JPH06100510B2 - Calorimeter - Google Patents

Calorimeter

Info

Publication number
JPH06100510B2
JPH06100510B2 JP17341589A JP17341589A JPH06100510B2 JP H06100510 B2 JPH06100510 B2 JP H06100510B2 JP 17341589 A JP17341589 A JP 17341589A JP 17341589 A JP17341589 A JP 17341589A JP H06100510 B2 JPH06100510 B2 JP H06100510B2
Authority
JP
Japan
Prior art keywords
flow meter
fuel gas
flow
laminar flow
thermal type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP17341589A
Other languages
Japanese (ja)
Other versions
JPH0339623A (en
Inventor
一光 温井
直基 松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP17341589A priority Critical patent/JPH06100510B2/en
Publication of JPH0339623A publication Critical patent/JPH0339623A/en
Publication of JPH06100510B2 publication Critical patent/JPH06100510B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 技術分野 本発明は、熱量計、より詳細には、熱式流量計と層流流
量計とを直列に接続して熱式流量計の出力を一定にする
条件で層流流量計の圧力損失を検知することにより、該
損失圧力の関数として得られる燃料混合ガスの熱量を計
測する簡易な燃料混合ガスの熱量計に関する。
Description: TECHNICAL FIELD The present invention relates to a calorimeter, and more particularly, to a layer flowmeter under the condition that a thermal type flowmeter and a laminar flowmeter are connected in series to keep the output of the thermal type flowmeter constant. The present invention relates to a simple calorimeter for mixed fuel gas, which measures the calorific value of the mixed fuel gas obtained as a function of the pressure loss by detecting the pressure loss of the flow meter.

従来技術 燃料ガスおよび天然ガスは、その製造出荷時において熱
量および燃焼性を検知記録することが法的に規定されて
おり、この規定に基づいて混合ガスの熱量を計測する熱
量計が定められている。代表的な熱量計としてユンカー
ス式流水熱量計がある。この熱量計の原理は、混合ガス
の燃料を空気と共に完全に燃焼させ、燃焼して生じた廃
ガスを最初のガス温度迄冷却して生成水蒸気を凝縮さ
せ、発生した熱の総量を熱量計に流れる水に吸収させる
ことにより、一定の混合ガス試料に対応する流水量と、
該流水の流入口および流出口における温風の温度差とを
乗算し、この乗算結果から総熱量を求めるものである。
この熱量計は、基準熱量計として使用されているが、試
験においては、水温と室温との温度差を±0.5℃の範囲
内で一致させるとか、1回の測定時間内における水の温
度変化を0.05℃以内に保つことが条件とされる等、測定
環境においての規定が厳しく、また、測定の応答性も悪
いので精度試験には適しているが生産ラインに適しない
ため、別に速応形の熱量計を使用することも認められて
おり、通常、熱量の測定は、速応形の熱量計により連続
的に行われている。速応形の熱量計は、燃料ガスおよび
空気を各々流量計により計算して混合し、これをバーナ
で燃焼させ、燃焼して生じた排ガスの温度と、燃焼用空
気のバーナ入口における温度とを熱電対等の温度検出器
により検出して各々の温度差を求め、一方、燃料ガスの
空気に対する比重を検知して、試料ガスの総発熱量と、
該試料ガスの空気に対する比重の平方根との比であるウ
ォッペ指数(W.Iと呼ぶ)を求め、被検燃料ガスの熱量
をW.Iと試料ガスの空気に対する比重の平方根との積と
して算出するものである。その他の熱量検知方法とし
て、混合ガスの熱量が、該混合ガスの密度に比例するこ
とが実験的に確かめられており、混合ガスの密度計測結
果から熱量を算出することも試みられている。
Prior art Fuel gas and natural gas are legally stipulated to detect and record the amount of heat and combustibility at the time of manufacturing and shipping, and a calorimeter for measuring the amount of heat of a mixed gas is stipulated based on this rule. There is. A typical calorimeter is the Junkers-type running water calorimeter. The principle of this calorimeter is that the fuel of the mixed gas is completely combusted with the air, the waste gas generated by combustion is cooled to the initial gas temperature, the generated steam is condensed, and the total amount of heat generated is stored in the calorimeter. By absorbing it in flowing water, the amount of flowing water corresponding to a certain mixed gas sample,
The total amount of heat is obtained by multiplying the temperature difference of the warm air at the inflow port and the outflow port of the flowing water and from the multiplication result.
This calorimeter is used as a reference calorimeter, but in the test, the temperature difference between the water temperature and room temperature should be matched within a range of ± 0.5 ° C, or the temperature change of water during one measurement time It is suitable for precision tests because it is strict in the measurement environment such as keeping it within 0.05 ° C and the response of the measurement is poor, but it is not suitable for the production line. It is also permitted to use a calorimeter, and the calorific value is usually measured continuously by a quick response calorimeter. The quick response calorimeter calculates the fuel gas and air by a flow meter, mixes them, burns them with a burner, and burns them with the temperature of the exhaust gas produced by burning and the temperature of the combustion air at the burner inlet. Each temperature difference is detected by detecting with a temperature detector such as a thermocouple, while detecting the specific gravity of the fuel gas with respect to the air, and the total calorific value of the sample gas,
The Woppe index (referred to as WI), which is the ratio of the specific gravity of the sample gas to the air, is calculated, and the calorific value of the test fuel gas is calculated as the product of WI and the square root of the specific gravity of the sample gas to the air. . As another method of detecting the amount of heat, it has been experimentally confirmed that the amount of heat of the mixed gas is proportional to the density of the mixed gas, and it has been attempted to calculate the amount of heat from the density measurement result of the mixed gas.

