JPH0610057A - Method and device for controlling temperature of strip material in heating furnace - Google Patents

Method and device for controlling temperature of strip material in heating furnace

Info

Publication number
JPH0610057A
JPH0610057A JP19341592A JP19341592A JPH0610057A JP H0610057 A JPH0610057 A JP H0610057A JP 19341592 A JP19341592 A JP 19341592A JP 19341592 A JP19341592 A JP 19341592A JP H0610057 A JPH0610057 A JP H0610057A
Authority
JP
Japan
Prior art keywords
furnace
plate
temperature
heating furnace
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19341592A
Other languages
Japanese (ja)
Other versions
JP3072680B2 (en
Inventor
Kazunori Tatsuno
和徳 龍野
Akihiko Hasegawa
明彦 長谷川
Shozo Kato
正造 加藤
Naoharu Yoshitani
直治 芳谷
Masashi Kachi
正志 加地
Hideaki Nishino
英昭 西野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Sheet Corp
Nippon Steel Corp
Original Assignee
Daido Steel Sheet Corp
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Sheet Corp, Nippon Steel Corp filed Critical Daido Steel Sheet Corp
Priority to JP4193415A priority Critical patent/JP3072680B2/en
Publication of JPH0610057A publication Critical patent/JPH0610057A/en
Application granted granted Critical
Publication of JP3072680B2 publication Critical patent/JP3072680B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Control Of Heat Treatment Processes (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

PURPOSE:To enable the control of plural heating furnaces with a single control part at the same time by calculating a typical fuel flow rate and an individual fuel flow rate based on a typical furnace temp. calculated from each furnace temp. of plural heating furnace arranged in series. CONSTITUTION:The temp. of the steel strip passing through plural heatiang furnaces A, B arranged in series along a conveying course is controlled by controlling the fuel flow rate. Then, from the actual value of the furnace temps. Fa. Fb in each of the heating furnaces A, B, the typical furnace temp. F in an apparent single typical furnace R including these furnaces is calculated in a typical furnace temp. calculating part CF. The typical furnace temp. F together with the strip temp. T in the strip temp. meter TB are inputted into an optimum strip temp. control part C. At this time, based on the production information I containing the aimed strip temp. T0, the typical fuel flow rate Q of the typical furnace R is calculated. Based on the setting value Q, the individual fuel flow rates Qa, Qb in each of the heating furnaces A, B are calculated in an individual flow rate calculating part CQ. Based on these setting values Qa, Qb, the heating furnaces A, B are controlled.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、鋼板や薄鋼帯の焼鈍な
どに利用される板状体の加熱炉板温制御方法と装置に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heating furnace plate temperature control method and apparatus for a plate-like body used for annealing a steel plate or a thin steel strip.

【0002】[0002]

【従来の技術】冷間圧延後の鋼板を、直列配置された加
熱炉や均熱炉や冷却炉内に搬送機構を用いて連続的に通
過させて焼鈍することにより、強度などの品質の向上を
図る連続焼鈍処理設備が設置されている。このような連
続焼鈍処理設備では、処理後の鋼板の品質を確保すると
共にヒートバックルなどの操業トラブルを回避するうえ
で、「板温」と称される鋼板の温度の制御が重要であ
り、特に加熱炉における板温制御が重要な課題となって
いる。
2. Description of the Related Art A steel sheet after cold rolling is continuously passed through a heating furnace, a soaking furnace or a cooling furnace arranged in series by using a transfer mechanism and annealed to improve quality such as strength. A continuous annealing treatment facility is installed. In such a continuous annealing treatment facility, in order to ensure the quality of the steel sheet after treatment and avoid operating troubles such as heat buckles, it is important to control the temperature of the steel sheet, which is called "sheet temperature". Plate temperature control in a heating furnace has become an important issue.

【0003】連続焼鈍処理設備では、「板幅」と称され
る鋼板の幅や「板厚」と称される鋼板の厚みなどが異な
る異種の鋼板を、自動溶接機構を用いて継ぎ合せて連続
的に供給する「セット替」と称される手法が採用されて
いる。このようなセット替に伴って出現する異種鋼板間
の継ぎ目では加熱炉板温制御のパラメータとなる板幅、
板厚などが階段状に変化し、また、「通板速度」と称さ
れる鋼板の搬送速度が毎分数十mから数百mにも達する
という状況のもとで、相当に高度の制御が必要になる。
In the continuous annealing treatment equipment, different kinds of steel plates having different widths such as "plate width" and "plate thickness" are joined together by using an automatic welding mechanism. A method called "replacement of set" is adopted. At the joint between different steel plates that appears with such a set change, the plate width, which is a parameter for the heating furnace plate temperature control,
Under the situation that the plate thickness changes stepwise and the conveying speed of the steel plate, which is called "passing speed", reaches several tens to several hundreds of meters per minute, the control is considerably advanced. Will be required.

