JPH06100921A - Tuyere for metal refining furnace - Google Patents

Tuyere for metal refining furnace

Info

Publication number
JPH06100921A
JPH06100921A JP25476492A JP25476492A JPH06100921A JP H06100921 A JPH06100921 A JP H06100921A JP 25476492 A JP25476492 A JP 25476492A JP 25476492 A JP25476492 A JP 25476492A JP H06100921 A JPH06100921 A JP H06100921A
Authority
JP
Japan
Prior art keywords
tuyere
furnace
pipe
gas
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25476492A
Other languages
Japanese (ja)
Other versions
JP3398986B2 (en
Inventor
Takaiku Yamamoto
高郁 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP25476492A priority Critical patent/JP3398986B2/en
Publication of JPH06100921A publication Critical patent/JPH06100921A/en
Application granted granted Critical
Publication of JP3398986B2 publication Critical patent/JP3398986B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Carbon Steel Or Casting Steel Manufacturing (AREA)
  • Manufacture Of Iron (AREA)
  • Furnace Charging Or Discharging (AREA)

Abstract

PURPOSE:To prevent the damage of a tuyere and a furnace bottom part by constituting the tuyere for metal refining furnace of a triple pipe, embedding the outermost pipe into a furnace wall part and arranging a gas permeable porous body on the peripheral part of an inner pipe at the outside of a center pipe projecting to the inside of the furnace. CONSTITUTION:By blowing combustion assistant gas of C3H8, etc., together with O2 from the tuyere in the furnace bottom part of the metal refining furnace, the refining is executed. This tuyere is constituted of the triple pipe and O2 from the center pipe 32 and C3H8 from the inner pipe 40 are blown, and further, C3H8 for cooling is blown from the outermost pipe 42. The outermost pipe 42 is substantially embedded into the furnace wall part 29, and the inner pipe 40 and the center pipe 32 are set so as to project to the inside of the furnace. Further, the gas permeable porous body 30 is arranged on the outer periphery of the inner pipe 40 so as to stick to at least the tip part thereof and cover the tip part of the outermost pipe 42 and its surrounding part. By this method, the porous body 30 as an artificial mushroom together with the inner pipe 40 are protected by cooling, and the damage the tuyere and the refractory of the furnace wall part 29 around the tuyere can be prevented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、製鋼転炉、鉄の溶融還
元炉などの金属精錬炉の羽口に関する。詳述すれば、金
属精錬炉に収容された溶融金属にガスおよび/ または粉
体を吹き込む羽口に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to tuyere of a metal refining furnace such as a steelmaking converter and a smelting reduction furnace for iron. More specifically, it relates to tuyere for blowing gas and / or powder into molten metal contained in a metal refining furnace.

【0002】[0002]

【従来の技術】金属精錬炉としてその代表例である製鋼
用転炉を例にとって以下説明する。
2. Description of the Related Art A steelmaking converter, which is a typical example of a metal refining furnace, will be described below.

【0003】製鋼用転炉は、近年に至り上吹酸素転炉に
加えて底部からもガスを吹き込む底吹き転炉が広く用い
られるようになってきた。これによれば炉底部より鋼浴
を撹拌するガスを吹き込むことによりスラグと溶鋼の撹
拌が充分に行われ、一方、上部から吹込まれる酸素ガス
によりスラグ中に生成するFeO 量を減少させる等の効果
があり、それにより歩留の向上を計ることができる。
As a steelmaking converter, in recent years, in addition to a top-blown oxygen converter, a bottom-blown converter for blowing gas from the bottom has been widely used. According to this, the slag and molten steel are sufficiently stirred by blowing the gas for stirring the steel bath from the bottom of the furnace, while the amount of FeO generated in the slag by the oxygen gas blown from the upper part is reduced. There is an effect, and thereby the yield can be improved.

【0004】この溶鋼を撹拌するガスの供給口を羽口と
称し、これは通常、鋼製のパイプ構造となっている。そ
のような羽口は常に窒素ガスなどで冷却して溶損を防止
している。特に、酸素または酸素を主体とした混合ガス
を炉底部より吹込むプロセスではそのようなガスを吹込
む底吹羽口の寿命を延ばす方法として上記ガスを吹き込
む管の外側に冷却用のガス通路を有するいわゆる2重管
または3重管からなる多重管羽口が使用されている。
The gas supply port for stirring the molten steel is called a tuyere, which usually has a steel pipe structure. Such tuyere is always cooled with nitrogen gas or the like to prevent melting damage. In particular, in the process of blowing oxygen or a mixed gas mainly containing oxygen from the bottom of the furnace, as a method of extending the life of the bottom blowneck that blows such gas, a gas passage for cooling is provided outside the pipe into which the gas is blown. Multi-tube tuyeres consisting of so-called double or triple tubes are used.