従来技術の問題点 上述した速応形の熱量計は、高精度な基準熱量計である
コンカース式流水形熱量計に代わる実用形の熱量計であ
るが、測定値がドリフトするため計測精度が低く一回の
連続運転時間に2回の割合で、前記ユンカース式流水形
熱量計と比較し、計測値を補正している。この補正操作
は煩わしいものであり、また、密度を検知する方法にお
いては、密度計が、通常、高価である等の問題点があ
り、安価,簡易に熱量を求めることはできなかった。
Problems of the conventional technology The quick-response calorimeter described above is a practical calorimeter that replaces the Conkers-type running-water calorimeter, which is a highly accurate reference calorimeter, but its measurement value drifts, resulting in low measurement accuracy. The measurement value is corrected by comparing the value with the Junkers-type running water calorimeter at a rate of twice in one continuous operation time. This correction operation is troublesome, and in the method of detecting the density, there is a problem that the density meter is usually expensive, and it is not possible to easily and inexpensively obtain the calorific value.

問題点解決のための手段 本発明は、上述した従来の熱量計測手段の問題点を解決
するためになされたもので、混合ガスの物性として熱量
は密度に比例し、定圧比熱、粘度に逆比例することを熱
式流量計と層流流量計の各々の流量測定原理に適用する
ことにより簡易で正確な熱量計を提供することを目的と
したもので、その要旨とするところは、燃料ガスを層流
で流通する流管に巻回された抵抗線と一定電流で加熱す
る加熱手段の前後流における温度差から燃料ガスの質量
流量を検知する熱式流量計と、層流素子両端間を流通す
る燃料ガスの圧力差に比例した体積流量を検知する層流
流量計とを直列に接続し、熱式流量計の前記温度差を一
定にして得られる前記層流流量計における層流素子間差
圧を検知し、燃料ガスの熱量を該差圧に逆比例した量と
して算出する熱量計を提出するものである。
Means for Solving Problems The present invention has been made to solve the problems of the above-mentioned conventional calorific value measuring means, and the physical quantity of the mixed gas is that the calorific value is proportional to the density, the constant pressure specific heat and the viscosity are inversely proportional. The purpose of this is to provide a simple and accurate calorimeter by applying the flow rate measurement principle of each of the thermal type flow meter and the laminar flow meter, and the main point is that the fuel gas is A thermal type flow meter that detects the mass flow rate of the fuel gas from the temperature difference in the upstream and downstream of the resistance wire wound around the flow tube and the heating means that heats with a constant current flowing in a laminar flow, and flows between both ends of the laminar flow element Difference between the laminar flow elements in the laminar flow meter connected in series with a laminar flow meter that detects a volumetric flow rate proportional to the pressure difference of the fuel gas The pressure is detected and the heat quantity of the fuel gas is inversely proportional to the differential pressure. A calorimeter to be calculated as a quantity is submitted.