【0004】加熱炉における板温制御は、「出口板温」
と称される加熱炉の出口における板温を制御量とし、か
つ加熱炉に供給すべきコークスガスなどの燃料の流量あ
るいは加熱炉に設定すべき炉温を操作量として行われ
る。上位の制御部における操作量として炉温が用いられ
る場合には、この上位の制御部と加熱炉との間に計装コ
ントローラなどと称される下位の制御部が設置され、こ
の下位の制御部によって上位の操作量ともいうべき炉温
が下位の操作量ともいうべき燃料の流量に変換される。
The plate temperature control in the heating furnace is "exit plate temperature"
The plate temperature at the outlet of the heating furnace, which is referred to as the control furnace, is used as the control amount, and the flow rate of fuel such as coke gas to be supplied to the heating furnace or the furnace temperature to be set in the heating furnace is used as the manipulated variable. When the furnace temperature is used as the operation amount in the upper control unit, a lower control unit called an instrumentation controller is installed between the upper control unit and the heating furnace, and the lower control unit is installed. As a result, the furnace temperature, which should be called the upper manipulated variable, is converted into the fuel flow rate, which is also called the lower manipulated variable.

【0005】一般に、加熱炉については鋼板の所定の焼
鈍サイクルを実現したうえ制御の容易化や燃料消費量の
節減をなどを図るために、鋼板の搬送経路に沿って複数
に分割して直列配置したり、加熱炉内部を縦列配置され
る複数のゾーン(「加熱帯」)に分割するという手法が
採用される。加熱帯は、燃料流量や温度が他の加熱帯と
はほぼ独立に制御可能であるという点において機能的に
は加熱炉と大差がない。そこで、以下では、加熱帯を含
めて加熱炉と総称する。
Generally, in a heating furnace, in order to realize a predetermined annealing cycle of a steel sheet, facilitate control, save fuel consumption, etc., the heating furnace is divided into a plurality of parts along the conveying path of the steel sheet and arranged in series. Alternatively, a method of dividing the inside of the heating furnace into a plurality of zones (“heating zones”) arranged in cascade is adopted. The heating zone is functionally similar to the heating furnace in that the fuel flow rate and temperature can be controlled almost independently of other heating zones. Therefore, hereinafter, the heating furnace is collectively referred to as the heating furnace.

【0006】このように、鋼板の搬送経路に沿って2台
の加熱炉A,Bを縦列に配置した従来の典型的なシステ
ム構成を図4に例示する。最適板温度制御部CAは、炉
温と板温とに関し「実績値」と称される実測値FaとT
aを加熱炉Aと板温計TAのそれぞれから受取ると共
に、セット替などに伴う目標板温Tao、板幅、板厚、
通板速度などのパラメータを生産情報IAとして受取
り、所定のアルゴリズムに従って燃料流量Qaを算定
し、「設定値」として加熱炉Aに出力する。同様に、最
適板温制御部CBも、炉温Fbと板温Tbの実績値を加
熱炉Bと板温計TBのそれぞれから受取ると共に、生産
情報IBを受取り、所定のアルゴリズムに従って燃料流
量Qbを算定し、設定値として加熱炉Bに出力する。
FIG. 4 exemplifies a conventional typical system configuration in which two heating furnaces A and B are arranged in a row along the sheet conveying path. The optimum plate temperature control unit CA measures actual values Fa and T called “actual values” with respect to the furnace temperature and the plate temperature.
a is received from each of the heating furnace A and the plate thermometer TA, and the target plate temperature Tao, the plate width, the plate thickness associated with the set change, etc.
It receives parameters such as the strip running speed as the production information IA, calculates the fuel flow rate Qa according to a predetermined algorithm, and outputs it to the heating furnace A as a “set value”. Similarly, the optimum plate temperature control unit CB also receives the actual values of the furnace temperature Fb and the plate temperature Tb from each of the heating furnace B and the plate thermometer TB, receives the production information IB, and determines the fuel flow rate Qb according to a predetermined algorithm. Calculate and output to heating furnace B as a set value.

【0007】最適板温制御部CAとCBは、生産情報や
操業実績から出口板温を予測する「板温モデル」と、板
温と炉温の実績値とを取込みこの板温の実績値が板温モ
デルを用いて計算した目標板温軌道に接近するように閉
ループ制御を行うように構成されている。この板温モデ
ルを用いた最適板温制御の詳細については、必要に応じ
て、本出願人の先願に係わる「連続焼鈍炉における板温
制御方法及び装置」と題する特願昭60ー28408号
(特開昭61ー190026号公報)の明細書や、「計
測と制御」Vol.25,No.11(昭和61年11月)
に掲載された「連続焼鈍処理設備(C.A.P.L.)
の加熱炉最適板温制御法」と題する芳谷の論文などを参
照されたい。
The optimum plate temperature control units CA and CB take in the "plate temperature model" for predicting the outlet plate temperature from the production information and the operation results, and the actual values of the plate temperature and the furnace temperature, and obtain the actual values of the plate temperature. It is configured to perform closed-loop control so as to approach the target plate temperature trajectory calculated using the plate temperature model. For the details of the optimum plate temperature control using this plate temperature model, Japanese Patent Application No. 60-28408 entitled "Method and apparatus for controlling plate temperature in continuous annealing furnace" related to the applicant's prior application, if necessary. (Japanese Patent Application Laid-Open No. 61-190026) and "Measurement and Control" Vol. 25, No. 11 (November 1986)
"Continuous annealing treatment equipment (C.A.P.L.)"
See Yoshiya's paper entitled "Optimal Plate Temperature Control Method for Heating Furnace".

