JPH06100323A - Method for molding glass optical device - Google Patents
Method for molding glass optical deviceInfo
- Publication number
- JPH06100323A JPH06100323A JP27519192A JP27519192A JPH06100323A JP H06100323 A JPH06100323 A JP H06100323A JP 27519192 A JP27519192 A JP 27519192A JP 27519192 A JP27519192 A JP 27519192A JP H06100323 A JPH06100323 A JP H06100323A
- Authority
- JP
- Japan
- Prior art keywords
- molding
- glass material
- mold
- temperature
- glass
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B11/00—Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
- C03B11/12—Cooling, heating, or insulating the plunger, the mould, or the glass-pressing machine; cooling or heating of the glass in the mould
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、加熱軟化したガラス素
材を一対の成形型で押圧成形しつつ冷却してガラス光学
素子を得る成形方法に関し、特に凹レンズ形状のガラス
光学素子を得る成形方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a molding method for obtaining a glass optical element by pressing a glass material which has been softened by heating with a pair of molding dies and cooling it, and more particularly to a molding method for obtaining a glass optical element having a concave lens shape. .
【0002】[0002]
【従来の技術】従来、加熱軟化したガラス素材を一対の
成形型で押圧成形しつつ冷却してガラス光学素子を得る
成形方法としては、例えば特開昭63ー159227号
公報及び特開平2ー55235号公報記載の発明があ
る。特開昭63−159227号公報には、光学部品の
肉厚部に接する金型部分と光学部品の肉薄部に接する金
型部分とに、それぞれ別々な温度の熱媒体を導入しうる
ように独立の熱媒体室を設け、肉薄部に接する金型部分
に設けられた熱媒体室には肉厚部に接する金型部分に設
けられた熱媒体室よりも高温の熱媒体を導入しうるよう
にした金型が開示され、光学ガラス製品の肉厚部での冷
却速度と肉薄部での冷却速度とに大きな差異を生じさせ
ることがなく、屈折率のムラがないようなレンズを得よ
うとするものである。2. Description of the Related Art Conventionally, as a molding method for obtaining a glass optical element by cooling a heat-softened glass material with a pair of molding dies while cooling it, for example, JP-A-63-159227 and JP-A-2-55235. There is an invention described in the publication. In Japanese Patent Laid-Open No. 63-159227, the mold part in contact with the thick part of the optical part and the mold part in contact with the thin part of the optical part are independently provided so that heat media of different temperatures can be introduced. The heat medium chamber is provided so that a heat medium having a temperature higher than that of the heat medium chamber provided in the mold portion in contact with the thick portion can be introduced into the heat medium chamber provided in the die portion in contact with the thin portion. Disclosed is a mold for producing a lens that does not cause a large difference between the cooling rate in the thick portion and the cooling rate in the thin portion of the optical glass product and has no uneven refractive index. It is a thing.
【0003】また、特開平2−55235号公報には、
一対の成形型に、熱源と接する部分に円柱状及び任意形
状おくり抜き加工を施して空気断熱層を設けることによ
り、加圧冷却時に収縮量の小さいレンズ光学面中心の温
度を保ち、収縮量の大きい非光学面部付近との収縮量差
を縮めながら冷却し、形状精度の良好な成形レンズを得
る成形型と成形方法が開示されている。Further, Japanese Patent Application Laid-Open No. 2-55235 discloses that
A pair of molding dies is provided with an air heat insulating layer by subjecting a columnar shape and an arbitrary shape to the part in contact with the heat source to provide an air heat insulating layer, so that the temperature of the center of the lens optical surface with a small amount of contraction during pressure cooling can be maintained and the amount of contraction can be reduced. A molding die and a molding method are disclosed which obtain a molded lens with good shape accuracy by cooling while reducing the difference in shrinkage amount with the vicinity of a large non-optical surface portion.