【0005】このように羽口の冷却は最も重要であっ
て、いずれの構造であっても羽口寿命の安定的な延長を
図るためには十分な冷却を行わなければならない。した
がって、このような多重管羽口の冷却ガスとしては不活
性ガスをはじめとして熱分解による吸熱量の大きなプロ
パンガスが一般に使用されている。またプロパンガスの
代わりに灯油やCO2 ガスを使用するプロセスもあるが、
この場合も同様の分解反応に伴う吸熱反応を利用して羽
口を冷却している。
Thus, the cooling of the tuyere is of the utmost importance, and in any structure, sufficient cooling must be performed in order to stably extend the life of the tuyere. Therefore, as a cooling gas for such multi-tube tuyere, propane gas having a large endothermic amount due to thermal decomposition is generally used, including an inert gas. There is also a process that uses kerosene or CO 2 gas instead of propane gas,
Also in this case, the tuyere is cooled by utilizing the endothermic reaction accompanying the same decomposition reaction.

【0006】図3は、溶鋼(1200 〜1650℃) へ多重管羽
口10の2重管12から酸素ガスおよびプロパンガスを吹込
んでいる様子を模式的に示す概略説明図である。図中、
外側のガス通路14から吹込まれるプロパンガスは通路内
で一部分解吸熱するとともに最終的分解生成物であるH2
やCは溶鋼中でO2ガスと反応してCO、H2O ガスを生成
し、溶鋼を撹拌する。このときの反応は次のように記述
することができる。 C3H8 → 3C + 4H2 吸熱反応 C + 1/2O2 → CO 発熱反応 H2 + 1/2O2 → H2O 発熱反応 しかし、上記ガス生成反応は全体として発熱反応である
ため、羽口出口近傍は非常に高温となり、溶損が生じや
すくなる。また、このようなガスが泡となって羽口先端
から離れる際、泡の弾性によってバックアタックが生じ
る。レンガ面においてはバックアタックによる応力を直
接受けることになる。また側面、上面からの加熱および
羽口部からの冷却とで大きな温度勾配を生じ、レンガ面
にはさらに熱的応力も加わることになる。これらの応力
でレンガ面に亀裂が発生し、さらにこの亀裂の中にスラ
グメタルが侵入し、亀裂が進展していくものと推定され
る。
FIG. 3 is a schematic explanatory view schematically showing a state where oxygen gas and propane gas are blown into the molten steel (1200 to 1650 ° C.) from the double pipe 12 of the multi-tuyere 10. In the figure,
Propane gas blown from the outer gas passage 14 partially decomposes and absorbs heat in the passage, and H 2 which is the final decomposition product.
And C react with O 2 gas in the molten steel to generate CO and H 2 O gas, and stir the molten steel. The reaction at this time can be described as follows. C 3 H 8 → 3C + 4H 2 endothermic reaction C + 1 / 2O 2 → CO exothermic reaction H 2 + 1 / 2O 2 → H 2 O exothermic reaction However, since the above gas generation reaction is an exothermic reaction as a whole, The temperature near the mouth and outlet becomes extremely high, and melting loss is likely to occur. Further, when such a gas forms bubbles and leaves the tuyere tip, a back attack occurs due to the elasticity of the bubbles. On the brick surface, the stress due to the back attack is directly received. In addition, a large temperature gradient is generated by heating from the side surface and the upper surface and cooling from the tuyere, and thermal stress is further applied to the brick surface. It is presumed that a crack is generated on the brick surface due to these stresses, slag metal further enters the crack, and the crack propagates.

【0007】一方、図4および図5に示すように、これ
らの冷却ガスが分解して生成したガスが溶鋼を過冷却す
ることにより羽口上方にマッシュルーム20と言われる凝
固物を生成する。このとき小さなマッシュルームが生成
しはじめたとしてもこのような亀裂で耐火物は剥離し同
時にマッシュルームは溶損または脱落する。これらのく
り返しにより羽口、周辺耐火物が損傷するが、損傷くぼ
みがある程度の大きさになると溶鋼の停滞域 (デッドゾ
ーン) ができ溶鋼対流による熱の供給が減少し、図5に
示すようにマッシュルーム20は大きく成長する。このマ
ッシュルームが徐々に成長することで羽口および羽口周
辺の耐火物が保護される。
On the other hand, as shown in FIGS. 4 and 5, the gas produced by decomposing these cooling gases supercools the molten steel to produce a solidified material called mushroom 20 above the tuyere. At this time, even if small mushrooms start to form, the cracks cause the refractory to peel off, and at the same time the mushrooms melt away or fall off. Due to these repetitions, the tuyere and surrounding refractories are damaged, but when the damage depression becomes large to some extent, a stagnant zone (dead zone) of molten steel is created and the heat supply by molten steel convection decreases, as shown in Fig. 5. Mushroom 20 grows big. The gradual growth of this mushroom protects the tuyere and the refractory material around the tuyere.