実施例 現在都市ガスとして使用されている燃料ガスは、液化天
然ガス(以下単にLNGと呼ぶ)を基ガスとして所定熱量
を得るためにプロパン、ブタン等の高熱量の炭化水素ガ
スを混合している。LNGはメタンを主成分としている
が、各産地によりメタンの含有量が異なり、従って、熱
量も異なっているので、各産地のLNGに混合されるプロ
パン、ブタンガスの配分量が定められている。これら混
合ガスに関して熱量と密度ρ、定圧比熱Cp(以下単に比
熱と呼ぶ)と粘度μ、との関係を熱量を横軸に密度ρ、
比熱Cp、粘度μを縦軸にしめした実測値の例を第3図に
示した。即ち、混合ガスの熱量は密度に比例し、比熱、
粘度に逆比例するという関係がある。一方、第4図は、
熱式流量計の原理構成を示すもので、図において、50は
熱伝導性の優れた流管で矢標方向から密度ρ、比熱Cpの
燃料ガス等の流体が流量Q、レイノルズ数200以下の層
流で流通している。51は流管50中央部に捲回された抵抗
線からなる加熱ヒータで、端子51a,51bより一定電力で
加熱されている。52,53は抵抗線で各々ヒータ51の前後
流において流管50を捲回しており、流量Q=0のとき各
々等しい抵抗値をもっていて、流れによる抵抗値の変化
を、該抵抗52,53を各々ブリッジの2辺としたブリッジ
回路より求める。端子52a,53a,53bは図示しないブリッ
ジ回路の端子を示すものである。このような構成の熱式
流量計の流管50の管壁から流体への熱伝導は流体の層流
境界層を通して行われ、且つ、該層流境界層の厚さに比
例することから、ブリッジ出力Vは比例定数をK1とし
て、 V=K1ρCpQ ……(1) の関係があることが知られ、既知の比熱Cpの流体であれ
ば、質量流量ρQに比例した出力Vが得られる。また、
第5図は、半径r、長さlの流管60内を層流流量Qが流
通する周知の層流流量計を示すもので、61は圧力差をΔ
Pを発生させるための層流素子で、細管または格子等か
ら構成される。流入圧P1,流出圧P2として差圧計7によ
り測定された圧力差ΔPは、流体が粘度μの気体である
ときハーゲンポアゼイユの式として、流量Qは、 であらわされる。(2)式において流入圧P1が高く差圧
ΔPが低い場合は、(P1+P2)/P1≒2としてもよく、流
量Qは差圧ΔPに比例して求められる。
Example The fuel gas currently used as city gas is a liquefied natural gas (hereinafter simply referred to as LNG) as a base gas, and is mixed with a hydrocarbon gas having a high calorific value such as propane and butane in order to obtain a predetermined calorific value. . Although LNG has methane as a main component, the amount of methane and the amount of heat, which are different depending on each production area, therefore, the distribution amount of propane and butane gas mixed with LNG in each production area is determined. The relationship between the heat quantity and density ρ, the constant pressure specific heat Cp (hereinafter simply referred to as specific heat) and the viscosity μ with respect to these mixed gases is the density ρ with the heat quantity as the horizontal axis,
FIG. 3 shows an example of the measured values with the specific heat Cp and viscosity μ plotted on the vertical axis. That is, the heat quantity of the mixed gas is proportional to the density,
There is a relationship that is inversely proportional to viscosity. On the other hand, in FIG.
In the figure, 50 is a flow tube with excellent thermal conductivity. In the figure, 50 is a flow tube with excellent thermal conductivity. Density ρ from the arrow direction, fluid such as fuel gas with specific heat Cp is Q, Reynolds number is 200 or less. It is distributed in a laminar flow. Reference numeral 51 is a heater composed of a resistance wire wound around the center of the flow tube 50, and is heated by terminals 51a and 51b with constant power. 52 and 53 are resistance wires which wind the flow tube 50 in the front-back flow of the heater 51, respectively, and have the same resistance value when the flow rate Q = 0, and change the resistance value due to the flow. Obtained from a bridge circuit with two sides of each bridge. The terminals 52a, 53a, 53b are terminals of a bridge circuit (not shown). Since the heat conduction from the tube wall of the flow tube 50 of the thermal flow meter having such a configuration to the fluid is performed through the laminar boundary layer of the fluid and is proportional to the thickness of the laminar boundary layer, the bridge It is known that the output V has a relationship of V = K 1 ρCpQ (1) where K 1 is a proportional constant. For a fluid having a known specific heat Cp, an output V proportional to the mass flow rate ρQ can be obtained. . Also,
FIG. 5 shows a known laminar flow meter in which a laminar flow rate Q flows in a flow tube 60 having a radius r and a length l, and 61 is a pressure difference Δ.
It is a laminar flow element for generating P, and is composed of a thin tube or a lattice. The pressure difference ΔP measured by the differential pressure gauge 7 as the inflow pressure P 1 and the outflow pressure P 2 is Hagen-Poiseuille's equation when the fluid is a gas of viscosity μ, and the flow rate Q is It is represented by. When the inflow pressure P 1 is high and the differential pressure ΔP is low in the equation (2), (P 1 + P 2 ) / P 1 ≈2 may be used, and the flow rate Q is obtained in proportion to the differential pressure ΔP.

