JPH06100444B2 - Strain sensor manufacturing method - Google Patents

Strain sensor manufacturing method

Info

Publication number
JPH06100444B2
JPH06100444B2 JP60151045A JP15104585A JPH06100444B2 JP H06100444 B2 JPH06100444 B2 JP H06100444B2 JP 60151045 A JP60151045 A JP 60151045A JP 15104585 A JP15104585 A JP 15104585A JP H06100444 B2 JPH06100444 B2 JP H06100444B2
Authority
JP
Japan
Prior art keywords
insulating layer
substrate
strain
strain sensor
gauge material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60151045A
Other languages
Japanese (ja)
Other versions
JPS6211101A (en
Inventor
英敏 斉藤
昌宏 粂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP60151045A priority Critical patent/JPH06100444B2/en
Publication of JPS6211101A publication Critical patent/JPS6211101A/en
Publication of JPH06100444B2 publication Critical patent/JPH06100444B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Description

【発明の詳細な説明】 イ.産業上の利用分野 この発明は歪(応力)、力、圧力等を測定するための歪
センサーの製造方法に関するものである。
Detailed Description of the Invention a. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a strain sensor for measuring strain (stress), force, pressure and the like.

ロ.従来技術 従来から基板の表面に帯状や平板状のゲージ材を接着し
てこれに電極を付し、基板自身或いは基板を接着した材
料の変形によるゲージ材の電気的性質の変化、即ち導電
性物質の電気抵抗の変化やセラミック材料の電気的性質
の変化等を測定して歪量を測定する歪センサーは多く用
いられているが、最近この種の歪センサーにおいて基板
上に絶縁層を設け、その表面にゲージ材の薄層を蒸着等
によって形成し、該薄層をトリミングして整形したもの
が用いられている。
B. 2. Description of the Related Art Conventionally, a band-shaped or flat-plate-shaped gauge material is adhered to the surface of a substrate, electrodes are attached to the surface, and the electrical property of the gauge material changes due to deformation of the substrate itself or the material to which the substrate is adhered, that is, a conductive substance. Strain sensors that measure the amount of strain by measuring changes in electrical resistance and changes in electrical properties of ceramic materials are often used, but recently, in this type of strain sensor, an insulating layer is provided on the substrate, and A thin layer of a gauge material is formed on the surface by vapor deposition or the like, and the thin layer is trimmed and shaped.

すなわち、第4図に示すように、基板(1)に絶縁層
(2)を設け、その表面にゲージ材(3)を蒸着等によ
って形成し、電極(4)を設けてトリミングしたもので
ある。この場合に絶縁層(2)として無機物質、有機物
質のいずれも用いられる。
That is, as shown in FIG. 4, an insulating layer (2) is provided on a substrate (1), a gauge material (3) is formed on the surface thereof by vapor deposition or the like, and an electrode (4) is provided and trimmed. . In this case, both an inorganic substance and an organic substance are used as the insulating layer (2).

ハ.発明が解決しようとする問題点 ところが従来の構造の歪センサーは、絶縁層(2)が無
機物質である場合にはピンホール等の存在によって基板
とゲージ材との絶縁不良を起こす可能性が高く、絶縁不
良を防止するには絶縁層の厚さを増加しなければならな
いが、厚さを増すと基板の変形により絶縁層に亀裂が生
じ易く、それは絶縁不良や腐食による寿命の減少の原因
となる。一方絶縁層(2)が有機物質の場合には本質的
に耐熱性が低く、特にレーザー法でゲージ材の薄層をト
リミングする際に同時に絶縁層を切断或いは害してしま
い、従ってゲージ材の周辺部で絶縁不良を起こす可能性
があるという問題がある。
C. Problems to be Solved by the Invention However, in the conventional strain sensor, when the insulating layer (2) is made of an inorganic substance, there is a high possibility of causing insulation failure between the substrate and the gauge material due to the presence of pinholes or the like. , In order to prevent insulation failure, the thickness of the insulation layer must be increased, but if the thickness is increased, the insulation layer is likely to crack due to the deformation of the substrate, which may cause a decrease in life due to insulation failure or corrosion. Become. On the other hand, when the insulating layer (2) is made of an organic material, it has essentially low heat resistance, and especially when the thin layer of the gauge material is trimmed by the laser method, the insulating layer is cut or damaged at the same time. There is a problem that insulation failure may occur in some parts.