【0008】[0008]

【発明が解決しようとする課題】図4に示した従来の加
熱炉板温制御装置では、2台の加熱炉の炉温を計測する
ための2個の温度計と、各加熱炉の出口における板温を
計測するために2個の温度計とを使用している。2個の
炉温計としては熱電対など高精度・高信頼性のものを利
用できるが、板温計としては、計測対象の鋼板が波打ち
ながら搬送されてゆくことから非接触型の放射温度計に
頼らざるを得ない。このような放射温度計は、周囲の環
境条件によっては信頼性の面で未だ十分とはいえないた
め、環境条件の悪い炉では高精度の板温計測ができず制
御の異常を招くおそれが多分にあるという問題がある。
In the conventional heating furnace plate temperature control device shown in FIG. 4, two thermometers for measuring the furnace temperatures of two heating furnaces and the outlets of the heating furnaces are provided. Two thermometers are used to measure the plate temperature. As the two furnace thermometers, thermocouples and other highly accurate and reliable ones can be used, but as the plate thermometer, the non-contact type radiation thermometer is used because the steel plate to be measured is transported while corrugating. I have no choice but to rely on. Since such a radiation thermometer is still not sufficient in terms of reliability depending on the surrounding environmental conditions, it may not be possible to measure the plate temperature with high accuracy in a furnace with poor environmental conditions, which may lead to abnormal control. There is a problem with.

【0009】さらに、図4に示した従来の制御構成で
は、加熱炉ごとに最適板温制御部が必要となる。この二
つの最適板温制御部は、実際には、コンピュータ上でタ
イムシェリング的に実行される共通の制御プログラムに
よって実現されるが、そのようなコンピュータは、通
常、搬送機構の制御、自動溶接機構の制御、システム系
統画面の表示などを含む連続焼鈍システム内の多種多様
な処理も同時に実行することが多い。このため、二つの
最適板温制御を含むコンピュータ負荷の増大に伴ってよ
り処理能力の高い高価なコンピュータや多数のコンピュ
ータが必要になり、連続焼鈍処理システム全体の創設コ
ストとランニングコストとが増加するという問題もあ
る。
Further, in the conventional control configuration shown in FIG. 4, an optimum plate temperature control section is required for each heating furnace. These two optimum plate temperature control units are actually realized by a common control program executed on a computer in a time-shelling manner. However, such a computer normally controls the transfer mechanism and the automatic welding mechanism. In many cases, a wide variety of processes in the continuous annealing system including the control of, the system system screen display, etc. are simultaneously executed. Therefore, as the computer load including the two optimum plate temperature controls increases, an expensive computer having a higher processing capacity and a large number of computers are required, and the founding cost and running cost of the entire continuous annealing system increase. There is also a problem.

【0010】[0010]

【課題を解決するための手段】上記問題点を解決するた
めの本発明の加熱炉板温制御方法は、各加熱炉の炉温と
最終段の加熱炉から搬出される板温を計測する処理と、
計測された各加熱炉の炉温に基づき代表炉温を算定する
処理と、算定された代表炉温、板温の目標値を含む生産
情報及び板温の計測値に基づき代表操作量を算定する処
理と、上記代表操作量に基づき各加熱炉に対する個別操
作量を算定する処理とを含んでいる。
The heating furnace plate temperature control method of the present invention for solving the above problems is a process for measuring the furnace temperature of each heating furnace and the plate temperature carried out from the final stage heating furnace. When,
Process to calculate the representative furnace temperature based on the measured furnace temperature of each heating furnace, and calculate the representative operation amount based on the calculated representative furnace temperature, production information including the target value of the plate temperature, and the measured value of the plate temperature The process includes a process and a process of calculating an individual operation amount for each heating furnace based on the representative operation amount.

【0011】本発明の加熱炉板温制御方法によれば、前
段の加熱炉については信頼性と価格の点で問題がある板
温計が省略される。同時に、「代表炉温」と称する単一
の実績値と「代表操作量」と称する単一の操作量とを有
する見掛け上単一の「代表炉」により、直列配置される
複数台、例えば2台の加熱炉を模擬することにより、既
存の最適板温制御処理をなんら変更することなくそのま
ま単一化している。これを実現するために、実際には加
熱炉ごとに存在する炉温の実績値から単一の代表炉温を
算定する処理と、逆に、単一の代表操作量から実際には
各加熱炉ごとに必要な個別操作量を算定する処理とが追
加される。各算定処理は、以下の実施例で例示するよう
に、算定式に時間という変数を含まない場合が多く、極
めて簡易な処理となる。最適板温制御処理としては、上
記特許文献や学術論文などに開示された既存のものや、
これらを改良したものなどが利用できる。このような構
成により高精度の板温計測ができない炉を含む複数の炉
を同時に制御可能とし、さらに最適板温制御処理の単一
化に伴うコンピュータ負荷の大幅な軽減が達成される。
According to the heating furnace plate temperature control method of the present invention, the plate thermometer, which is problematic in terms of reliability and price, is omitted in the heating furnace in the preceding stage. At the same time, a plurality of units, for example, two units arranged in series by an apparently single “representative furnace” having a single actual value called “representative furnace temperature” and a single operation amount called “representative operation amount” By simulating the heating furnace of the stand, the existing optimum plate temperature control processing is unified without any change. In order to achieve this, the process of calculating a single representative furnace temperature from the actual value of the furnace temperature that actually exists for each heating furnace, and conversely Processing for calculating the required individual operation amount is added for each. Each calculation process is very simple in many cases because the calculation formula does not include a variable of time as exemplified in the following examples. As the optimum plate temperature control processing, existing ones disclosed in the above patent documents and academic papers,
Improved versions of these can be used. With such a configuration, it is possible to simultaneously control a plurality of furnaces including a furnace that cannot measure the plate temperature with high accuracy, and further, the computer load can be significantly reduced by unifying the optimum plate temperature control processing.