【0008】すなわち、図4では外側のガス通路14の出
口近傍にまず小さなマッシュルーム20が生じ、次いでこ
れが図5に示すような大きなマッシュルーム20に成長し
てゆくのである。このようなマッシュルームができるま
では図3に示すようなCO、H2O ガス生成時のバックアタ
ックにより羽口周囲の耐火物には亀裂が発生したり、さ
らに熱応力が加わったり、スラグ、メタル侵入層が生じ
たりして熱損傷が起こり、その部分の耐火物は剥離し
て、図4に斜線領域で示すような耐火物侵食領域13が生
成する。
That is, in FIG. 4, a small mushroom 20 is first generated in the vicinity of the outlet of the outer gas passage 14, and then this grows into a large mushroom 20 as shown in FIG. Until such mushrooms are formed, the refractory around the tuyere cracks due to the back attack when CO and H 2 O gas are generated, as shown in Fig. 3, and further heat stress is applied, slag, metal, etc. Thermal damage occurs due to the formation of an intrusion layer, and the refractory in that portion is peeled off to form a refractory erosion area 13 as shown by the shaded area in FIG.

【0009】このように、炉の稼動初期には羽口金物し
かなくマッシュルームがない状態で溶湯を入れるために
冷却ガスは羽口金物先端部で分解し溶鋼と接触する部分
においては供給された酸素と反応することになる。
As described above, in the early stage of operation of the furnace, the cooling gas is decomposed at the tip of the tuyere metal to enter the molten metal with only the tuyere metal and no mushroom, and the supplied oxygen is supplied to the portion in contact with the molten steel. Will react with.

【0010】したがって、炉稼動初期の羽口、羽口周辺
耐火物の損傷を防止するためにはスラグメタルの侵入を
防止し周辺のレンガをも含めた保護が必要である。一旦
図5に示すようなマッシュルーム20が生じてしまえば、
そのような熱損傷の心配はなく、羽口を長寿命化するこ
とができる。しかし、それまでの羽口および周囲耐火物
の損傷を回復させることはできない。このように、羽口
および羽口周辺の耐火物の寿命はこのマッシュルーム生
成により律速されており健全なマッシュルームの速やか
な生成方法が羽口寿命の長期化には重要となっている。
Therefore, in order to prevent damage to the tuyere and refractory around the tuyere at the beginning of the operation of the furnace, it is necessary to prevent the invasion of slag metal and protect the surrounding bricks. Once you have mushrooms 20 as shown in Figure 5,
There is no concern about such heat damage, and the tuyere can have a long life. However, the damage to the tuyere and surrounding refractories up to that point cannot be recovered. As described above, the lifetime of the tuyere and the refractory material around the tuyere is controlled by the mushroom formation, and a rapid method for producing healthy mushrooms is important for prolonging the tuyere life.

【0011】例えば特開昭62−109918号公報に示されて
いる方法では、2重または3重管を用い、外側の管から
はプロパンガスとCO2 ガスとの混合ガスを供給し、炉内
にマッシュルームを速やかに形成させようとしている。
しかし、実操業においては、溶鋼を操業過程で冷却し、
通気性の凝固物であるマッシュルームを速やかに生成さ
せることは困難であり、ある程度の耐火物損傷は止むを
得ず、それに伴って羽口寿命の延長にも限界があると考
えられてきた。
For example, in the method disclosed in Japanese Unexamined Patent Publication No. 62-109918, a double or triple tube is used, and a mixed gas of propane gas and CO 2 gas is supplied from the outer tube and the inside of the furnace is supplied. Trying to quickly form mushrooms.
However, in actual operation, the molten steel is cooled in the operation process,
It is difficult to quickly generate mushrooms, which are breathable coagulates, and some damage to refractories is unavoidable, and it has been considered that the tuyere life can be extended accordingly.

【0012】さらにスクラップを溶解したり、鉱石を還
元して銑鉄を製造する場合等において、初期に溶湯がな
い場合には特にマッシュルームの生成は困難でかつ精錬
初期過程での羽口損傷が大きい。
Further, when there is no molten metal in the initial stage, such as when scrap is melted or ore is reduced to produce pig iron, it is particularly difficult to produce mushrooms and the tuyere damage is large in the initial stage of refining.

【0013】[0013]

【発明が解決しようとする課題】ここに、本発明の目的
は、従来法の欠点である金属精錬炉の炉底等に設置され
た多重管底吹羽口において炉稼動初期のマッシュルーム
未生成時期における羽口およびその周囲の炉底部の損傷
を防止し羽口寿命の長期化を可能にする羽口を提供する
ことである。
SUMMARY OF THE INVENTION The object of the present invention is to provide a mushroom non-formation timing at the beginning of furnace operation at a multi-tube bottom blowhole installed on the bottom of a metal refining furnace, which is a drawback of the conventional method. The present invention is to provide a tuyere that prevents damage to the tuyere and the furnace bottom part around the tuyere and enables a long life of the tuyere.

【0014】本発明者は、かかる課題を達成すべく、金
属精錬炉の炉底部等に多重管羽口を設けて冷却を行う場
合、その損傷は炉の稼動初期のマッシュルーム未生成期
および不安定期に集中して見られることに着目し、予め
人工的に形成したマッシュルームを最初より設置するこ
とにより、羽口保護を行うことで長寿命化をはかるとの
着想に至り、先に特願平3−68573 号として特許出願を
行った。
In order to achieve the above object, the inventor of the present invention, when cooling is performed by providing multiple pipe tuyeres at the bottom of a metal refining furnace, the damage is caused by the mushroom non-production period and the unstable period in the initial operation of the furnace. Focusing on the fact that the mushrooms are concentrated in the area, the idea is to install the artificially formed mushrooms from the beginning to protect the tuyere and extend the service life. Patent application was filed as -68573.

