JPH06100524B2 - Granulation end point detection method - Google Patents

Granulation end point detection method

Info

Publication number
JPH06100524B2
JPH06100524B2 JP60209624A JP20962485A JPH06100524B2 JP H06100524 B2 JPH06100524 B2 JP H06100524B2 JP 60209624 A JP60209624 A JP 60209624A JP 20962485 A JP20962485 A JP 20962485A JP H06100524 B2 JPH06100524 B2 JP H06100524B2
Authority
JP
Japan
Prior art keywords
granulation
end point
level
characteristic frequency
probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60209624A
Other languages
Japanese (ja)
Other versions
JPS6269142A (en
Inventor
芳雄 上田
健一 西村
敦夫 大池
一之 辻
孝善 本田
Original Assignee
藤沢薬品工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 藤沢薬品工業株式会社 filed Critical 藤沢薬品工業株式会社
Priority to JP60209624A priority Critical patent/JPH06100524B2/en
Publication of JPS6269142A publication Critical patent/JPS6269142A/en
Publication of JPH06100524B2 publication Critical patent/JPH06100524B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0091Powders

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Glanulating (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、粉状の物質を容器内で攪拌して造粒する際
の造粒終点検知方法に関する。
TECHNICAL FIELD The present invention relates to a method for detecting a granulation end point when a powdery substance is stirred in a container for granulation.

従来の技術とその問題点 たとえば錠剤、顆粒剤、細粒剤などを製造する場合、粉
状の物質を容器内で攪拌して造粒し、適度な粒径の粒に
する。この造粒工程は、錠剤の場合、後工程の打錠工程
を円滑にするためのものであり、造粒が粒径の点で不十
分であったり度を越すと満足な錠剤が得られないので、
粉状の物質が適度に粒状化したときに造粒を停止する必
要がある。ところが、物質の種類が変わると造粒の条件
が変わり、また、物質が同じでもバッチにより必要な結
合液の量が変わって造粒の条件が変わるため、造粒の終
点を自動的に検知することは困難であり、従来は、熟練
したオペレータが経験と勘により造粒の終点を決めてい
た。
Conventional technology and its problems For example, in the case of producing tablets, granules, fine granules, etc., a powdery substance is stirred in a container and granulated to give particles having an appropriate particle size. In the case of tablets, this granulation step is for facilitating the tableting step of the subsequent step, and if granulation is insufficient in terms of particle size or if it exceeds a certain degree, satisfactory tablets cannot be obtained. So
It is necessary to stop the granulation when the powdery material has been appropriately granulated. However, if the type of substance changes, the granulation conditions will change, and even if the substances are the same, the amount of binder required will change depending on the batch and the granulation conditions will change, so the end point of granulation will be detected automatically. However, in the past, a skilled operator decided the end point of granulation based on experience and intuition.

このため、検出器を備えたプローブを容器内に挿入し、
プローブへの物質の衝突圧をこの検出器と変換器により
電気信号として取出し、この電気信号の原波形を用いて
造粒の終点を検知する方法が提案されている(特公昭57
−12457号参照)。このような従来の方法の場合、アナ
ログペンレコーダを用いて変換器の出力信号を取込んで
いるが、この出力信号の振動数は大きく、アナログペン
レコーダでは正確な信号を得ることができないため、原
波形からだけでは造粒状態を正確に知ることは困難であ
る。したがって、従来の方法では、造粒の終点を正確に
検知することは困難である。
Therefore, insert the probe with the detector into the container,
A method has been proposed in which the collision pressure of a substance on a probe is extracted as an electric signal by this detector and a converter, and the end point of granulation is detected by using the original waveform of this electric signal (Japanese Patent Publication No. 57).
-12457). In the case of such a conventional method, the output signal of the converter is captured using the analog pen recorder, but the frequency of this output signal is large, and the analog pen recorder cannot obtain an accurate signal, It is difficult to know the granulation state accurately only from the original waveform. Therefore, it is difficult for the conventional method to accurately detect the end point of granulation.

この発明の目的は、上記の問題を解決し、造粒の終点を
正確に検知できる方法を提供することにある。
An object of the present invention is to solve the above problems and provide a method capable of accurately detecting the end point of granulation.