ニ.問題点を解決するための手段 この発明は上記のような構成の歪センサーにおいて、基
板に耐熱性の高い無機物質の第1絶縁層を直接形成し、
さらにその上に弾性があり亀裂やピンホールが生じ難い
有機物質の第2絶縁層を直接形成する。その表面にゲー
ジ材の薄層を蒸着等によって直接形成し、電極を付して
トリミングすることによって従来品の欠点を解消した製
造方法である。
D. Means for Solving the Problems In the strain sensor having the above structure, the present invention directly forms a first insulating layer of an inorganic material having high heat resistance on a substrate,
Further, a second insulating layer made of an organic material, which is elastic and hard to generate cracks and pinholes, is directly formed thereon. In this manufacturing method, a thin layer of a gauge material is directly formed on the surface by vapor deposition or the like, electrodes are attached, and trimming is performed to eliminate the drawbacks of conventional products.

すなわち、第1図に示すように、変形する基板(1)の
表面に無機物質の第1絶縁層(2)を直接形成し、その
表面に有機物質の第2絶縁層(5)を直接形成する。そ
の表面にゲージ材(3)を蒸着等の方法で直接形成して
電極(4)を付着してトリミングするものである。
That is, as shown in FIG. 1, a first insulating layer (2) made of an inorganic material is directly formed on the surface of a deformable substrate (1), and a second insulating layer (5) made of an organic material is directly formed on the surface. To do. The gauge material (3) is directly formed on the surface by a method such as vapor deposition, and the electrode (4) is attached and trimmed.

この製造方法によれば、第1絶縁層にピンホール等があ
っても第2絶縁層によって常に絶縁が保たれるのでゲー
ジ材と基板の絶縁不良が発生しない。またレーザートリ
ミングを行っても第1絶縁層には必要な耐熱性があり、
絶縁不良を起こすことがない。さらに無機物質の層であ
る第1絶縁層に成膜時の亀裂が発生しても第2絶縁層が
有機物質であるのでこれにより絶縁不良が防止できる。
According to this manufacturing method, even if there is a pinhole or the like in the first insulating layer, insulation is always maintained by the second insulating layer, and thus insulation failure between the gauge material and the substrate does not occur. Even if laser trimming is performed, the first insulating layer has the necessary heat resistance,
Does not cause insulation failure. Further, even if a crack occurs during film formation in the first insulating layer, which is a layer of an inorganic material, the second insulating layer is an organic material, so that insulation failure can be prevented.

ところでゲージ材は無機物質で造られているので有機物
質で構成された第2絶縁層とゲージ材との接着性が悪い
場合には、該第2絶縁層の表面にさらに接着性改善のた
めに無機物質による第3絶縁層を形成してもよい。一般
に無機物質のゲージ材は無機物質の絶縁層と密着性が良
いからである。但し、この第3絶縁層は単に第2絶縁層
とゲージ材との接着性、密着性を高めるためのものであ
るから膜厚は薄くて差支えない。
By the way, since the gauge material is made of an inorganic material, if the adhesiveness between the gauge material and the second insulating layer made of an organic material is poor, the surface of the second insulating layer should be further improved in order to improve the adhesiveness. The third insulating layer made of an inorganic material may be formed. This is because the gauge material made of an inorganic substance generally has good adhesion to the insulating layer made of an inorganic substance. However, since the third insulating layer is merely for improving the adhesiveness and adhesion between the second insulating layer and the gauge material, the third insulating layer may have a small film thickness.

ホ.実施例 実施例1 第2図に断面を示すように、内部が中空で上部が薄い
壁、下部がネジになっている圧力センサー本体(6)の
上部の薄い壁の表面にAl2O3の第1絶縁層(2)を設
け、その上にフェノール樹脂の第2絶縁層(5)を造
り、その上にNiCrの導電性薄膜(ゲージ材)(3)を蒸
着した。この導電性薄膜の上にNiを蒸着することにより
電極を形成し、その後レーザートリミングにより導電性
薄膜の抵抗値を調整する。この構造では中空部に流体を
導入すると薄い壁の部分に歪が生ずる。歪はゲージ材の
電気抵抗を変化させるので、この変化を測定して流体圧
力を測定することができる。
E. Example 1 As shown in the cross section in FIG. 2 , Al 2 O 3 is formed on the surface of the upper thin wall of the pressure sensor main body (6) having a hollow inside, a thin wall on the upper side, and a screw on the lower side. A first insulating layer (2) was provided, a second insulating layer (5) made of phenolic resin was formed on the first insulating layer (2), and a NiCr conductive thin film (gauge material) (3) was deposited thereon. An electrode is formed by depositing Ni on this conductive thin film, and then the resistance value of the conductive thin film is adjusted by laser trimming. In this structure, when a fluid is introduced into the hollow portion, strain occurs in the thin wall portion. Since strain changes the electrical resistance of the gauge material, this change can be measured to measure the fluid pressure.