【0015】確かに、かかる方法によれば従来法に比較
して格段に羽口周辺の耐用性は向上し長寿化を図ること
ができるが、実際に用いる転炉では1日に30チャージも
吹錬することは珍しくなく、かつ1000チャージ以上連続
して使用するものである。しかしながら、上述の羽口を
用いても、そのようにチャージ数を重ねていくと、支燃
性ガス (O2、Air 等) の配管先端部が溶損することが判
明した。
Certainly, according to such a method, the durability around the tuyere can be markedly improved and the life can be prolonged as compared with the conventional method, but in the converter actually used, 30 charges are blown per day. Smelting is not uncommon, and it is used continuously for 1000 charges or more. However, it was found that even if the above-mentioned tuyere is used, the tip end of the pipe of the combustion-supporting gas (O 2 , Air, etc.) will be melted if the number of charges is increased.

【0016】すなわち、図6(a) に示すように、30チャ
ージ程度までは保護作用は十分に見られるが、30チャー
ジを越えると図6(b) に示すようにマッシュルーム先端
に溶損が見られるようになる。そして、そのまま溶損が
進行すると、図6(c) に示すように中心管14の溶損も進
み、最終的には図6(d) に示すようにして炉壁の損傷に
到るようになる。よって、本発明のより具体的目的は、
そのような長期間の使用中にあっても耐火物および羽口
の損傷を可及的小とすることができる金属精錬炉羽口の
構造を提供することである。
That is, as shown in FIG. 6 (a), the protective action is sufficiently observed up to about 30 charges, but when the charge exceeds 30 charges, melting loss is observed at the mushroom tip as shown in FIG. 6 (b). Will be available. When the melting loss progresses as it is, the melting loss of the central tube 14 also progresses as shown in FIG. 6 (c), and finally the furnace wall is damaged as shown in FIG. 6 (d). Become. Therefore, a more specific object of the present invention is
It is an object of the present invention to provide a metal refining furnace tuyere structure capable of minimizing damage to the refractory and tuyere even during such long-term use.

【0017】[0017]

【課題を解決するための手段】したがって、本発明者
は、この点についてさらに検討した結果、次のような知
見を得て、本発明を完成した。 支燃性ガスは、2[C] +O2 →2CO ( 発熱反応) の反
応式に示されるようにメタル中[C] とも反応するため、
支燃性ガス配管先端の受熱が大きくなることは避けられ
ない。
Therefore, as a result of further studying this point, the present inventor completed the present invention with the following findings. Since the combustion-supporting gas also reacts with [C] in the metal as shown in the reaction formula of 2 [C] + O 2 → 2CO (exothermic reaction),
Increasing the amount of heat received at the tip of the combustion-supporting gas pipe is inevitable.

【0018】しかしながら、前述のような人工マッシ
ュルームによる冷却はほぼ均一に行われる。 したがって、時間経過に伴って支燃性ガスの配管先端
は溶損し易い。
However, the cooling by the artificial mushroom as described above is performed almost uniformly. Therefore, the tip of the pipe for the combustion-supporting gas is easily melted with the passage of time.

【0019】そこで、支燃性ガス配管の周囲にもう1
つ冷却ガスを通す多重管を設置し、その外側を多孔質メ
タルおよび/または耐火物などのガス通気性多孔質体で
保護すると、支燃性ガス配管の保護と、稼働初期の周囲
耐火物の保護とが両方可能となり、長期的に耐用性のあ
る羽口が構成される。
Therefore, another one is placed around the combustion-supporting gas pipe.
If multiple pipes for passing cooling gas are installed and the outside is protected by a gas permeable porous material such as porous metal and / or refractory, protection of flammable gas piping and surrounding refractories at the beginning of operation Provides both protection and a long-lasting tuyere.

【0020】ここに、本発明は、三重管から構成される
金属精錬炉羽口であって、最外管を炉壁部に実質上埋設
するとともに内管および中心管を炉内側に突出して設置
し、該内管の外周に少なくともその先端部において密着
するとともに前記最外管の先端部とその周辺部を覆うよ
うにして設けたガス通気性多孔質体を備えた金属精錬炉
羽口である。
The present invention is a tuyere of a metal refining furnace composed of triple tubes, in which the outermost tube is substantially buried in the furnace wall and the inner tube and the central tube are projected inside the furnace. A metal refining furnace tuyere provided with a gas-permeable porous body that is adhered to the outer circumference of the inner tube at least at its tip and covers the tip of the outermost tube and its periphery. .