問題点を解決するための手段 この発明による方法は、粉状の物質を容器内で攪拌して
造粒するに際し、容器内に挿入したプローブへの物質の
衝突圧をプローブに取付けた検出器と変換器により電気
信号として取出し、この電気信号により造粒の終点を検
知する方法であって、上記変換器からの電気信号を高速
取込装置を用いて取出し、上記電気信号から高速フーリ
エ変換により攪拌用ロータの回転数と羽根の枚数との積
に対応する特徴周波数成分のレベルを求め、これを用い
て造粒の終点を検知することを特徴とするものである。
Means for Solving the Problems A method according to the present invention is a method in which a powder pressure substance is stirred in a container and granulated, and a collision pressure of the substance to a probe inserted in the container is attached to the probe. A method of extracting as an electric signal by a converter, and detecting the end point of granulation by this electric signal, in which the electric signal from the converter is taken out by using a high-speed take-in device, and the electric signal is agitated by a fast Fourier transform. The feature is that the level of the characteristic frequency component corresponding to the product of the number of rotations of the rotor and the number of blades is obtained and the end point of the granulation is detected using this.

この明細書において、高速取込装置という用語は、たと
えばスペクトラムアナライザなどのように電気信号を高
速で取込むことができる装置の総称として用いられる。
In this specification, the term “high-speed acquisition device” is used as a general term for devices that can acquire electric signals at high speed, such as a spectrum analyzer.

実施例 第1図は、造粒機の造粒用容器(10)とその蓋(11)に
取付けられた造粒終点検知用のプローブ(12)の1例を
示す。
Example FIG. 1 shows an example of a granulation container (10) of a granulator and a probe (12) attached to a lid (11) for detecting a granulation end point.

容器(10)は公知のものであり、容器(10)内の底部に
は複数枚の羽根(13)を備えた攪拌用ロータ(14)が設
けられている。
The container (10) is known, and a stirring rotor (14) having a plurality of blades (13) is provided at the bottom of the container (10).

プローブ(12)自体は公知のものであり、たとえば第2
図および第3図に詳細に示すような構成を有する。すな
わち、プローブ(12)は棒状本体(15)とその上端に固
定された屈曲状支持パイプ(16)とからなり、本体(1
5)の下端には粉状または造粒された粉状の物質が衝突
する球状部(17)が形成されている。そして、パイプ
(16)の部分が公知の適宜な手段により蓋(11)に固定
されて、本体(15)が容器(10)内に突出し、球状部
(17)が羽根(13)の外寄りの部分の少し上方に位置し
ている。本体(15)の上部には薄板状部(18)が形成さ
れ、その両面に球状部(17)への物質の衝突圧を検出す
るための抵抗線歪ゲージ(検出器)(19)が貼付けられ
ている。また、本体(15)上部の薄板状部(18)の周囲
には、保護筒(20)がはめ止められている。歪ゲージ
(19)のリード線(21)は、本体(15)上部にあけられ
た穴(22)からパイプ(16)の内部を通って容器(10)
の外に導き出され、球状部(17)への物質の衝突圧を電
気信号として取出すための図示しない歪計(変換器)に
接続される。
The probe (12) itself is a known one, for example, the second
It has a structure as shown in detail in FIGS. That is, the probe (12) comprises a rod-shaped main body (15) and a bent support pipe (16) fixed to the upper end of the main body (1).
At the lower end of 5) is formed a spherical part (17) with which powdery or granulated powdery substances collide. Then, the pipe (16) portion is fixed to the lid (11) by a known appropriate means, the main body (15) projects into the container (10), and the spherical portion (17) extends outward of the blade (13). It is located slightly above the part of. A thin plate-like part (18) is formed on the upper part of the main body (15), and a resistance wire strain gauge (detector) (19) is attached on both sides of the thin part to detect the collision pressure of the substance on the spherical part (17). Has been. Further, a protective cylinder (20) is fitted around the thin plate-shaped portion (18) above the main body (15). The lead wire (21) of the strain gauge (19) passes through the inside of the pipe (16) from the hole (22) formed in the upper part of the body (15) to the container (10).
And is connected to a strain gauge (transducer) (not shown) for extracting the collision pressure of the substance on the spherical portion (17) as an electric signal.