本実施例においてはゲージ材をレーザートリミングする
際には無機質の第1絶縁層の耐熱性によって基板とゲー
ジ材との電気絶縁性が害されることがなく、また第1絶
縁層のみではピンホールによって絶縁不良を生じた場合
にも第2絶縁層を設けることにより、充分な絶縁を得る
ことができた。
In the present embodiment, when the gauge material is laser-trimmed, the heat resistance of the inorganic first insulating layer does not impair the electrical insulation between the substrate and the gauge material, and the first insulating layer alone causes pinholes. Sufficient insulation could be obtained by providing the second insulating layer even when insulation failure occurred.

実施例2 第3図に断面を示すように、金属製の基板(1)の上に
SiO2の第1絶縁層(2)を設け、その上にポリアミド樹
脂の第2絶縁層(5)を造り、その上に導電性薄膜(ゲ
ージ材)(3)を蒸着した。次に電極(4)を蒸着した
後、導電性薄膜(3)をレーザートリミングして抵抗値
調整をした。
Example 2 As shown in the cross section in FIG. 3, on a metal substrate (1)
A first insulating layer (2) of SiO 2 was provided, a second insulating layer (5) of polyamide resin was formed thereon, and a conductive thin film (gauge material) (3) was vapor-deposited thereon. Next, after depositing the electrode (4), the conductive thin film (3) was laser-trimmed to adjust the resistance value.

基板の片端を支持して他端に力を加えて基板の変形量に
よって力(重量)(F)を測定した。この場合にもレー
ザートリミングによる絶縁不良は発生せず、また測定を
反復したのちも絶縁性は良好であり、確実な測定ができ
た。
The force (weight) (F) was measured by the amount of deformation of the substrate by supporting one end of the substrate and applying a force to the other end. In this case also, insulation failure due to laser trimming did not occur, and the insulation was good even after repeated measurements, and reliable measurement was possible.

ヘ.発明の効果 この発明は基板の表面に導電性薄膜を蒸着した後電極を
設け、導電性薄膜をトリミングして基板の歪量を該薄膜
の電気抵抗の変化によって測定する歪センサーにおい
て、基板上に無機物質の第1絶縁層を直接形成し、その
上に有機物質の第2絶縁層を直接形成し、その上に導電
性物質(ゲージ材)を蒸着し、電極を設けた後にトリミ
ングしているので、第1絶縁層のピンホールによる絶縁
不良を低コストで補うことができ、また第1絶縁層の耐
熱性によってトリミングの際の局部的加熱によって絶縁
体が破損することがない。無機物質の絶縁層のみの場合
には絶縁層の熱伝導率が高くハンダ付けの際の熱が基板
に逃げてしまうが有機物質の絶縁層があるため常温での
電極のハンダ付けが容易である利点がある。さらに基板
が反復して歪を受け第1絶縁層に亀裂が生じても有機物
質の第2絶縁層に弾性があるので絶縁不良となることが
ない。即ち、本発明のセンサーの製造方法は圧力センサ
ーをはじめとする歪検出型の各種の歪センサーとして製
造時の歩留りが良く、且つ寿命が長い特徴を有する有効
な方法である。
F. EFFECTS OF THE INVENTION The present invention provides a strain sensor in which an electrode is provided after vapor deposition of a conductive thin film on a surface of a substrate, and the conductive thin film is trimmed to measure the strain amount of the substrate by a change in electric resistance of the thin film. The first insulating layer made of an inorganic material is directly formed, the second insulating layer made of an organic material is directly formed on the first insulating layer, the conductive material (gauge material) is vapor-deposited on the first insulating layer, and the electrodes are provided before trimming. Therefore, insulation failure due to pinholes in the first insulating layer can be compensated for at low cost, and the heat resistance of the first insulating layer does not damage the insulator due to local heating during trimming. When the insulation layer is made of an inorganic substance only, the thermal conductivity of the insulation layer is high and the heat during soldering escapes to the substrate, but since there is an insulation layer of an organic substance, it is easy to solder the electrode at room temperature. There are advantages. Further, even if the substrate is repeatedly subjected to strain and cracks are generated in the first insulating layer, the second insulating layer made of an organic material has elasticity, and thus insulation failure does not occur. That is, the method of manufacturing the sensor of the present invention is an effective method having various characteristics such as a pressure sensor and other strain detection type strain sensors, which has a good yield in manufacturing and a long life.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明による歪センサーの部分断面図、第2図
は本発明による歪センサーを用いた流体圧力センサーの
断面図、第3図は同じく力測定に用いる本発明による歪
センサーの断面図である。第4図は従来の歪センサーの
断面図である。 (1)……基板、(2)……第1絶縁層、 (3)……導電性薄膜、(4)……電極、 (5)……第2絶縁層(有機物質)、 (6)……圧力センサー本体、 (F)……力。
1 is a partial sectional view of a strain sensor according to the present invention, FIG. 2 is a sectional view of a fluid pressure sensor using the strain sensor of the present invention, and FIG. 3 is a sectional view of a strain sensor of the present invention which is also used for force measurement. Is. FIG. 4 is a sectional view of a conventional strain sensor. (1) ... Substrate, (2) ... First insulating layer, (3) ... Conductive thin film, (4) ... Electrode, (5) ... Second insulating layer (organic substance), (6) ...... Pressure sensor body, (F) …… Force.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】基板の表面に絶縁層を設け該絶縁層上にゲ
ージ材を蒸着し基板の歪によるゲージ材の電気的特性の
変化により歪を測定する歪センサーにおいて、基板上に
無機物質の第1絶縁層を直接形成し、さらにその上面
に、有機物質の第2絶縁層を直接形成し、該絶縁層の上
にゲージ材を蒸着等によって直接形成し、トリミングに
より抵抗調整することを特徴とする歪センサーの製造方
法。
1. A strain sensor for measuring strain by providing an insulating layer on a surface of a substrate, depositing a gauge material on the insulating layer, and measuring strain due to a change in electrical characteristics of the gauge material due to strain of the substrate. The first insulating layer is directly formed, the second insulating layer made of an organic material is directly formed on the upper surface of the first insulating layer, the gauge material is directly formed on the insulating layer by vapor deposition, and the resistance is adjusted by trimming. And a method of manufacturing a strain sensor.
【請求項2】第2絶縁層の上に無機物質の薄い第3絶縁
層をさらに形成することを特徴とする特許請求の範囲第
1項記載の歪センサーの製造方法。
2. The method of manufacturing a strain sensor according to claim 1, further comprising forming a third insulating layer of a thin inorganic material on the second insulating layer.
JP60151045A 1985-07-09 1985-07-09 Strain sensor manufacturing method Expired - Lifetime JPH06100444B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60151045A JPH06100444B2 (en) 1985-07-09 1985-07-09 Strain sensor manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60151045A JPH06100444B2 (en) 1985-07-09 1985-07-09 Strain sensor manufacturing method