【0021】本発明の好適態様によれば、上記ガス通気
性多孔質体は、前記内管および中心管が通過できるよう
に中心部は開孔し、全体的に前述のマッシュルームに同
一または近似した形態を有する冷却ガスが通過する多孔
質耐火物または金属から構成される。
According to a preferred embodiment of the present invention, the gas permeable porous body has an opening at the center so that the inner tube and the central tube can pass therethrough, and is generally the same as or close to the mushroom described above. It is composed of a porous refractory or metal through which a morphological cooling gas passes.

【0022】[0022]

【作用】図1は、本発明にかかる羽口の1例を略式で示
す断面図であり、図2は羽口へのガス供給系を併せて示
す略式説明図である。図示のように、本発明にかかる三
重管から構成される金属精錬炉羽口28は、炉壁部29に実
質上埋設された最外管42と、炉内側に突出して設置され
た内管40および中心管32と、この内管の外周に少なくと
もその先端部において密着するとともに前記最外管の先
端部を覆うようにして設けたガス通気性多孔質体30とか
ら構成される。
1 is a schematic sectional view showing an example of a tuyere according to the present invention, and FIG. 2 is a schematic explanatory view showing a gas supply system to the tuyere together. As shown in the figure, a metal refining furnace tuyere 28 composed of a triple tube according to the present invention includes an outermost tube 42 which is substantially buried in a furnace wall 29, and an inner tube 40 which is installed so as to project inside the furnace. And a central tube 32, and a gas-permeable porous body 30 provided so as to adhere to the outer circumference of the inner tube at least at its tip and cover the tip of the outermost tube.

【0023】図示例にあっては、最外管42も一部炉内側
に突出しているが、内管および中心管と比較して極く僅
かであり、その突出量は多孔質体30の固定を容易にする
ためである。したがって、適宜固定手段が設けられてい
る限りにおいて、そのような突出は必要なく、図2に示
すように完全に炉壁に埋設される状態で設置されてもよ
い。しかし、好ましくは、多孔質体30にもその底部に最
外管との嵌合部31を設けておき、それに対応して最外管
にも突出部を設けておく。
In the illustrated example, the outermost tube 42 also partially projects inside the furnace, but it is extremely small compared to the inner tube and the central tube, and the amount of projection is fixed to the porous body 30. This is to facilitate. Therefore, as long as appropriate fixing means are provided, such protrusion is not necessary and may be installed in a state of being completely embedded in the furnace wall as shown in FIG. However, preferably, the porous body 30 is also provided with a fitting portion 31 for fitting with the outermost tube at the bottom portion thereof, and correspondingly, a projecting portion is also provided for the outermost tube.

【0024】全体がきのこ型のガス通気性多孔質体30
は、溶融金属に対するある程度の抵抗性を有している、
いわゆる多孔質金属あるいはセラミックスであって、ガ
ス透過性であればいずれであってもよい。
Whole mushroom type gas permeable porous body 30
Has some resistance to molten metal,
Any so-called porous metal or ceramic may be used as long as it is gas permeable.

【0025】多孔質体30の中心には中心管32が、そして
その外側に内管40がそれぞれ貫通して設けられており、
これは図2からよく分かるように、多重管羽口の中心孔
34に対し同心状に配置されるようになっている。多重管
羽口の中心孔34の周囲に設けられた冷却ガス用のノズル
孔38は中心孔34と同じ距離だけ炉内側に突出しており、
その周囲にはさらに冷却ガスのノズル孔36が設けられて
いる。このノズル孔36の周囲は前述の多孔質体30が覆う
ようになっている。
A central tube 32 is provided at the center of the porous body 30, and an inner tube 40 is provided at the outer side of the central tube 32.
As can be seen from Fig. 2, this is the central hole of the multi-tuyere.
It is arranged concentrically with respect to 34. Nozzle holes 38 for cooling gas provided around the central hole 34 of the multi-tube tuyere project to the inside of the furnace by the same distance as the central hole 34,
Further, a nozzle hole 36 for cooling gas is provided around it. The periphery of the nozzle hole 36 is covered with the porous body 30 described above.

【0026】冷却用ガスはこのノズル孔36から出て多孔
質本体30を経てから溶鋼中に放出される。このときの放
出面積、つまり多孔質本体の外表面は炉内側に向かって
拡大しているため外表面から放出される冷却用ガスが中
心孔からの酸素ガスと接触する機会は著しく少なくな
り、分解生成物と酸素ガスとの急激な反応は阻止され
る。
The cooling gas exits from the nozzle hole 36, passes through the porous body 30, and is discharged into the molten steel. At this time, the release area, that is, the outer surface of the porous body expands toward the inside of the furnace, so the chances that the cooling gas released from the outer surface will contact the oxygen gas from the center hole is significantly reduced, and The rapid reaction between the product and oxygen gas is prevented.

