and the steel plate thickness center portion at each time of the cooling process is 200 ° C. or more. Production method.
JP8810492A 1992-03-12 1992-03-12 Production of steel for welded structure excellent in fatigue strength Pending JPH06100947A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8810492A JPH06100947A (en) 1992-03-12 1992-03-12 Production of steel for welded structure excellent in fatigue strength

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8810492A JPH06100947A (en) 1992-03-12 1992-03-12 Production of steel for welded structure excellent in fatigue strength

Publications (1)

Publication Number Publication Date
JPH06100947A true JPH06100947A (en) 1994-04-12

Family

ID=13933566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8810492A Pending JPH06100947A (en) 1992-03-12 1992-03-12 Production of steel for welded structure excellent in fatigue strength

Country Status (1)

Country Link
JP (1) JPH06100947A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160021911A (en) 2011-03-28 2016-02-26 제이에프이 스틸 가부시키가이샤 Thick steel sheet having superior fatigue resistance properties in direction of sheet thickness, method for producing same, and fillet welded joint using said thick steel sheet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160021911A (en) 2011-03-28 2016-02-26 제이에프이 스틸 가부시키가이샤 Thick steel sheet having superior fatigue resistance properties in direction of sheet thickness, method for producing same, and fillet welded joint using said thick steel sheet

Similar Documents

Publication Publication Date Title
KR20170107070A (en) A steel plate having high crack-controllability and a manufacturing method thereof
US20020189399A1 (en) Method of producing stainless steels having improved corrosion resistance
JPH01230713A (en) Production of high-strength and high-toughness steel having excellent stress corrosion cracking resistance
KR102525415B1 (en) Manufacturing method of austenitic stainless clad steel sheet, base steel sheet and clad steel sheet
JP3747724B2 (en) 60 kg class high strength steel excellent in weldability and toughness and method for producing the same
JP2007039795A (en) Method for producing high strength steel having excellent fatigue crack propagation resistance and toughness
JP4823841B2 (en) High tensile strength steel sheet for super high heat input welding with low acoustic anisotropy and excellent weldability and tensile strength of 570 MPa class or more and method for producing the same
JP4857583B2 (en) Steel manufacturing method with excellent fatigue crack propagation characteristics with small strength difference in the thickness direction
JP2009132995A (en) High strength thick steel plate for structural use having excellent brittle crack propagation arrest property, and method for producing the same
JPH06100947A (en) Production of steel for welded structure excellent in fatigue strength
JPH06235044A (en) High tensile strength steel for welding structure excellent in fatigue strength and toughness at weld heat-affected zone
JPS62205230A (en) Manufacture of steel plate for low temperature service superior in characteristic for stopping brittle cracking propagation
CN115125377A (en) High-toughness stainless steel plate and processing technology thereof
JP4645462B2 (en) A high-strength steel material excellent in fatigue crack propagation characteristics with low strength dependence and a method for producing the same.
JPH07292445A (en) Duplex stainless clad steel, its production and welding method therefor
JPS6289809A (en) Manufacture of steel for pressure vessel having superior resistance to hydrogen induced cracking
JPH05148543A (en) Accelerated cooling type production of thick steel plate
JPH09310165A (en) Thin steel sheet for working excellent in fatigue characteristic and its production
JPH06930B2 (en) Manufacturing method of extra-thick, low-weldability high-strength steel with excellent resistance to hydrogen sulfide stress corrosion cracking and low temperature toughness
JP3329578B2 (en) Method for producing high-strength Ni steel plate having excellent low-temperature toughness
JPH05295431A (en) Production of thick plate with high toughness
JPH08269566A (en) Production of high strength and high toughness uoe steel pipe excellent in sr characteristic
JPH05271757A (en) Manufacture of steel sheet for low temperature use
JP2002248569A (en) Manufacturing method for steel welding joint for welding structure excellent in fatigue strength
JPH01132716A (en) Production of martensitic stainless clad steel plate having excellent corrosion resistance, wear resistance and toughness