【0012】[0012]

【実施例】図1は、本発明の一実施例の加熱炉板温制御
方法を適用する加熱炉板温制御装置の構成を、制御対象
の鋼板とこの鋼板を加熱する直列配列された2台の加熱
炉と共に示す機能ブロック図である。図示しない適宜な
搬送機構によって適宜な通板速度で搬送される鋼板の搬
送経路に沿って、前段の加熱炉Aと後段の加熱炉Bとが
直列配置されている。代表炉温算定部CFは、加熱炉
A,Bで計測された炉温Fa,Fbに基づき代表炉温F
を算定し、最適板温制御部Cに出力する。最適板温制御
部Cは、上記代表炉温Fと板温計TBから出力される後
段の加熱炉Bの出口における板温実績値Tと、目標板温
Toを含む生産情報Iとに基づき、板温実績値Tを目標
板温Toに接近させるために設定すべき代表燃料流量Q
を算定し、個別流量算定部CQに出力する。個別流量算
定部CQは、最適板温制御部Cから出力される代表炉温
Fと生産情報とに基づき、加熱炉A,Bのそれぞれに設
定する燃料流量Qa,Qbを算定し、各加熱炉に出力す
る。
FIG. 1 shows the structure of a heating furnace plate temperature control apparatus to which a heating furnace plate temperature control method according to an embodiment of the present invention is applied, in which a steel plate to be controlled and two units arranged in series for heating the steel plate are controlled. It is a functional block diagram shown with the heating furnace of FIG. A heating furnace A at the front stage and a heating furnace B at the rear stage are arranged in series along a conveyance path of a steel sheet conveyed at an appropriate plate passing speed by an appropriate conveyance mechanism (not shown). The representative furnace temperature calculation unit CF calculates the representative furnace temperature F based on the furnace temperatures Fa and Fb measured in the heating furnaces A and B.
Is calculated and output to the optimum plate temperature control unit C. The optimum plate temperature control unit C, based on the representative furnace temperature F and the actual plate temperature value T at the outlet of the subsequent heating furnace B output from the plate thermometer TB, and the production information I including the target plate temperature To, Representative fuel flow rate Q to be set in order to bring the actual plate temperature value T close to the target plate temperature To
Is calculated and output to the individual flow rate calculation unit CQ. The individual flow rate calculation unit CQ calculates the fuel flow rates Qa and Qb set for the heating furnaces A and B based on the representative furnace temperature F output from the optimum plate temperature control unit C and the production information, and the respective heating furnaces. Output to.

【0013】このように、実際には2台の加熱炉A,B
が存在するにもかかわらず、単一の最適板温制御部Cに
入力される炉温の実績値は単一の代表炉温Fであり、ま
た、板温の実績値は後段の加熱炉Bの出口に設置された
板温計TBからの実績値Tだけであり、さらには、最適
板温制御部Cから設定値として出力される操作量は単一
の代表燃料流量Qのみである。従って、最適板温制御部
Cから見れば、図1において点線で囲んで示す見掛け上
単一の加熱炉Rが存在する場合と同様となる。本明細書
では、このような見掛け上単一化された加熱炉を「代表
炉」と称する。この結果、単一化された最適板温制御部
Cの機能は、図4に示した各加熱炉ごとに必要であった
最適板温追従制御部CAやCBと全く同一となり、既存
の機能(実際にはコンピュータで実行される制御プログ
ラム)をなんら変更することなく、図4に示した既存の
最適板温制御部CAやCBをそのまま利用できる。
In this way, in practice, two heating furnaces A and B are used.
However, the actual value of the furnace temperature input to the single optimum plate temperature control unit C is the single representative furnace temperature F, and the actual value of the plate temperature is the latter heating furnace B. Is the actual value T from the plate temperature gauge TB installed at the outlet of the, and the operation amount output as a set value from the optimum plate temperature control unit C is only a single representative fuel flow rate Q. Therefore, when viewed from the optimum plate temperature control unit C, the situation is similar to the case where there is an apparently single heating furnace R surrounded by a dotted line in FIG. In this specification, such an apparently unified heating furnace is referred to as a “representative furnace”. As a result, the function of the unified optimum plate temperature control unit C becomes exactly the same as the optimum plate temperature follow-up control units CA and CB required for each heating furnace shown in FIG. 4, and the existing function ( Actually, the existing optimum plate temperature control units CA and CB shown in FIG. 4 can be used as they are without changing the control program executed by the computer.