本発明の熱量計は、熱式流量計と層流流量計とを直列接
続して同一流量出力で燃料ガスを流通することにより叙
上の熱式流量計および層流流量計の関係式(1),
(2)式と、第3図に示した燃料ガスの物性と熱量との
関係とから熱量を求めるものである。第3図の関係は次
の(a),(b),(c)をあらわす。
The calorimeter of the present invention has a relational expression (1) between the thermal flow meter and the laminar flow meter as described above, in which the thermal flow meter and the laminar flow meter are connected in series and the fuel gas is circulated at the same flow rate output. ),
The amount of heat is obtained from the equation (2) and the relationship between the physical properties of the fuel gas and the amount of heat shown in FIG. The relationships shown in FIG. 3 represent the following (a), (b), and (c).

(a)燃料ガス密度ρと熱量Hとの関係より ρ=K2H (K2:定数) ……(3) (b)燃料ガス比熱Cpと熱量Hとの関係より Cp=K3/H (K3:定数) ……(4) (c)燃料ガス粘度μと熱量Hとの関係より μ=K4/H ……(5) 即ち、上記(3),(4),(5)式を示す。(A) From the relationship between the fuel gas density ρ and the heat quantity H ρ = K 2 H (K 2 : constant) …… (3) (b) From the relationship between the fuel gas specific heat Cp and the heat quantity H Cp = K 3 / H (K 3 : constant) (4) (c) From the relationship between the fuel gas viscosity μ and the heat quantity H μ = K 4 / H (5) That is, the above (3), (4), (5) Shows the formula.

(1)式に、(3),(4)式を代入すると、 V=K1K2K3Q=K5Q ……(6) ただし、K1K2K3=K5 (2)式は、(P1+P2)/P1=2として(5)式を代入する
と、 (7)式を(6)式に代入し、出力Vを一定として定数
をKであらわすと、次の(8)式 が求められる。即ち、燃料ガスの熱量Hは差圧ΔPに逆
比例した関係として演算可能となる。
Substituting equations (3) and (4) into equation (1), V = K 1 K 2 K 3 Q = K 5 Q (6) However, K 1 K 2 K 3 = K 5 (2) The expression is (P 1 + P 2 ) / P 1 = 2, and when the expression (5) is substituted, By substituting the equation (7) into the equation (6) and expressing the constant by K while keeping the output V constant, the following equation (8) is obtained. Is required. That is, the heat quantity H of the fuel gas can be calculated as a relationship inversely proportional to the differential pressure ΔP.