【0004】[0004]
【発明が解決しようとする課題】上記従来技術において
は、ガラス冷却速度の早い薄肉部を、成形初期から終了
まで常に保温あるいは断熱しているので、厚肉部と薄肉
部との温度差の変化に応じて、それぞれの部位の温度制
御を最適化することができない。外径の大きい凹レンズ
の成形中の厚肉部及び薄肉部の温度変化の測定結果を図
5に示す。成形開始後、T1 秒まではガラスの熱が型に
奪われるために、熱移動の速い薄肉部の温度の方が低温
となる。ガラス温度が型温度に近づくT1 秒以降は、中
央に位置する薄肉部の熱は外周に位置する厚肉部が雰囲
気ガスによって冷却しないと移動できないので、薄肉部
の温度の方が逆に高温になる。上記のように、厚肉部と
薄肉部とで成形中に冷却速度の変化が生じる場合には、
上記従来技術では薄肉部の冷却速度を小さくはできる
が、ガラスの厚肉部と薄肉部との温度差を小さくしつつ
短時間でガラス転移点まで冷却することはできない。従
って、外径の大きい凹レンズ形状の成形では、短時間で
転写精度の良好な光学素子を得ることはできない。In the above prior art, since the thin wall portion having a high glass cooling rate is always kept warm or insulated from the initial stage to the end of molding, the temperature difference between the thick wall portion and the thin wall portion changes. Therefore, it is not possible to optimize the temperature control of each part. FIG. 5 shows the measurement results of the temperature changes of the thick wall portion and the thin wall portion during the molding of the concave lens having a large outer diameter. After the start of molding, the heat of the glass is taken up by the mold until T 1 seconds, so that the temperature of the thin portion where the heat transfer is fast becomes lower. After T 1 second when the glass temperature approaches the mold temperature, the heat of the thin-walled portion located at the center cannot move unless the thick-walled portion located at the outer periphery is cooled by the atmospheric gas. become. As described above, when the cooling rate changes during molding in the thick portion and the thin portion,
In the above conventional technique, the cooling rate of the thin portion can be reduced, but it is not possible to cool to the glass transition point in a short time while reducing the temperature difference between the thick portion and the thin portion of the glass. Therefore, in molding a concave lens shape having a large outer diameter, it is not possible to obtain an optical element with good transfer accuracy in a short time.
【0005】本発明は前記従来技術における問題点に鑑
みて開発されたもので、短時間の内に成形中のレンズ内
の温度分布を均一化させてガラス転移点まで冷却するこ
とにより、短時間で転写性の向上が図れるガラス光学素
子の成形方法の提供を目的とする。The present invention was developed in view of the above problems in the prior art. The temperature distribution in the lens during molding is made uniform within a short time, and the temperature is cooled to the glass transition point. It is an object of the present invention to provide a glass optical element molding method capable of improving transferability.
【0006】[0006]
【課題を解決するための手段】上記目的を達成するため
に、本発明のガラス光学素子の成形方法は、加熱軟化し
たガラス素材を一対の成形型にて押圧し、この押圧状態
を維持しつつガラス素材を冷却して光学素子を得る光学
素子の成形方法において、ガラス素材を冷却する際、ま
ず、ガラス素材の外周部からの冷却を行なった後、押圧
しているガラス素材の中心部に対応する成形型内からの
冷却を行なってガラス素材を冷却しつつ押圧成形するこ
ととした。In order to achieve the above object, a method of molding a glass optical element according to the present invention comprises a step of pressing a softened glass material with a pair of molding dies, while maintaining this pressed state. Obtaining an optical element by cooling a glass material In the method of forming an optical element, when cooling the glass material, first cool the glass material from the outer periphery and then correspond to the center of the glass material that is being pressed. It was decided to perform pressure molding while cooling the glass material by cooling from inside the molding die.
【0007】[0007]
【作用】上記構成によれば、まず、ガラス素材の厚肉部
である外周部から冷却を行なうと、成形中の厚肉部にお
ける転移点温度到達速度が早まる。引き続いて、成形型
内部から冷却すると、ガラス素材中央の薄肉部における
転移点温度到達速度が早まる。これにより、ガラス素材
における外周部と中心部の温度差がほぼ同時に転移点温
度に到達する。According to the above construction, first, when cooling is performed from the outer peripheral portion which is the thick portion of the glass material, the transition point temperature reaching speed in the thick portion during molding is accelerated. Subsequently, when cooled from the inside of the mold, the transition temperature reaching speed in the thin portion in the center of the glass material becomes faster. As a result, the temperature difference between the outer peripheral portion and the central portion of the glass material reaches the transition point temperature almost at the same time.