【0014】上述のように、代表炉による制御対象の単
一化を可能とするためには、実際には加熱炉ごとに存在
する炉温の実績値Fa,Fbから単一の代表炉温Fを作
成するための代表炉温算定部CFと、これとは逆に、単
一の代表燃料流量Qから実際には各加熱炉ごとに必要な
二つの燃料流量Qa,Qbを作成するための個別流量算
定部CQとが備えられる。このような構成により、既存
の最適板温制御部に対し煩雑な変更を一切加えることな
く、信頼性とコストの面で問題がある板温計を1個省略
できる。また、コンピュータプログラムとして実現され
る最適板温制御部を単一化することにより、コンピュー
タの負荷を大幅に軽減できる。
As described above, in order to enable the unification of the controlled objects by the representative furnace, the actual representative values Fa and Fb of the furnace temperature existing for each heating furnace are actually used to represent the single representative furnace temperature F. The representative furnace temperature calculation unit CF for creating the fuel flow rate and, conversely, the individual representative fuel flow rate Q for individually creating two fuel flow rates Qa and Qb required for each heating furnace. A flow rate calculation unit CQ is provided. With such a configuration, it is possible to omit one plate thermometer having a problem in terms of reliability and cost without making any complicated changes to the existing optimum plate temperature control unit. Further, by unifying the optimum plate temperature control unit realized as a computer program, the load on the computer can be significantly reduced.

【0015】図1の代表炉温算定部CFは、例えば、図
2に示すように、各加熱炉から出力される炉温Faと炉
温Fbとを重み付けすることにより代表炉温Fを算定す
る構成となっている。ただし、重み付けの係数kは0以
上1以下の定数である。この重み付け係数kは、各加熱
炉の炉温目標値、発熱量、熱容量、熱的時定数などを基
準に経験値を加味して設定され、以後の運用の実績に応
じて容易に変更できるようになっている。
The representative furnace temperature calculation unit CF of FIG. 1 calculates the representative furnace temperature F by weighting the furnace temperature Fa and the furnace temperature Fb output from each heating furnace, as shown in FIG. 2, for example. It is composed. However, the weighting coefficient k is a constant of 0 or more and 1 or less. This weighting coefficient k is set in consideration of empirical values based on the furnace temperature target value of each heating furnace, the calorific value, the heat capacity, the thermal time constant, etc., and can be easily changed according to the results of subsequent operations. It has become.

【0016】図1の個別流量算定部CQは、例えば、図
3に示すように、最適板温制御部Cで算定される代表燃
料流量Qとは無関係に生産情報Iのみから加熱炉Bの燃
料流量Qbを算定する流量Qb算定部と、ここで算定さ
れた燃料流量Qbを代表燃料流量Qから減算することに
より燃料流量Qaを算定する流量Qa算定部とから構成
される。流量Qb算定部は、生産情報Iに含まれる各種
のパラメータ、例えば、目標板温や板幅や板厚や通板速
度などの組合せに基づいて作成された変換テーブルを参
照するなどにより後段の加熱炉Bに設定すべき燃料流量
Qbを算定し、出力する。
For example, as shown in FIG. 3, the individual flow rate calculation unit CQ of FIG. 1 has no relation to the representative fuel flow rate Q calculated by the optimum plate temperature control unit C, and only the production information I indicates the fuel of the heating furnace B. The flow rate Qb calculation unit calculates the flow rate Qb, and the flow rate Qa calculation unit calculates the fuel flow rate Qa by subtracting the fuel flow rate Qb calculated here from the representative fuel flow rate Q. The flow rate Qb calculation unit refers to a conversion table created on the basis of various parameters included in the production information I, for example, a target plate temperature, a plate width, a plate thickness, a plate passing speed, etc. The fuel flow rate Qb to be set in the furnace B is calculated and output.

【0017】図2と図3では、説明の便宜上、代表炉温
算定部CFと個別流量算定部CQの機能をハードウエア
的な構成によって例示したが、各算定部の機能は上位の
最適板温制御部Cを実現するためにコンピュータ上で走
行するソフトウエアによって実現してもよく、この場合
のコンピュータ負荷の増加量は、算定アルゴリズムの内
容の簡易性を考慮すれば無視できる程度に留まる。
In FIGS. 2 and 3, the functions of the representative furnace temperature calculation unit CF and the individual flow rate calculation unit CQ are illustrated by a hardware configuration for convenience of explanation, but the function of each calculation unit is the optimum optimum plate temperature. The control unit C may be realized by software running on a computer, and the increase amount of the computer load in this case is negligible considering the simplicity of the content of the calculation algorithm.

【0018】以上、図3に例示した個別燃料算定部CQ
において、後段の加熱炉Bに設定する燃料流量Qbを代
表燃料流量Qとは無関係に生産情報のみから算定し、残
りの部分を前段の加熱炉Aに割り当てる構成を例示し
た。しかしながら、これとは逆に、前段の加熱炉Aに設
定する燃料流量Qaを代表燃料流量Qとは無関係に生産
情報のみから算定し残りの部分を後段の加熱炉Bに割り
当てる構成とすることもできる。
As described above, the individual fuel calculating section CQ illustrated in FIG.
In the above, the configuration is shown in which the fuel flow rate Qb set in the heating furnace B in the subsequent stage is calculated from only the production information regardless of the representative fuel flow rate Q, and the remaining portion is assigned to the heating furnace A in the preceding stage. However, conversely, the fuel flow rate Qa set in the heating furnace A in the former stage may be calculated from only the production information regardless of the representative fuel flow rate Q, and the remaining portion may be allocated to the heating furnace B in the latter stage. it can.