【0027】本発明にかかる羽口を構成する多孔質体30
とは、金属または耐火物であり、機械的に小さな孔を多
数開けてもよいが、粉末冶金法による焼結体、さらには
金属の場合には発泡金属のようなものがより好ましい。
また、繊維の中に気孔を有するセラミックス繊維の集合
体、すなわちセラミックスフォームを鋳型の中に入れ、
その上に金属を鋳込んで作成すると比較的容易に多孔質
体を製造することができ、安価に保護部材を作成するこ
とが可能である。この場合には多孔質体は、金属とセラ
ミックスフォームからなる。
The porous body 30 constituting the tuyere according to the present invention
Is a metal or refractory, and a large number of small holes may be mechanically formed, but a sintered body by a powder metallurgy method, and in the case of metal, a foamed metal is more preferable.
Also, an aggregate of ceramic fibers having pores in the fibers, that is, ceramic foam is put in a mold,
If a metal is cast on it to make it, the porous body can be manufactured relatively easily, and the protective member can be made at low cost. In this case, the porous body consists of metal and ceramic foam.

【0028】また、金属成分としては自然のマッシュル
ームと同じく溶銑より低い炭素濃度0.5 〜3.5 %の鉄、
鋼が望ましく、その他は精錬に悪影響を及ぼさない成分
であればよい。鋳鉄等が望ましいが、ステンレス鋼のよ
うな耐熱鋼でもよい。
As the metal component, iron having a carbon concentration of 0.5 to 3.5%, which is lower than that of hot metal, as in natural mushrooms,
Steel is desirable, and other components may be used as long as they do not adversely affect refining. Cast iron or the like is preferable, but heat resistant steel such as stainless steel may be used.

【0029】また、耐火物としてはMgO を主体とするマ
グカーボン、マグドロ、マグクロれんが等である。気孔
率としては、気孔密度5 〜50個/cm2、気孔径<0.6mm が
好ましい。
Further, the refractory material is magcarbon mainly composed of MgO, magdoro, magro brick or the like. The porosity is preferably 5 to 50 pores / cm 2 and a pore diameter <0.6 mm.

【0030】多孔質体30の形状は特に制限はなく、中心
管32および内管40が貫通して設置される貫通孔を有し、
内管40の外周に少なくともその先端において密着し、か
つ冷却ガス用ノズル孔36とその周辺部を覆う構造であれ
ば、特定構造のものには制限されない。なお、ここに
「周辺部」とはいわゆるマッシュルーム未生成期間に少
なくとも耐火物の溶損が見られる領域ということであ
る。
The shape of the porous body 30 is not particularly limited and has a through hole through which the central tube 32 and the inner tube 40 are installed,
The structure is not limited to a specific structure as long as it is in close contact with the outer periphery of the inner pipe 40 at least at its tip and covers the cooling gas nozzle hole 36 and its peripheral portion. Here, the "peripheral portion" means a region where at least melting of the refractory is observed during the so-called mushroom non-generation period.

【0031】しかも、一般には図1に示すように多孔質
の本体30内をガスがより均一に流れるためには半円球状
に近い形がよい。その他、断面が台形、矩形、さらには
円錐形であってもよい。
Moreover, in general, in order for the gas to flow more uniformly in the porous main body 30 as shown in FIG. 1, a shape close to a semi-spherical shape is preferable. In addition, the cross section may be trapezoidal, rectangular, or conical.

【0032】図2に示すように、実際の操業に当たっ
て、底吹き羽口中心孔34より撹拌用のガス(O2)を、ノズ
ル孔36、38よりプロパンガス等の冷却用ガスをそれぞれ
吹込むと、ノズル孔36からの冷却用ガス (例: プロパン
ガス) は多孔質体内30で熱分解し、この多孔質体を冷却
し、一方ノズル孔38からの冷却用ガス (例: プロパンガ
ス) は中心管32の先端において分解吸熱反応を引き起こ
すことによりそれを冷却している。かくして、多重管で
ある羽口金物および周辺部の耐火物を保護する。前述の
ように、多孔質体30の固定手段は特定のものに制限され
ないが、例えば、図1に示すように、気孔を設けた鋼
(C≦2%) もしくは耐火物またはそれらの混合物でも
って多重管羽口の中心管32、内管40、最外管42を構成
し、内管40および最外管42の先端部に予めネジ加工を施
しておき、この多重管羽口の内・最外管を炉内に突き出
して設けておき、これに内管・最外管が嵌合される貫通
孔部分を備え、それぞれの孔内側に同じくネジ加工した
多孔質体30をネジ込んでもよい。このときは図1に示す
ように内管40を取り囲むように多孔質体内に一種のガス
の溜め44を設けておくのが好ましい。
As shown in FIG. 2, in actual operation, a stirring gas (O 2 ) is blown from the bottom blowing tuyere center hole 34, and a cooling gas such as propane gas is blown from the nozzle holes 36 and 38, respectively. Cooling gas from the nozzle hole 36 (e.g. propane gas) is thermally decomposed in the porous body 30 to cool the porous body, while cooling gas from the nozzle hole 38 (e.g. propane gas) It is cooled by causing a decomposition endothermic reaction at the tip of the central tube 32. Thus, the multi-tube tuyere hardware and the surrounding refractory material are protected. As described above, the fixing means for the porous body 30 is not limited to a particular one, but, for example, as shown in FIG.
(C ≦ 2%) or a refractory material or a mixture thereof to configure the central tube 32, the inner tube 40, and the outermost tube 42 of the multi-tuyere, and pre-screw the tips of the inner tube 40 and the outermost tube 42. The inner and outermost pipes of this multi-tube tuyere are provided so as to project into the furnace, and the inner and outermost pipes are fitted with through-holes. Similarly, the porous body 30 that has been threaded may be screwed into. At this time, it is preferable to provide a kind of gas reservoir 44 in the porous body so as to surround the inner tube 40 as shown in FIG.