上記容器(10)に造粒すべき粉状の物質を入れるととも
にプローブ(12)を取付けて、球状部(17)をこの物質
の中に挿入し、このような状態で造粒を行なった。そし
て、スペクトラムアナライザなどの高速取込装置を用い
て歪計の出力信号を取込んで波形を観察したところ、第
4図に示すように、造粒が進むにつれて原波形が周期性
のある波形に変ってくることがわかった。なお、高速取
込装置を用いたのは、出力信号の振動数が大きいため、
アナログペンレコーダでは正確な信号が得られないから
であり、高速取込装置により正確な信号を得ることがで
きた。また歪計の出力信号の原波形を高速フーリエ変換
して周波数分析したところ、第5図に示すように造粒が
進むにつれていくつかのピークがあらわれ、その後の検
討により、攪拌用ロータの回転数と羽根の枚数との積に
対応する周波数f成分のレベルが造粒の状態をさらによ
く示すことがわかった。この周波数fを特徴周波数と呼
ぶことにすると、特徴周波数f(Hz)は次の式で表わさ
れる。
The powdery substance to be granulated was put in the container (10), the probe (12) was attached, the spherical part (17) was inserted into this substance, and the granulation was performed in such a state. Then, when the output signal of the strain gauge was taken in using a high-speed acquisition device such as a spectrum analyzer and the waveform was observed, as shown in FIG. 4, the original waveform became a periodic waveform as granulation proceeded. I knew it was going to change. The high-speed acquisition device was used because the frequency of the output signal is high,
This is because an analog pen recorder cannot obtain an accurate signal, and a high-speed acquisition device has made it possible to obtain an accurate signal. When the original waveform of the output signal of the strain gauge was subjected to Fast Fourier Transform and frequency analysis was performed, some peaks appeared as granulation proceeded, as shown in Fig. 5, and after the examination, the rotation speed of the stirring rotor was determined. It was found that the level of the frequency f component corresponding to the product of the number of blades and the number of blades better indicates the granulation state. When this frequency f is called a characteristic frequency, the characteristic frequency f (Hz) is expressed by the following equation.

f=(N×A)/60 ここで、Nはロータ回転数(rpm)、Aはロータの羽根
の枚数であり、たとえばロータの回転数が300rpmで羽根
の枚数が3枚の場合の特徴周波数fは15(=300×3/6
0)(Hz)である。
f = (N × A) / 60 where N is the rotor rotation speed (rpm) and A is the number of rotor blades. For example, the characteristic frequency when the rotor rotation speed is 300 rpm and the number of blades is three. f is 15 (= 300 × 3/6
0) (Hz).

上記式から明らかなように、特徴周波数は、ロータの回
転数および羽根の枚数により決定されるものであり、ロ
ータの羽根が1秒間にプローブを通過する回数と一致し
ている。そして、粉または粒が羽根に押されてプローブ
に衝突すると考えれば、特徴周波数は、ある枚数の羽根
を有するロータを一定の回転数で回転させた場合に、粉
または粒が1秒間にプローブに衝突すべき回数を表すこ
とになる。さらに、特徴周波数のレベル(振幅)はプロ
ーブへの衝突エネルギを表すことになる。ところが、実
際の造粒過程においては、造粒開始時には原料は粉状で
あり、プローブへの衝突エネルギが極めて小さく、しか
も羽根に対して滑ることがあってプローブに衝突するこ
ともほとんどないため、特徴周波数成分のレベルも非常
に小さくなる。そして、造粒が進むにつれて粒が形成さ
れて大きくなると、プローブへの衝突エネルギが大きく
なり、特徴周波数成分のレベルも増大する。
As is clear from the above equation, the characteristic frequency is determined by the number of rotations of the rotor and the number of blades, and coincides with the number of times the blades of the rotor pass the probe in one second. Considering that the powder or particles are pushed by the blades and collide with the probe, the characteristic frequency is that the powder or particles are applied to the probe in one second when the rotor having a certain number of blades is rotated at a constant rotation speed. It represents the number of collisions. Furthermore, the level (amplitude) of the characteristic frequency will represent the energy of impact on the probe. However, in the actual granulation process, the raw material is powdery at the start of granulation, the collision energy to the probe is extremely small, and since it may slip against the blade and hardly collide with the probe, The level of the characteristic frequency component is also very small. When particles are formed and become larger as the granulation progresses, the collision energy to the probe becomes larger and the level of the characteristic frequency component also increases.