【0008】[0008]
【実施例1】図1は、本発明の実施例1のガラス光学素
子の成形方法に用いる成形装置における成形型部を示す
断面図、図2は、本発明の実施例に用いる成形装置を示
す断面図で、凹レンズの成形装置を示してある。図2に
おいて1で示すのは成形部で、加熱ヒータ2aを備え図
示しない温度制御装置によって所定の温度に設定し得る
加熱炉2が隣接されている。成形部1及び加熱炉2の周
辺は、石英ガラス管又はステンレス製管からなるカバー
3及び上ベース4,下ベース5により閉塞されており、
カバー3,上ベース4及び下ベース5により成形室6が
形成されている。上、下ベース4,5には、雰囲気ガス
供給装置(図示省略)に接続したガスノズル7が貫設さ
れ、このガスノズル7を介して成形室6内に供給される
窒素ガス、不活性ガス又は還元性ガスにより成形室6内
部の酸化を防止している。上ベース4と下ベース5と
は、図示を省略してある部材を介して結合されており、
上ベース4と下ベース5との間の相互の距離、位置が変
化しないように構成されている。Example 1 FIG. 1 is a sectional view showing a molding die in a molding apparatus used in a method for molding a glass optical element of Example 1 of the present invention, and FIG. 2 shows a molding apparatus used in an example of the present invention. In a sectional view, a concave lens forming device is shown. In FIG. 2, reference numeral 1 denotes a molding part, which is adjacent to a heating furnace 2 which includes a heater 2a and which can be set to a predetermined temperature by a temperature control device (not shown). The periphery of the molding unit 1 and the heating furnace 2 is closed by a cover 3 made of a quartz glass tube or a stainless tube, an upper base 4 and a lower base 5,
A molding chamber 6 is formed by the cover 3, the upper base 4 and the lower base 5. A gas nozzle 7 connected to an atmospheric gas supply device (not shown) is provided through the upper and lower bases 4 and 5, and a nitrogen gas, an inert gas, or a reduction gas supplied into the molding chamber 6 through the gas nozzle 7 is provided. The oxidizing gas prevents the inside of the molding chamber 6 from being oxidized. The upper base 4 and the lower base 5 are coupled via a member (not shown),
The upper base 4 and the lower base 5 are configured such that their mutual distances and positions do not change.
【0009】成形室6内には、上型部8と下型部9とが
同一軸線上で相対的に接近・離反自在に対向配置されて
いる。上型部8は上ベース4に固定され、下型部9はプ
レス軸10の先端に固定されている。プレス軸10は、
下ベース5に固定したハウジング11内で軸受け(摺動
用軸受け)12により軸方向へ摺動自在に保持されると
ともに、その下端で連結した駆動用シリンダ13によっ
て昇降駆動自在に設けられている。In the molding chamber 6, an upper mold part 8 and a lower mold part 9 are arranged so as to be relatively close to and away from each other on the same axis. The upper mold part 8 is fixed to the upper base 4, and the lower mold part 9 is fixed to the tip of the press shaft 10. The press shaft 10
In a housing 11 fixed to the lower base 5, a bearing (sliding bearing) 12 is axially slidably held, and a lower end thereof is connected to a driving cylinder 13 so as to be vertically movable.
【0010】23で示すには、光学ガラス素材24及び
プレス成形後の光学素子を載置、搬送するキャリアで、
このキャリア23はキャリア搬送用アーム25により保
持され、加熱炉2内及び上型8と下型部9間に搬送され
るように制御構成されている。Reference numeral 23 indicates a carrier for mounting and carrying the optical glass material 24 and the optical element after press molding,
The carrier 23 is held by a carrier transfer arm 25 and controlled so as to be transferred into the heating furnace 2 and between the upper mold 8 and the lower mold part 9.
【0011】上型部8は、図1に示すように、上型マウ
ント14,上型ヒータ15及び上型17より構成されて
いる。上型マウント14は、Si3 N4 −Al2 O3 系
セラミックス(線膨張係数3.5×10-6)からなり、
その上端が上ベース4に固定されるとともに、その下端
面(先端面)には上型17を位置決めして固定するため
の凹部16が設けられており、この凹部16の底面は平
面仕上げされている。さらに、上型マウント14の内部
中央には、貫通孔14aが凹部16の底面に開口して設
けられており、また、上部には、排気孔14bが貫通孔
14aと成形室6とを連通するように、上型マウント1
4の外周面に開口して設けられる。上型ヒータ15は、
上型マウント14の外周に巻回して設けられ、図示しな
い温度制御装置に接続されて所定の温度に制御自由とな
っている。As shown in FIG. 1, the upper die portion 8 is composed of an upper die mount 14, an upper die heater 15 and an upper die 17. The upper mold mount 14 is made of Si 3 N 4 —Al 2 O 3 system ceramics (coefficient of linear expansion 3.5 × 10 −6 ),
The upper end is fixed to the upper base 4, and the lower end surface (tip end surface) thereof is provided with a recess 16 for positioning and fixing the upper die 17, and the bottom surface of the recess 16 is flat-finished. There is. Further, a through hole 14a is provided at the center of the inside of the upper mold mount 14 so as to open to the bottom surface of the concave portion 16, and an exhaust hole 14b is provided at the upper part to connect the through hole 14a to the molding chamber 6. So the upper mount 1
4 is provided with an opening on the outer peripheral surface. The upper heater 15 is
The upper die mount 14 is wound around the outer periphery of the upper mount 14 and is connected to a temperature control device (not shown) to be freely controlled to a predetermined temperature.