【0033】[0033]

【実施例】表1に示す精錬条件で図1に示す本発明にか
かる底吹き三重管羽口を用い、溶鋼の吹き込み精錬試験
を行った。多孔質体の材質は、重量%で、C:1.67 、S
i: <0.01、P:0.050、S:0.004、Mn:0.30 、残部Feの
金属をセラミックスフォーム中に鋳込んだものであり、
気孔径は0.15〜0.3 mm、気孔数は35〜50個/cm2 であっ
た。寸法は、高さ80mm、直径160mm であった。
EXAMPLE Under the refining conditions shown in Table 1, a bottom-blown triple tube tuyere according to the present invention shown in FIG. The weight of the porous material is C: 1.67, S
i: <0.01, P: 0.050, S: 0.004, Mn: 0.30, the balance of Fe metal is cast into a ceramic foam,
The pore diameter was 0.15 to 0.3 mm, and the number of pores was 35 to 50 / cm 2 . The dimensions were 80 mm high and 160 mm in diameter.

【0034】表2に従来例および比較例の操業結果をま
とめた。比較例では同一の多孔質体を用いたが特願平3
−68573 号に示す二重管羽口を用いた。これは図6に示
す構造に相当する。
Table 2 shows the operation results of the conventional example and the comparative example. In the comparative example, the same porous material was used, but Japanese Patent Application No.
The double pipe tuyere shown in −68573 was used. This corresponds to the structure shown in FIG.

【0035】その結果、従来のように保護部材として多
孔質体を設けなかった羽口においても30チャージ後にお
いて直径120 mm程度のマッシュルームが生成していた
が、初期の羽口長さに対し平均0.28mm/ch の損傷があっ
た。比較例では、初期の羽口長さに対し0.19mm/ch の損
傷であり、かつ当初取付けた保護部材は健全で羽口周辺
レンガの損傷はほとんどなかった。
As a result, mushrooms having a diameter of about 120 mm were formed after 30 charges even in the tuyere in which the porous member was not provided as a protective member as in the conventional case, but the tuyere had an average length with respect to the initial tuyere length. There was damage of 0.28mm / ch. In the comparative example, the initial tuyere length was damaged by 0.19 mm / ch, and the protective member initially attached was sound, and the bricks around the tuyere were hardly damaged.

【0036】しかし、比較例ではチャージ数が増加する
と損耗も大になるが、本発明にかかる三重管羽口では羽
口近傍冷却を飛躍的に増しているので、低損耗を維持で
きる。したがって、本発明によれば、長期に亘って低い
損耗量が維持されていることが判る。なお、本例におけ
る出鋼時の炭素含有量は0.05%、温度は1660℃であっ
た。
However, in the comparative example, wear increases as the number of charges increases, but in the triple tube tuyere according to the present invention, cooling near the tuyere is dramatically increased, so that low wear can be maintained. Therefore, according to the present invention, it is understood that the low wear amount is maintained for a long period of time. The carbon content at the time of tapping in this example was 0.05%, and the temperature was 1660 ° C.

【0037】[0037]

【表1】 [Table 1]

【0038】[0038]

【発明の効果】本発明により簡便な手段でもって上底吹
き転炉の重要な要素部材である底吹き羽口の寿命を延長
することが可能でそのコストメリットは大きい。本発明
は実用上の利益の大きな発明ということができる。
According to the present invention, it is possible to extend the life of the bottom blowing tuyere, which is an important element of the upper bottom blowing converter, by a simple means, and the cost merit is great. It can be said that the present invention has a great practical advantage.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明にかかる羽口構造の略式断面図である。FIG. 1 is a schematic sectional view of a tuyere structure according to the present invention.

【図2】本発明にかかる羽口構造をガス供給系とともに
示す略式断面図である。
FIG. 2 is a schematic sectional view showing a tuyere structure according to the present invention together with a gas supply system.

【図3】従来より見られた底吹き羽口からのガス吹込み
の様子の略式説明図である。
FIG. 3 is a schematic explanatory view of the state of gas injection from a bottom-blown tuyere that has been conventionally observed.

【図4】同じく底吹き羽口近傍の耐火物の損傷の様子の
略式説明図である。
FIG. 4 is a schematic explanatory view of how the refractory near the bottom blowing tuyere is damaged.

【図5】同じく羽口前面に形成されたいわゆるマッシュ
ルームの略式説明図である。
FIG. 5 is a schematic explanatory view of a so-called mushroom that is also formed on the front surface of the tuyere.

【図6】図6(a) ないし図6(d) は、特願平3−68573
号において開示した羽口近傍耐火物の損耗の様子の略式
説明図である。
6 (a) to 6 (d) are shown in Japanese Patent Application No. 3-68573.
FIG. 7 is a schematic explanatory view showing the manner of wear of the refractory near the tuyere disclosed in No.