第1図は、叙上の原理を具現する本発明の熱量計の構成
を示すものである。図において、1は被測燃料ガスを流
通する流路、2は燃料ガスの圧力を一定圧力に減圧する
減圧弁、3はフィルタ、4は圧力計、12は断熱槽、5,6,
7は該断熱槽内に収納される前述の各々熱式流量計、層
流流量計および差圧計で、前述の原理に基づくものであ
る。8は熱式流量計5の流量出力を一定に設定する流量
設定制御装置で、最大流量を100%として百分率で流量
出力を設定し、設定された流量に制御される。10は断熱
槽12内の温度を測定する測温体、9は該測温体10の測温
値と差圧ΔP信号に基づいて熱量を演算する演算器であ
り、演算結果は熱量表示器11で表示される。断熱槽12内
の流路1a部は流路1の熱影響によるひずみを除去するた
めに該流路1をコイル状に巻回したものである。第1図
は、(8)式を具現するための具体例を示すものである
が、測温体10は熱式流量計5の出力を一定にした場合に
おいて質量流量は一定となるが、該質量流量における体
積流量Qと層流流量計の流量Qとの差異を補正するため
のもので、断熱槽12内の温度を一定に制御することによ
り測温体10を除去することができる。
FIG. 1 shows the configuration of a calorimeter of the present invention that embodies the above principle. In the figure, 1 is a flow path through which the fuel gas to be measured flows, 2 is a pressure reducing valve for reducing the pressure of the fuel gas to a constant pressure, 3 is a filter, 4 is a pressure gauge, 12 is an adiabatic tank, 5, 6,
Reference numeral 7 denotes each of the above-mentioned thermal type flow meter, laminar flow meter and differential pressure meter housed in the heat insulation tank, which is based on the above-mentioned principle. Reference numeral 8 denotes a flow rate setting control device that sets the flow rate output of the thermal type flow meter 5 to a constant value, and sets the flow rate output in percentage with the maximum flow rate as 100%, and controls to the set flow rate. Reference numeral 10 is a temperature measuring element for measuring the temperature in the heat insulating tank 12, 9 is a calculator for calculating the heat quantity based on the temperature measured value of the temperature measuring body 10 and the differential pressure ΔP signal, and the calculation result is the heat quantity display 11 Is displayed. The flow path 1a portion in the heat insulating tank 12 is formed by winding the flow path 1 in a coil shape in order to remove strain due to the heat effect of the flow path 1. FIG. 1 shows a specific example for implementing the equation (8). The temperature measuring element 10 has a constant mass flow rate when the output of the thermal type flow meter 5 is constant. This is for correcting the difference between the volume flow rate Q and the flow rate Q of the laminar flow meter in the mass flow rate, and the temperature measuring element 10 can be removed by controlling the temperature inside the adiabatic tank 12 constant.