【0019】あるいは、各加熱炉に対して分配比率を設
定して各加熱炉の燃料流量Qa,Qbを算定する構成と
することもできる。さらにまた、炉温Aと炉温Bの実績
値FaとFbを個別流量算定部CQに入力させ、これら
の実績値と生産情報とに基づき各加熱炉に分配する燃料
流量Qa,Qbを算定する構成とすることもできる。
Alternatively, a distribution ratio may be set for each heating furnace to calculate the fuel flow rate Qa, Qb of each heating furnace. Furthermore, the actual values Fa and Fb of the furnace temperature A and the furnace temperature B are input to the individual flow rate calculation unit CQ, and the fuel flow rates Qa and Qb to be distributed to each heating furnace are calculated based on these actual values and production information. It can also be configured.

【0020】また、鋼板の搬送経路に沿って直列配置さ
れる2台の加熱炉を制御する場合を例にとって本発明を
説明した。しかしながら、一般には、鋼板の搬送経路に
沿って直列接続された3台,4台・・・の加熱炉を制御
する場合にも本発明を適用できる。この場合、最終段の
加熱炉の出口だけに板温計が設置され、3台、4台・・
の加熱炉が一つの代表炉として模擬される。
Further, the present invention has been described by taking as an example the case of controlling two heating furnaces arranged in series along the conveyance path of the steel sheet. However, in general, the present invention can be applied to the case of controlling three, four, ... Heating furnaces that are connected in series along the steel sheet transport path. In this case, a plate thermometer is installed only at the exit of the heating furnace at the final stage, and 3 units, 4 units ...
The heating furnace is simulated as a representative furnace.

【0021】[0021]

【発明の効果】以上詳細に説明したように、本発明の加
熱炉板温制御方法及び装置は、代表炉温、代表操作量の
概念と、代表炉温算定手段及び個別流量算定手段とを備
えることにより、複数台の加熱炉を見掛け上単一の代表
炉で模擬する構成であるから、高精度の板温計測ができ
ない炉を含む複数の炉を同時に制御を可能とし、さらに
最適板温制御処理の単一化に伴うコンピュータ負荷の大
幅な軽減が達成される。また、この代表炉の導入によ
り、単一化された最適板温制御処理として、既存のもの
をそまま利用できるという利点もある。
As described in detail above, the heating furnace plate temperature control method and apparatus of the present invention comprises the concepts of representative furnace temperature and representative manipulated variable, and representative furnace temperature calculating means and individual flow rate calculating means. This makes it possible to control multiple furnaces at the same time, including multiple furnaces that appear to be simulated by a single representative furnace. A great reduction in the computer load due to the unification of processing is achieved. In addition, the introduction of this representative furnace has an advantage that the existing optimum plate temperature control process can be used as it is.

【0022】さらに、最適板温制御処理に対して代表炉
温算定処理と個別流量算定処理は上下の階層構造となっ
ているので、それぞれの機能を互いに独立に開発、ある
いは改良できる。このため、各機能を実現するための制
御プログラムの開発や改良に費やす労力が大幅に軽減さ
れると共に開発などに要する時間も大幅に短縮されると
いう利点もある。
Further, since the representative furnace temperature calculation process and the individual flow rate calculation process have an upper and lower hierarchical structure with respect to the optimum plate temperature control process, respective functions can be independently developed or improved. Therefore, there is an advantage that the labor required for developing and improving the control program for realizing each function is significantly reduced and the time required for the development is also significantly reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の加熱炉板温制御方法を適用
する加熱炉板温制御装置の構成を制御対象の鋼板や縦列
配置された2台の加熱炉と共に示す機能ブロック図であ
る。
FIG. 1 is a functional block diagram showing a configuration of a heating furnace plate temperature control apparatus to which a heating furnace plate temperature control method according to an embodiment of the present invention is applied, together with a steel plate to be controlled and two heating furnaces arranged in cascade. .

【図2】図1の代表炉温算定部CFの構成の一例を示す
機能ブロック図である。
FIG. 2 is a functional block diagram showing an example of a configuration of a representative furnace temperature calculation unit CF of FIG.

【図3】図1の個別流量算定部CQの構成の一例を示す
機能ブロック図である。
3 is a functional block diagram showing an example of a configuration of an individual flow rate calculation unit CQ of FIG.

【図4】従来の加熱炉板温制御装置の構成を制御対象の
鋼板や縦列配置された2台の加熱炉と共に示す機能ブロ
ック図である。
FIG. 4 is a functional block diagram showing a configuration of a conventional heating furnace plate temperature control device together with a steel plate to be controlled and two heating furnaces arranged in cascade.