【符号の説明】[Explanation of symbols]

28: 金属精錬羽口 29: 炉壁部 30: ガス通気性多孔質体 32: 中心管 34: 中心孔 36: ノズル孔 38: ノズル孔 40: 内管 42: 最外管 28: Metal refining tuyere 29: Furnace wall 30: Gas permeable porous body 32: Center tube 34: Center hole 36: Nozzle hole 38: Nozzle hole 40: Inner tube 42: Outermost tube

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 三重管から構成される金属精錬炉羽口で
あって、最外管を炉壁部に実質上埋設するとともに内管
および中心管を炉内側に突出して設置し、さらに該内管
の外周に少なくともその先端部において密着するととも
に前記最外管の先端部とその周辺部を覆うようにして設
けたガス通気性多孔質体を備えた金属精錬炉羽口。
1. A metal refining furnace tuyere composed of triple tubes, wherein the outermost tube is substantially buried in the furnace wall, and the inner tube and the central tube are installed so as to project inside the furnace, and A metal refining furnace tuyere provided with a gas-permeable porous body which is closely attached to the outer periphery of the tube at least at its tip and covers the tip of the outermost tube and its periphery.
JP25476492A 1992-09-24 1992-09-24 Metal smelting tuyere Expired - Fee Related JP3398986B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25476492A JP3398986B2 (en) 1992-09-24 1992-09-24 Metal smelting tuyere

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25476492A JP3398986B2 (en) 1992-09-24 1992-09-24 Metal smelting tuyere

Publications (2)

Publication Number Publication Date
JPH06100921A true JPH06100921A (en) 1994-04-12
JP3398986B2 JP3398986B2 (en) 2003-04-21

Family

ID=17269560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25476492A Expired - Fee Related JP3398986B2 (en) 1992-09-24 1992-09-24 Metal smelting tuyere

Country Status (1)

Country Link
JP (1) JP3398986B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4826739A (en) * 1986-08-01 1989-05-02 Hitachi Maxell, Ltd. Magnetic recording medium
US7496429B2 (en) 2000-06-22 2009-02-24 Hitachi, Ltd. Power plant operation control system and a power plant maintaining and managing method
JP2017020083A (en) * 2015-07-13 2017-01-26 新日鐵住金株式会社 Gas blowing method and gas blowing nozzle for metal melting and refining furnace

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4826739A (en) * 1986-08-01 1989-05-02 Hitachi Maxell, Ltd. Magnetic recording medium
US7496429B2 (en) 2000-06-22 2009-02-24 Hitachi, Ltd. Power plant operation control system and a power plant maintaining and managing method
US8412384B2 (en) 2000-06-22 2013-04-02 Hitachi, Ltd. Power plant operation control system and a power plant maintaining and managing method
JP2017020083A (en) * 2015-07-13 2017-01-26 新日鐵住金株式会社 Gas blowing method and gas blowing nozzle for metal melting and refining furnace

Also Published As

Publication number Publication date
JP3398986B2 (en) 2003-04-21

Similar Documents

Publication Publication Date Title
US3960546A (en) Method for eliminating nose-skulls from steelmaking vessels
JP4745731B2 (en) Method of melting hot metal with cupola
JP3398986B2 (en) Metal smelting tuyere
US2741554A (en) Method of refining iron
US20030090044A1 (en) Method and apparatus for melting metal in a shaft furnace
US4330108A (en) Method for cooling tuyeres
JPH0723494B2 (en) Method and apparatus for refining molten metal
US4462825A (en) Method for increasing the scrap melting capability of metal refining processes
US4007035A (en) Method of using an expendable tap hole tuyere in open hearth decarburization
JPH04304307A (en) Protective member for tuyere in refining furnace and its protective method
You et al. Oxygen refining of molten high-carbon ferromanganese
JPH0639612B2 (en) Tubular structure of converter bottom
JPH07300608A (en) Blowing mathod for oxidizing gas into molten metal
RU2397253C1 (en) Procedure for application of slag scull on converter lining
JP2533815B2 (en) Operating method of bottom blown converter
JP2000096121A (en) Blow-refining method for restraining sticking of metal in converter type refining furnace
US5916512A (en) Method and apparatus for after-burning the combustible components of the atmosphere in metallurgical smelting vessels
JP2876955B2 (en) Repair method for converter type refining vessel with gas injection tuyere
JP2000096119A (en) Blow-refining method for restraining sticking of metal in converter type refining furnace
JPS61276912A (en) Operating method for top and bottom blown converter
JP2809058B2 (en) Refining method in converter type refining vessel
JPH11293319A (en) Manufacture of steel by converter free from adhesion of metal in furnace
JPS59185718A (en) Method for blowing gas into molten iron in steel manufacture vessel
JPH05171236A (en) Protection member for tuyere in metal melting furnace
JPH01129920A (en) Oxygen lance

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030121

LAPS Cancellation because of no payment of annual fees