第2図は、他の実施例を示すもので、図において、第1
図と同一の構成要素には第1図の場合と同一符号を付し
て説明を省く。105は周知のバイパス形の熱式流量計で
第1図における熱式流量計5と層流流量計6とを一体に
したもので、第6図に示したバイパス形熱式流量計の原
理構造を有するものである。第6図において、600は燃
料ガスの流通する主流管で、中央に層流素子610を嵌挿
している。500は前記主流管600の層流素子610前後流部
管壁501,502に開口するバイパス管で、該バイパス管500
には第4図の熱式流量計におけるヒータ51、抵抗線52,5
3が捲回され、バイパス形熱式流量を構成している。抵
抗R1,R2は抵抗線52,53とで構成されるブリッジの2辺を
なす抵抗で、Eは該ブリッジに印加される電源である。
ブリッジ回路出力は叙上の如くバイパス管500の質量流
量を計測するものであるが、該バイパス管500および主
流管600内の流れは共に層流であるから、主流管600の質
量流量はバイパス管500の質量流量を検知することによ
り求められる。即ち、差圧一定の層流で流れる流管流量
は流管抵抗に逆比例関係にあり、バイパス管500および
主流管600内の抵抗が予め知られていることによる。従
って該バイパス形熱式流量計の場合もバイパス管500の
流量出力Vを一定にすると(8)式が適用でき、燃料ガ
スの熱量Hは差圧ΔPに逆比例した関係から求められ
る。第2図に戻って、100は熱式流量計105の流量を該熱
式流量計105出力と設定値とを比較し、出力一定に制御
する周知の制御弁で、第7図にその概要を示す。第7図
において102は、前記流量設定制御装置80の比較信号に
応じた電流で駆動されるコイルで、継鉄103を有するケ
ーシング101に収納され、燃料ガス流量Qを上下流600a,
600bに区分する弁孔106aを穿設する弁座106と協働する
弁104aを電磁駆動する。弁104aは板ばね105で弾性支持
され、コイル102の励磁電流に応じて電磁力を受けるプ
ランジャ104に一体構成される。尚、プランジャ104は該
プランジャ104に作用する電磁力と板ばね105の弾性力と
平衝する変位を受ける。叙上の如く、第2図の実施例に
おいては、バイパス形熱式流量計105と制御弁100および
流量設定制御装置80とは(8)式を満足する演算を行
う。この場合も断熱槽12は恒温槽であってもよい。又、
第6図において熱式流量計の層流素子610部は流路を閉
止する遮閉板とし、細管500のみとしてもよい。尚、図
においてはバイパス形熱式流量計105と制御弁100とを分
離しているが一体構成したものでもよい。また、(1)
式の関係式の成立する熱式流量計であれば第4図、第6
図に示した熱式流量計でなくとも可能である。
FIG. 2 shows another embodiment, in which FIG.
The same components as those in the figure are designated by the same reference numerals as those in FIG. 1 and their explanations are omitted. 105 is a well-known bypass type thermal flow meter in which the thermal flow meter 5 and the laminar flow meter 6 in FIG. 1 are integrated, and the principle structure of the bypass type thermal flow meter shown in FIG. Is to have. In FIG. 6, reference numeral 600 denotes a mainstream pipe through which fuel gas flows, and a laminar flow element 610 is fitted in the center of the mainstream pipe. Reference numeral 500 denotes a bypass pipe that opens in the laminar flow element 610 of the main flow pipe 600 and the pipe walls 501 and 502 in the front and rear flow parts.
Is a heater 51 and resistance wires 52, 5 in the thermal type flow meter of FIG.
3 is wound to form a bypass type thermal flow rate. The resistors R 1 and R 2 are resistors that form two sides of a bridge composed of the resistance lines 52 and 53, and E is a power source applied to the bridge.
The bridge circuit output measures the mass flow rate of the bypass pipe 500 as described above. However, since the flow in the bypass pipe 500 and the main flow pipe 600 are both laminar flow, the mass flow rate of the main flow pipe 600 is the bypass pipe. It is determined by detecting the mass flow rate of 500. That is, the flow pipe flow rate flowing in a laminar flow with a constant differential pressure is in inverse proportion to the flow pipe resistance, and the resistances in the bypass pipe 500 and the main flow pipe 600 are known in advance. Therefore, also in the case of the bypass type thermal type flow meter, if the flow rate output V of the bypass pipe 500 is made constant, the equation (8) can be applied, and the heat quantity H of the fuel gas can be obtained from the relationship inversely proportional to the differential pressure ΔP. Returning to FIG. 2, 100 is a well-known control valve for controlling the flow rate of the thermal type flow meter 105 by comparing the output of the thermal type flow meter 105 with a set value, and controlling the output constant. Show. In FIG. 7, reference numeral 102 denotes a coil driven by a current according to a comparison signal of the flow rate setting control device 80, which is housed in a casing 101 having a yoke 103, and has a fuel gas flow rate Q of 600a,
The valve 104a that cooperates with the valve seat 106 that is provided with the valve hole 106a that is divided into 600b is electromagnetically driven. The valve 104a is elastically supported by the leaf spring 105, and is integrally configured with the plunger 104 that receives an electromagnetic force according to the exciting current of the coil 102. The plunger 104 is subjected to a displacement in which the electromagnetic force acting on the plunger 104 and the elastic force of the leaf spring 105 are in parallel with each other. As described above, in the embodiment of FIG. 2, the bypass type thermal type flow meter 105, the control valve 100 and the flow rate setting control device 80 perform the calculation satisfying the equation (8). Also in this case, the heat insulating tank 12 may be a constant temperature tank. or,
In FIG. 6, the laminar flow element 610 of the thermal type flow meter is a blocking plate that closes the flow path, and only the thin tube 500 may be used. Although the bypass type thermal flow meter 105 and the control valve 100 are separated in the drawing, they may be integrated. Also, (1)
If the flow meter is a thermal type flow meter that satisfies the relational expression of the equations, then FIG.
It is not necessary to use the thermal type flow meter shown in the figure.