【符号の説明】[Explanation of symbols]

A,B 直列配置された2台の加熱炉 TB 板温計 C 最適板温制御部(手段) CF 代表炉温算定部(手段) CQ 個別流量算定部(個別操作量算定手段の一
例) R 代表炉 F 代表炉温 Fa,Fb 加熱炉A,Bの炉温の実績値 Q 代表燃料流量(代表操作量の一例) Qa,Qb 加熱炉A,Bに設定する燃料流量
A, B Two heating furnaces arranged in series TB Plate thermometer C Optimal plate temperature control unit (means) CF Representative furnace temperature calculation unit (means) CQ Individual flow rate calculation unit (an example of individual manipulated variable calculation means) R Representative Reactor F Representative furnace temperature Fa, Fb Actual value of furnace temperature of heating furnaces A and B Q Representative fuel flow rate (an example of typical operation amount) Qa, Qb Fuel flow rate set in heating furnaces A and B

───────────────────────────────────────────────────── フロントページの続き (72)発明者 加藤 正造 東京都千代田区大手町二丁目6番3号 新 日本製鐵株式会社内 (72)発明者 芳谷 直治 東京都千代田区大手町二丁目6番3号 新 日本製鐵株式会社内 (72)発明者 加地 正志 兵庫県尼崎市杭瀬南新町3丁目2番1号 大同鋼板株式会社内 (72)発明者 西野 英昭 兵庫県尼崎市杭瀬南新町3丁目2番1号 大同鋼板株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shozo Kato 2-3-6 Otemachi, Chiyoda-ku, Tokyo Within Nippon Steel Corporation (72) Innovator Naoji Yoshiya 2--6, Otemachi, Chiyoda-ku, Tokyo No. 3 In Nippon Steel Co., Ltd. (72) Inventor Masashi Kaji 3-2-1 Hanzen Minamishinmachi, Amagasaki City, Hyogo Prefecture Daido Steel Plate Co., Ltd. No. 1 Daido Steel Sheet Co., Ltd.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】板状体の搬送経路に沿って直列に配置され
た複数台の加熱炉(加熱帯を含む)を制御することによ
り前記各加熱炉によって加熱される板状体の温度を制御
するための方法であって、 前記各加熱炉の炉温及び最終段の加熱炉から搬出される
前記板状体の温度(「板温」と称する)を計測する処理
と、 前記計測された各加熱炉の炉温に基づき代表炉温を算定
する処理と、 この算定された代表炉温、前記板温の目標値を含む生産
情報及び前記板温の計測値に基づき代表操作量を算定す
る最適板温制御処理と、 前記算定された代表操作量に基づき前記各加熱炉に対す
る個別操作量を算定する処理とを含むことを特徴とする
板状体の加熱炉板温制御方法。
1. A temperature of a plate-shaped body heated by each heating furnace is controlled by controlling a plurality of heating furnaces (including heating zones) arranged in series along a conveyance path of the plate-shaped body. And a process for measuring the temperature of the plate-like body carried out from the heating furnace of each heating furnace and the heating furnace at the final stage (referred to as “plate temperature”), and each of the measured temperatures. Optimal to calculate the representative furnace temperature based on the furnace temperature of the heating furnace, and to calculate the representative operation amount based on the calculated representative furnace temperature, production information including the target value of the plate temperature, and the measured value of the plate temperature. A heating furnace plate temperature control method for a plate-shaped body, comprising: a plate temperature control process; and a process of calculating an individual operation amount for each heating furnace based on the calculated representative operation amount.
【請求項2】板状体の搬送経路に沿って直列に配置され
た複数台の加熱炉(加熱帯を含む)を制御することによ
り前記各加熱炉によって加熱される板状体の温度を制御
するための装置であって、 前記各加熱炉の炉温及び最終段の加熱炉から搬出される
前記板状体の温度(「板温」と称する)を計測する計測
手段と、 前記計測された各加熱炉の炉温に基づき代表炉温を算定
する代表炉温算定手段と、 この算定された代表炉温、前記板温の目標値を含む生産
情報及び前記板温の計測値に基づき代表操作量を算定す
る最適板温制御手段と、 前記代表操作量に基づき前記各加熱炉に対する個別操作
量を算定する個別操作量算定手段とを備えたことを特徴
とする板状体の加熱炉板温制御装置。
2. A temperature of a plate-shaped body heated by each heating furnace is controlled by controlling a plurality of heating furnaces (including heating zones) arranged in series along a conveyance path of the plate-shaped body. And a measuring unit for measuring the temperature of each of the heating furnaces and the temperature of the plate-shaped body carried out from the heating furnace at the final stage (referred to as “plate temperature”); Representative furnace temperature calculation means for calculating the representative furnace temperature based on the furnace temperature of each heating furnace, representative operation based on the calculated representative furnace temperature, production information including the target value of the plate temperature, and the measured value of the plate temperature A heating furnace plate temperature for a plate-shaped body, comprising: an optimum plate temperature control means for calculating the amount; and an individual operation amount calculating means for calculating an individual operation amount for each heating furnace based on the representative operation amount. Control device.
【請求項3】 請求項2において、前記代表炉温算定手
段は、前記計測された各加熱炉の炉温を加重平均するこ
とにより前記代表炉温を算定することを特徴とする板状
体の加熱炉板温制御装置。
3. The plate-shaped body according to claim 2, wherein the representative furnace temperature calculating means calculates the representative furnace temperature by performing a weighted average of the measured furnace temperatures of the heating furnaces. Heating furnace plate temperature control device.
【請求項4】 請求項2又は3において、前記最適板温
制御手段が算定する代表操作量は各加熱炉に供給すべき
燃料流量の総和であることを特徴とする板状体の加熱炉
板温制御装置。
4. The heating furnace plate of a plate-like body according to claim 2 or 3, wherein the representative manipulated variable calculated by the optimum plate temperature control means is a sum of fuel flow rates to be supplied to each heating furnace. Temperature control device.
【請求項5】 請求項4において、前記設定操作量算定
手段は、前記生産情報に基づき前記各加熱炉のうちの一
部のものに対する個別燃料流量を算定し、この設定した
個別燃料流量を前記最適板温制御手段が算定した燃料流
量の総和から減算することにより前記加熱炉のうちの残
りのものに対する個別燃料流量を算定することを特徴と
する板状体の加熱炉板温制御装置。
5. The set operation amount calculating means according to claim 4, wherein the set operation amount calculation means calculates an individual fuel flow rate for a part of the heating furnaces based on the production information, and the set individual fuel flow rate is set as the A heating furnace plate temperature control device for a plate-shaped body, wherein the individual fuel flow rate for the remaining one of the heating furnaces is calculated by subtracting from the sum of the fuel flow rates calculated by the optimum plate temperature control means.
【請求項6】 請求項5において、前記加熱炉のうちの
一部のものは、最終段の加熱炉を含むことを特徴とする
板状体の加熱炉板温制御装置。
6. The heating furnace plate temperature control device for a plate-shaped body according to claim 5, wherein a part of the heating furnace includes a final stage heating furnace.
JP4193415A 1992-06-26 1992-06-26 Heating furnace temperature control method and apparatus Expired - Lifetime JP3072680B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4193415A JP3072680B2 (en) 1992-06-26 1992-06-26 Heating furnace temperature control method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4193415A JP3072680B2 (en) 1992-06-26 1992-06-26 Heating furnace temperature control method and apparatus