従来の造粒終点検知方法とこの発明の造粒終点検知方法
を比較するため、乳糖4.2kg、コーンスターチ2.1kgおよ
びアビセル(商標、旭化成工業株式会社製)0.7kgに2.0
kgの蒸留水を0.2kgずつ添加して、ロータの回転数200、
300および400rpmでそれぞれ2回ずつ造粒を行なった。
そして、造粒の度に、歪計の出力信号をアナログペンレ
コーダと高速取込装置を用いて取込み、アナログペンレ
コーダを用いた原波形による従来の方法、高速取込装置
を用いた原波形による方法およびこの原波形を高速フー
リエ変換した特徴周波数成分のレベルによる方法を用い
て、造粒終点検知を行なった。その結果、アナログペン
レコーダを用いた原波形による従来の方法は、ばらつき
が大きく、造粒終点における出力が一定しないため、造
粒の終点を正確に検知することが困難であることがわか
った。また、高速取込装置を用いた原波形による方法
は、高速取込装置によって正確な信号が得られるため、
造粒状態をかなり正確に知ることができ、したがって、
造粒の終点をある程度正確に再現性良く検知できること
がわかった。これに対し、高速取込装置を用いさらに高
速フーリエ変換して求めた特徴周波数成分のレベルによ
る方法は、さらに正確に造粒状態を知ることができ、造
粒の終点における出力が一定になるため、より一層正確
に再現性良く造粒の終点を検知できることがわかった。
そして、特徴周波数成分のレベルは、造粒開始時には非
常に小さいが、造粒が進むにつれて大きくなり、このレ
ベルと粒径とがよく対応することもわかった。したがっ
て、この方法によれば、特徴周波数成分のレベルが所定
の値に達したときに自動的に造粒を停止するようなこと
も可能である。
To compare the conventional granulation end point detection method with the granulation end point detection method of the present invention, lactose 4.2 kg, corn starch 2.1 kg and Avicel (trademark, manufactured by Asahi Kasei Kogyo Co., Ltd.) 0.7 kg 2.0
0.2 kg of distilled water is added in increments of 0.2 kg, the rotor speed is 200,
Granulation was performed twice at 300 and 400 rpm, respectively.
Then, each time granulation, the output signal of the strain gauge is captured using an analog pen recorder and a high-speed capturing device, and the conventional method using the original waveform using the analog pen recorder and the original waveform using the high-speed capturing device are used. Granulation end point detection was performed using the method and the method based on the level of the characteristic frequency component obtained by fast Fourier transforming this original waveform. As a result, it was found that it is difficult to accurately detect the end point of the granulation in the conventional method using the original waveform using the analog pen recorder because the variation is large and the output at the end point of the granulation is not constant. In addition, the method based on the original waveform using the high-speed acquisition device, because an accurate signal can be obtained by the high-speed acquisition device,
It is possible to know the granulation state quite accurately, and therefore
It was found that the end point of granulation can be detected with some accuracy and reproducibility. On the other hand, the method based on the level of the characteristic frequency component obtained by further performing the fast Fourier transform using the high-speed capturing device can know the granulation state more accurately, and the output at the end point of the granulation becomes constant. It was found that the end point of granulation can be detected more accurately and with good reproducibility.
It was also found that the level of the characteristic frequency component was very small at the start of granulation, but increased as granulation proceeded, and this level and the particle size correspond well. Therefore, according to this method, it is also possible to automatically stop the granulation when the level of the characteristic frequency component reaches a predetermined value.

上記と同じ処方で2.5kgスケールを別の造粒機を用いて
ロータの回転数500rpm、羽根の枚数3枚で造粒し、高速
取込装置を用いて原波形と特徴周波数成分のレベルの増
加により造粒の終点を検知したところ、上記同様の良好
な結果が得られた。第4図および第5図は、このときの
歪計の出力信号の原波形およびこれを高速フーリエ変換
したパワースペクトルを示し、各図において、(a)は
造粒開始時、(b)は中間、(c)は造粒終点時を示
す。第5図より、造粒が進むにつれて特徴周波数f(=
25)の成分のレベルが大きくなることがわかる。
Using the same formulation as above, granulate a 2.5 kg scale with another granulator at a rotor speed of 500 rpm and three blades, and increase the levels of the original waveform and characteristic frequency components using a high-speed loading device. When the end point of granulation was detected by the method, good results similar to the above were obtained. FIGS. 4 and 5 show the original waveform of the output signal of the strain gauge at this time and the power spectrum obtained by fast Fourier transforming it. In each figure, (a) is the start of granulation and (b) is the intermediate , (C) indicate the end point of granulation. From FIG. 5, the characteristic frequency f (=
It can be seen that the level of the component of 25) increases.