【0012】上型17は、超硬合金(線膨張係数6×1
0-6)からなり、その成形面17aは所定の凸形状に精
密に鏡面仕上げされてから、ガラスとの融着性の低いC
rN薄膜17bがコートされている。一方、成形面17
aの反対側の端面(以下、底面という)17cは精密な
平面に仕上げされている。上型17内部には、底面17
cの中央から成形面17aの方向に向けて単一の空洞部
18が設けられており、空洞部18の底面18aは成形
面17aの付近で平面状に形成されている。この上型1
7は、空洞部18aと上記貫通孔14aを合わせるよう
にして、上型マウント14の凹部16内に収納されてい
る。上型17の底部外周面17dと凹部16の内周面1
6aとのクリアランスは、上型ヒータ15によって所定
の温度に加熱されたときに焼きばまって固定される寸法
になっている。この時、上型17と上型マウント14
は、熱伝導が行なわれるのに十分なように互に密着する
ようになっている。The upper die 17 is made of cemented carbide (coefficient of linear expansion 6 × 1).
0 -6 ), and its molding surface 17a is precisely mirror-finished into a predetermined convex shape, and then has a low fusion property with glass C.
The rN thin film 17b is coated. On the other hand, the molding surface 17
An end surface (hereinafter, referred to as a bottom surface) 17c on the opposite side of a is finished to be a precise flat surface. Inside the upper mold 17, the bottom 17
A single hollow portion 18 is provided from the center of c toward the molding surface 17a, and the bottom surface 18a of the hollow portion 18 is formed in a planar shape near the molding surface 17a. This upper mold 1
7 is housed in the recess 16 of the upper mold mount 14 so that the cavity 18a and the through hole 14a are aligned with each other. Bottom surface 17d of upper mold 17 and inner surface 1 of recess 16
The clearance with respect to 6a is dimensioned such that when it is heated to a predetermined temperature by the upper heater 15, it is shrunk and fixed. At this time, the upper die 17 and the upper die mount 14
Are intimately intimately attached to each other so that heat transfer can take place.
【0013】下型部9は、下型マウント19,下型ヒー
タ20及び下型22より構成されている。下型マウント
19は、その下端が上記プレス軸10の先端に固定され
ており、上型マウント14と同様に先端に凹部21が形
成されるとともに、貫通孔19a,排気孔19bが設け
られている。下型ヒータ20は、下型マウント19の外
周に巻回して設けられ、図示しない温度制御装置に接続
されて所定の温度に制御自在となっている。The lower mold part 9 is composed of a lower mold mount 19, a lower mold heater 20 and a lower mold 22. The lower end of the lower mold mount 19 is fixed to the tip of the press shaft 10, and a concave portion 21 is formed at the front end like the upper mold mount 14, and a through hole 19a and an exhaust hole 19b are provided. . The lower die heater 20 is wound around the outer periphery of the lower die mount 19 and is connected to a temperature control device (not shown) so that it can be controlled to a predetermined temperature.
【0014】下型22は、上型17と同様に、超硬合金
(線膨張係数6×10-6)からなり、その成形面22a
は所定の凸形状に精密に鏡面仕上げされてから、ガラス
との融着性の低いCrN薄膜22bがコートされるとと
もに、成形面22aの反対側の端面(以下、底面とい
う)22cは精密な平面に仕上げられている。下型22
内部には、底面22cの中央から成形面22aの方向に
向けて単一の空洞部26が設けられており、空洞部26
の底面26aは成形面22aの付近で平面状に形成され
ている。なお、下型部9の詳細な構成は、上記上型部8
と同様であるので説明を省略する。Like the upper mold 17, the lower mold 22 is made of cemented carbide (coefficient of linear expansion 6 × 10 -6 ) and has a molding surface 22a.