Publications (2)

Publication Number Publication Date
JPH0610057A true JPH0610057A (en) 1994-01-18
JP3072680B2 JP3072680B2 (en) 2000-07-31

Family

ID=16307585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4193415A Expired - Lifetime JP3072680B2 (en) 1992-06-26 1992-06-26 Heating furnace temperature control method and apparatus

Country Status (1)

Country Link
JP (1) JP3072680B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100363514C (en) * 2002-09-19 2008-01-23 鞍钢股份有限公司 Small cross tapping control method for medium and thin slab continuous casting and rolling billet heating furnace
CN101823079A (en) * 2010-04-22 2010-09-08 攀钢集团钢铁钒钛股份有限公司 Method for charging steel at furnace end of heating furnace
CN113804008A (en) * 2020-06-12 2021-12-17 宝山钢铁股份有限公司 Control method for improving temperature uniformity of heating furnace

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100363514C (en) * 2002-09-19 2008-01-23 鞍钢股份有限公司 Small cross tapping control method for medium and thin slab continuous casting and rolling billet heating furnace
CN101823079A (en) * 2010-04-22 2010-09-08 攀钢集团钢铁钒钛股份有限公司 Method for charging steel at furnace end of heating furnace
CN113804008A (en) * 2020-06-12 2021-12-17 宝山钢铁股份有限公司 Control method for improving temperature uniformity of heating furnace
CN113804008B (en) * 2020-06-12 2023-08-11 宝山钢铁股份有限公司 Control method for improving temperature uniformity of heating furnace

Also Published As

Publication number Publication date
JP3072680B2 (en) 2000-07-31

Similar Documents

Publication Publication Date Title
US4688180A (en) Pattern-switching temperature control apparatus
US6225609B1 (en) Coiling temperature control method and system
TWI224144B (en) Heat treating device, heat treating method, recording medium recording heat treating program and steel product
JPS5947324A (en) Controlling method of heating in heating furnace
CN101519735B (en) Method for controlling strip-steel head and tail temperature
US3548171A (en) Furnace control method and apparatus
CN100498622C (en) Temperature control method, temperature controller, heat treatment device and method
van Ditzhuijzen et al. Identification and model predictive control of a slab reheating furnace
JP3072680B2 (en) Heating furnace temperature control method and apparatus
CN116144888B (en) Double-phase steel plate strip homogenizing hanging coil and cooling control quality adjusting method based on transverse and longitudinal temperature difference
JPH06246320A (en) Method for controlling cooling of hot-rolled steel material
JPH1088236A (en) Apparatus for controlling heating furnace
JPS61253112A (en) Control method for cooling steel plate
JP2006272395A (en) Method and apparatus for controlling cooling and computer program
JP4258341B2 (en) Manufacturing method of high-strength steel sheet with excellent material uniformity in the longitudinal direction of the steel sheet
JP3436841B2 (en) Temperature control device for continuous heating furnace
JPH01205811A (en) Cooling method for steel plate
JPS63171215A (en) Method for controlling rolled stock with water cooling
JP2000297330A (en) Method for measuring strip temperature in strip continuous annealing furnace and instrument therefor
JPS61159213A (en) Method for controlling hardness of steel strip
JP3518504B2 (en) How to set cooling conditions for steel sheets
JPH0759722B2 (en) Induction heating control method during subsequent induction heating of a slab previously gas-heated
JPS599125A (en) Method for setting temperature of heating furnace
JPH0440329A (en) Oxide film measuring instrument for heat treating furnace for steel belt
JPH08311567A (en) Device for controlling temperature in heating furnace

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000509