Publications (2)

Publication Number Publication Date
JPS6211101A JPS6211101A (en) 1987-01-20
JPH06100444B2 true JPH06100444B2 (en) 1994-12-12

Family

ID=15510092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60151045A Expired - Lifetime JPH06100444B2 (en) 1985-07-09 1985-07-09 Strain sensor manufacturing method

Country Status (1)

Country Link
JP (1) JPH06100444B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5450755A (en) * 1992-10-21 1995-09-19 Matsushita Electric Industrial Co., Ltd. Mechanical sensor having a U-shaped planar coil and a magnetic layer
CN109489542A (en) * 2018-11-15 2019-03-19 华东理工大学 Strain transducer and its manufacturing method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5612525A (en) * 1979-07-11 1981-02-06 Matsushita Electric Ind Co Ltd Load converter

Also Published As

Publication number Publication date
JPS6211101A (en) 1987-01-20

Similar Documents

Publication Publication Date Title
US6437681B1 (en) Structure and fabrication process for an improved high temperature sensor
JPS60181602A (en) Thin-film strain gage device and manufacture thereof
KR101072436B1 (en) Pressure sensor having metal thin film type strain gauge
US4737676A (en) Transducer with a flexible piezoelectric layer as a sensor element
US4680858A (en) Method of manufacture of strain gauges
US3315200A (en) Strain gauges
US3705993A (en) Piezoresistive transducers and devices with semiconducting films and their manufacturing process
US4309687A (en) Resistance strain gauge
JPH06100444B2 (en) Strain sensor manufacturing method
KR100240012B1 (en) Diaphragm
US5084694A (en) Detection elements and production process therefor
JP2020521975A (en) Strain gauges and metal strips with such strain gauges
JP2001057358A (en) Method of fabricating sensor with thin film
JPH11354302A (en) Thin-film resistor element
JP3924460B2 (en) Platinum thin film element
KR100330370B1 (en) A method for fabricting pressure transducer using ceramic diaphragm
JPH04123402A (en) Thin film resistance body
RU2222790C2 (en) Temperature-sensitive element
JPH05135908A (en) Contact type thin-film thermistor
JPH0238062A (en) Thermal head
JPH09210614A (en) Thin-film strain gauge
JPH0758230B2 (en) Ceramic or quartz load cell
JPH0369161B2 (en)
JP2645153B2 (en) Thin film temperature sensor element
JPS6259767B2 (en)