効果 叙上のごとく本発明の熱量計によれば、極めて簡単な手
段により高精度に混合燃料ガスの熱量を計測できる。ま
た、断熱槽内の温度変化も小さいので、安定した熱量が
得られ、簡易熱量計として基準熱量計の補助手段を安価
に提供することができる。
Effect According to the calorimeter of the present invention as described above, the calorific value of the mixed fuel gas can be measured with high accuracy by an extremely simple means. Further, since the temperature change in the heat insulation tank is small, a stable amount of heat can be obtained, and it is possible to inexpensively provide auxiliary means for the reference calorimeter as a simple calorimeter.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本発明による熱量計の一実施例を示す構成
例、第2図は、他の実施例を示す構成例、第3図は、燃
料ガスの物性と熱量との関係を示す図、第4図は、熱式
流量計の原理図、第5図は、層流流量計の原理図、第6
図は、バイパス形熱式流量計の原理図、第7図は、制御
弁の原理図である。 1……流路、5,105……熱式流量計、6……層流流量
計、8……流量設定制御装置、9……演算器、10……測
温体、11……熱量表示器、12……断熱槽。
FIG. 1 is a configuration example showing an embodiment of a calorimeter according to the present invention, FIG. 2 is a configuration example showing another embodiment, and FIG. 3 is a diagram showing a relationship between physical properties of fuel gas and heat amount. , FIG. 4 is a principle diagram of a thermal type flow meter, FIG. 5 is a principle diagram of a laminar flow meter, and FIG.
FIG. 7 is a principle diagram of a bypass type thermal type flow meter, and FIG. 7 is a principle diagram of a control valve. 1 ... flow path, 5,105 ... thermal type flow meter, 6 ... laminar flow meter, 8 ... flow rate setting control device, 9 ... calculator, 10 ... temperature sensor, 11 ... calorific value display, 12 ... Insulation tank.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】燃料ガスを層流で流通する流管に巻回され
た抵抗線と一定電力で加熱する加熱手段の前後流におけ
る温度差から燃料ガスの質量流量を検知する熱式流量計
と、層流素子両端間を流通する燃料ガスの圧力差に比例
した体積流量を検知する層流流量計とを直列に接続し、
熱式流量計の前記温度差を一定にして得られる前記層流
流量計における層流素子間差圧を検知し、燃料ガスの熱
量を該差圧に逆比例した量として算出することを特徴と
する熱量計。
1. A thermal type flow meter for detecting a mass flow rate of fuel gas from a temperature difference in a front and rear flow of a resistance wire wound around a flow tube which circulates fuel gas in a laminar flow and a heating means for heating with a constant electric power. , A laminar flow meter that detects a volumetric flow rate proportional to the pressure difference of the fuel gas flowing between both ends of the laminar flow element is connected in series,
A differential pressure between laminar flow elements in the laminar flow meter obtained by keeping the temperature difference of the thermal type flow meter constant is detected, and the heat quantity of the fuel gas is calculated as an amount inversely proportional to the differential pressure. Calorimeter to do.
【請求項2】層流素子を介装した主管と該層流素子を挾
む主管管壁に開口し、該主管のバイパス流路をなす細管
と、該細管を加熱する加熱手段と、該加熱手段により加
熱されて得られる流体の前記加熱手段前後流の温度差を
求める温度差検出手段とを有し、前記主管を流通する燃
料ガスの質量流量を検知する熱式流量計、および、該熱
式流量計における前温度差に比例して変位駆動する駆動
手段と、該駆動手段に連動して流路を開閉する弁手段と
からなる制御弁とからなり、前記熱式流量計の温度差信
号と基準電圧とを比較し、該比較値に基づいて前記制御
弁の駆動手段を燃料ガス流量が基準電圧に定められた流
量出力に制御する質量流量制御装置において燃料ガスの
熱量を前記熱式流量計における主管層流素子間の差圧に
逆比例した量として燃料ガス熱量を算出することを特徴
とする請求項1記載の熱量計。
2. A main pipe having a laminar flow element interposed between the main pipe and a thin pipe which opens in the main pipe wall sandwiching the laminar flow device and forms a bypass flow path of the main pipe, a heating means for heating the thin pipe, and the heating. A thermal type flow meter for detecting a mass flow rate of the fuel gas flowing through the main pipe, and a temperature difference detecting means for obtaining a temperature difference between the upstream and downstream of the heating means of the fluid obtained by being heated by the means, A temperature difference signal of the thermal type flow meter, which comprises a control valve including a driving means for displacement driving in proportion to the previous temperature difference in the flow meter and valve means for opening and closing the flow path in association with the driving means. And a reference voltage, and based on the comparison value, the heat quantity of the fuel gas in the mass flow controller for controlling the driving means of the control valve to the flow rate output in which the fuel gas flow rate is set to the reference voltage. The amount is inversely proportional to the pressure difference between the laminar flow elements in the main tube. Calorimeter according to claim 1, wherein the calculating the fuel gas heat.
【請求項3】熱式流量計と層流流量計とを保温室内に収
納し、燃料ガス比熱を保温室内の温度に基づいて補正す
ることを特徴とする請求項1又は2記載の熱量計。
3. The calorimeter according to claim 1, wherein the thermal type flow meter and the laminar flow meter are housed in a greenhouse and the specific heat of the fuel gas is corrected based on the temperature in the greenhouse.
【請求項4】熱式流量計と層流流量計とを設定された一
定雰囲気温度に保持する恒温槽内に収納したことを特徴
とする請求項1又は2記載の熱量計。
4. A calorimeter according to claim 1, wherein the thermal type flow meter and the laminar flow meter are housed in a constant temperature bath which maintains a set constant ambient temperature.
JP17341589A 1989-07-05 1989-07-05 Calorimeter Expired - Lifetime JPH06100510B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17341589A JPH06100510B2 (en) 1989-07-05 1989-07-05 Calorimeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17341589A JPH06100510B2 (en) 1989-07-05 1989-07-05 Calorimeter