上記実施例の場合、特徴周波数成分のレベルの絶対値の
増加により造粒の終点を検知しているが、特徴周波数成
分のレベルとそれ以外の特定の周波数成分のレベルの比
の変化により造粒の終点を検知することもできる。
In the case of the above embodiment, the end point of the granulation is detected by increasing the absolute value of the level of the characteristic frequency component, but the granulation is caused by the change in the ratio of the level of the characteristic frequency component and the level of the other specific frequency component. It is also possible to detect the end point of.

発明の効果 この発明の方法によれば、容器内に挿入したプローブへ
の物質の衝突圧を高速取込装置を用いて電気信号として
取出し、この電気信号から高速フーリエ変換により攪拌
用ロータの回転数と羽根の枚数との積に対応する特徴周
波数成分のレベルを求め、これを用いて造粒の終点を検
知するので、上述のように、正確に造粒状態を知ること
ができ、しかも造粒の終点における出力が一定になるた
め、極めて正確に再現性よく造粒の終点を検知すること
ができる。したがって、粒の均質化、造粒工程の省力化
および自動化が可能になる。さらに、規定の結合液を散
布した後蒸留水を追加することにより粒の成長を促し、
必要な粒径まで成長したことを知るセンサとしても利用
できる。つまり、造粒を制御し、その終点を知ることが
できる。
EFFECTS OF THE INVENTION According to the method of the present invention, the collision pressure of a substance with respect to a probe inserted into a container is taken out as an electric signal by using a high-speed take-in device, and the rotational speed of a stirring rotor is obtained from this electric signal by fast Fourier transform. The level of the characteristic frequency component corresponding to the product of the number of blades and the number of blades is obtained, and the end point of the granulation is detected using this, so that the granulation state can be accurately known as described above, and the granulation can be performed. Since the output at the end point of is constant, the end point of granulation can be detected extremely accurately and with good reproducibility. Therefore, it becomes possible to homogenize the granules, save labor in the granulation process, and automate the process. Furthermore, promote the growth of grains by adding distilled water after spraying the specified binding solution,
It can also be used as a sensor to know that the particles have grown to the required particle size. That is, it is possible to control the granulation and know the end point.

【図面の簡単な説明】[Brief description of drawings]

第1図は造粒用容器とその蓋に取付けられた造粒終点検
知用のプローブの1例を示す垂直断面図、第2図は第1
図のプローブを拡大して示す部分切欠き正面図、第3図
は第2図X−X線に沿いかつ一部を切欠いて示す矢視
図、第4図は造粒時の歪計の出力信号を高速取込装置を
用いて取出した原波形を時間順に示すグラフ、第5図は
これらの原波形をフーリエ変換して周波数分析した結果
を示すグラフである。 (10)…造粒用容器、(12)…造粒終点検知用のプロー
ブ、(14)…攪拌用ロータ、(19)…抵抗線歪ゲージ
(検出器)。
FIG. 1 is a vertical sectional view showing an example of a granulation container and a probe attached to the lid for detecting the end point of granulation, and FIG.
FIG. 3 is an enlarged front view of a partially cutaway probe shown in FIG. 3, FIG. 3 is a view taken along the line XX of FIG. 2 and is a partially cutaway view, and FIG. 4 is an output of a strain gauge during granulation. FIG. 5 is a graph showing the original waveforms obtained by using the high-speed acquisition device in order of time, and FIG. 5 is a graph showing the results of the frequency analysis by Fourier transforming these original waveforms. (10) ... Granulation container, (12) ... Granulation end point detection probe, (14) ... Agitation rotor, (19) ... Resistance wire strain gauge (detector).