Publications (2)

Publication Number Publication Date
JPH0339623A JPH0339623A (en) 1991-02-20
JPH06100510B2 true JPH06100510B2 (en) 1994-12-12

Family

ID=15960017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17341589A Expired - Lifetime JPH06100510B2 (en) 1989-07-05 1989-07-05 Calorimeter

Country Status (1)

Country Link
JP (1) JPH06100510B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0781918B2 (en) * 1990-08-02 1995-09-06 東京瓦斯株式会社 Calorimeter
JP5001908B2 (en) * 2008-06-25 2012-08-15 東京瓦斯株式会社 Mixed gas component measuring apparatus and component measuring method
JPWO2013111776A1 (en) * 2012-01-23 2015-05-11 Jx日鉱日石エネルギー株式会社 FUEL SUPPLY SYSTEM, FUEL CELL SYSTEM, AND OPERATION METHOD THEREOF
JPWO2013111777A1 (en) * 2012-01-23 2015-05-11 Jx日鉱日石エネルギー株式会社 FUEL SUPPLY SYSTEM, FUEL CELL SYSTEM, AND OPERATION METHOD THEREOF

Also Published As

Publication number Publication date
JPH0339623A (en) 1991-02-20

Similar Documents

Publication Publication Date Title
EP2241810B1 (en) Flow rate control device
JPH0781918B2 (en) Calorimeter
JPH0254500B2 (en)
CA2072122A1 (en) Microbridge-based combustion control
JPH0330091B2 (en)
EP2241811A1 (en) Fuel supply device
KR101940360B1 (en) Device and method for determining the mass-flow of a fluid
KR102478378B1 (en) Method for Estimating Combustion Characteristics of Gases that May Contain Dihydrogen
EP0608514A2 (en) Volumetric flow corrector and method
Hinkle et al. Toward understanding the fundamental mechanisms and properties of the thermal mass flow controller
JP3136553B2 (en) Calorimeter
US6820480B2 (en) Device for measuring gas flow-rate particularly for burners
JPH06100510B2 (en) Calorimeter
JP2011209147A (en) Thermal-type flowmeter, thermal-type device for discriminating gas type and method of automatic determination of gas type
US10502418B2 (en) Device and method for mixing combustible gas and combustion air, hot water installation provided therewith, corresponding thermal mass flow sensor and method for measuring a mass flow rate of a gas flow
Bignell Using small sonic nozzles as secondary flow standards
JP2534418B2 (en) Calorimeter
EP0608736B1 (en) Volumetric flow corrector having a densitometer
US3724261A (en) Device for measuring heat release in continuous calorimeter
JPH04178550A (en) Thermal fuel nature sensor
JPH0295248A (en) Calorimeter
Maroteaux et al. Experimental study of a hot wire, sonic nozzle probe for concentration measurements
MXPA97008933A (en) Measurement of the heating value using combustion catalit
RU1746U1 (en) HEAT FLOW METER
JPH0743224A (en) Calorimeter