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭60−36935(JP,A) 特公 昭57−12457(JP,B2) ─────────────────────────────────────────────────── ─── Continuation of front page (56) References JP-A-60-36935 (JP, A) JP-B 57-12457 (JP, B2)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】粉状の物質を容器内で攪拌して造粒するに
際し、容器内に挿入したプローブへの物質の衝突圧をプ
ローブに取付けた検出器と変換器により電気信号として
取出し、この電気信号により造粒の終点を検知する方法
であって、 上記変換器からの電気信号を高速取込装置を用いて取出
し、上記電気信号から高速フーリエ変換により攪拌用ロ
ータの回転数と羽根の枚数との積に対応する特徴周波数
成分のレベルを求め、これを用いて造粒の終点を検知す
ることを特徴とする造粒終点検知方法。
1. When granulating a powdery substance by stirring in a container, the collision pressure of the substance to a probe inserted in the container is taken out as an electric signal by a detector and a converter attached to the probe. A method for detecting the end point of granulation by an electric signal, in which the electric signal from the converter is taken out by using a high-speed take-in device, and the rotation speed of the stirring rotor and the number of blades are obtained from the electric signal by a fast Fourier transform. A method of detecting an end point of granulation, which comprises detecting a level of a characteristic frequency component corresponding to a product of and, and using this to detect an end point of the granulation.
【請求項2】上記特徴周波数成分のレベルの変化より造
粒の終点を検知することを特徴とする特許請求の範囲第
1項に記載の造粒終点検知方法。
2. The granulation end point detection method according to claim 1, wherein the end point of granulation is detected from the change in the level of the characteristic frequency component.
【請求項3】上記特徴周波数成分のレベルとそれ以外の
特定の周波数成分のレベルの比の変化より造粒の終点を
検知することを特徴とする特許請求の範囲第1項に記載
の造粒終点検知方法。
3. The granulation according to claim 1, wherein the end point of the granulation is detected from the change in the ratio of the level of the characteristic frequency component to the level of the other specific frequency component. Endpoint detection method.
JP60209624A 1985-09-20 1985-09-20 Granulation end point detection method Expired - Lifetime JPH06100524B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60209624A JPH06100524B2 (en) 1985-09-20 1985-09-20 Granulation end point detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60209624A JPH06100524B2 (en) 1985-09-20 1985-09-20 Granulation end point detection method

Publications (2)

Publication Number Publication Date
JPS6269142A JPS6269142A (en) 1987-03-30
JPH06100524B2 true JPH06100524B2 (en) 1994-12-12

Family

ID=16575875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60209624A Expired - Lifetime JPH06100524B2 (en) 1985-09-20 1985-09-20 Granulation end point detection method

Country Status (1)

Country Link
JP (1) JPH06100524B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2630659B2 (en) * 1989-10-24 1997-07-16 深江工業株式会社 Stir granulation end determination method and stir granulator
CA2896786C (en) * 2013-01-11 2021-10-26 Berthold Berman Concrete mixture measurement sensor, system and method
JP6308847B2 (en) * 2014-04-07 2018-04-11 株式会社北川鉄工所 Granulator
JP6654400B2 (en) * 2014-12-02 2020-02-26 株式会社品川工業所 Apparatus, program, and method for detecting change in state of workpiece, and processing apparatus
CN106761085B (en) * 2017-01-23 2018-06-29 上海涵欧制药设备有限公司 A kind of wet mixing pelletizer pot cover articulated mounting

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5712457A (en) * 1980-06-23 1982-01-22 Mitsubishi Electric Corp Recording system of head positioning information
JPS6036935A (en) * 1983-08-09 1985-02-26 Sumitomo Metal Ind Ltd Method for measuring simultaneously viscosity and behavior of fluid

Also Published As

Publication number Publication date
JPS6269142A (en) 1987-03-30

Similar Documents

Publication Publication Date Title
US7699249B2 (en) Method for defining the degree of fullness in a mill
EP3530161A1 (en) Food preparation device with tool for grinding
TERAsHiTA et al. Determination of end-point by frequency analysis of power consumption in agitation granulation
JPH06100524B2 (en) Granulation end point detection method
JPS6415640A (en) Stress evaluating apparatus
EP4261512A1 (en) Processing system, display system, processing device, processing method, and processing program
James et al. Computer assisted reaction-rate analyses
JPS5543464A (en) Rotating shaft twist vibration monitor device
JPH07121355B2 (en) Granulation end point control device
JPH06137975A (en) Tightening torque measuring device
Nordon et al. Factors affecting broadband acoustic emission measurements of a heterogeneous reaction
JP3306111B2 (en) Optimal end point detection method
JPH0440666B2 (en)
Zverkov et al. Estimating raindrops sizes for research of irrigation equipment
JPS57168136A (en) Vibration testing method
JP3125058B2 (en) Granulation state detection method and apparatus
JPS5692409A (en) Measuring method for thickness of corrugated sheath
Gupta et al. Detection and characterization of acoustic signals from a granulation process
SU1429010A2 (en) Method of monitoring ground grading
JPS5526437A (en) Anomaly diagnosing method
EARLE et al. Field wave gaging program, wave data analysis standard(Final Report)
JPS61278733A (en) Method for measuring torque of slot array antenna
JPH104835A (en) Detection of strike of fish and detector
JPS5780527A (en) Vibration sensing method
STOUGH Effect of digital word size on precision of data recovery from field instrumentation[Report, 15 Apr. 1979- 12 Nov. 1980]