Is precisely mirror-finished into a predetermined convex shape, then coated with a CrN thin film 22b having a low fusion property with glass, and an end surface (hereinafter referred to as a bottom surface) 22c opposite to the molding surface 22a is a precise flat surface. Has been finished. Lower mold 22
Inside, a single cavity 26 is provided from the center of the bottom surface 22c toward the molding surface 22a.
Bottom surface 26a is formed in a planar shape in the vicinity of molding surface 22a. The detailed structure of the lower mold part 9 is as follows.
The description is omitted because it is similar to the above.
【0015】上記上型17の空洞部18内には、上型内
部ブロー管27が成形室6外から上記上ベース4を貫通
し、貫通孔14aを経て設置されている。上型内部ブロ
ー管27は、図2に示すように、ソレノイド弁28及び
流量調節弁29を経て窒素ガス供給装置30に配管され
ている。一方、上記下型22の空洞部26内にも、下型
内部ブロー管31が成形室6外から上記プレス軸10内
部を貫通し、貫通孔19aを経て設置されている。下型
内部ブロー管31は、ソレノイド32及び流量調節弁3
3を経て窒素ガス供給装置30に配管されている。そし
て、型を加熱した状態で、窒素ガス供給装置30から供
給された所定量の窒素ガスを上型内部ブロー管27の先
端及び下型内部ブロー管31の先端からそれぞれ流出す
ると、窒素ガスは空洞部18,26の底面18a,26
a付近の熱をそれぞれ奪いながら、排気孔14b,19
bより成形室6内に排気される。Inside the cavity 18 of the upper mold 17, an upper mold internal blow pipe 27 penetrates the upper base 4 from outside the molding chamber 6 and is installed through a through hole 14a. As shown in FIG. 2, the upper mold internal blow pipe 27 is connected to a nitrogen gas supply device 30 via a solenoid valve 28 and a flow rate control valve 29. On the other hand, in the cavity 26 of the lower mold 22, a lower mold internal blow pipe 31 penetrates the press shaft 10 from the outside of the molding chamber 6 and is installed through the through hole 19a. The lower mold internal blow pipe 31 includes a solenoid 32 and a flow rate control valve 3.
It is piped to the nitrogen gas supply device 30 via 3. Then, when a predetermined amount of nitrogen gas supplied from the nitrogen gas supply device 30 flows out from the tip of the upper mold internal blow pipe 27 and the tip of the lower mold internal blow pipe 31, respectively, with the mold heated, the nitrogen gas is hollow. Bottom surfaces 18a, 26 of the parts 18, 26
While exhausting the heat in the vicinity of a, the exhaust holes 14b, 19
It is exhausted into the molding chamber 6 from b.
【0016】図2、図3において34で示すのは、リン
グ状の外周ブローリングで、その内部はリング状の空洞
部34aに形成され、内周面には空洞部34aと連通し
た複数の吐出孔34bが等間隔に設けられている。外周
ブローリング34の側方には、中空の外周ブロー管35
が空洞部34aと連通するように溶接されている。外周
ブロー管35は、成形室6外へカバー3を貫通して引き
出され、下方に曲げられた後、ジャバラ管36を介して
ソレノイド弁37及び流量調節弁38を経て、窒素ガス
供給装置30に配管されている。そして、この外周ブロ
ー管35は、上記成形室6外において上ベース4に鉛直
方向に向けて固定したエアシリンダー39の可動ロッド
39a端に接続されており、エアシリンダー39の動作
及びそれに伴うジャバラ管36の伸縮によって、上記外
周ブローリング34が上型17と下型22の中間と、そ
れより上方の高さの間を上下動されるようになってい
る。Reference numeral 34 in FIGS. 2 and 3 denotes a ring-shaped outer peripheral blow ring, the inside of which is formed into a ring-shaped hollow portion 34a, and a plurality of discharges communicating with the hollow portion 34a on the inner peripheral surface. The holes 34b are provided at equal intervals. A hollow outer peripheral blow pipe 35 is provided on the side of the outer peripheral blow ring 34.
Are welded so as to communicate with the cavity 34a. The outer peripheral blow pipe 35 is drawn out through the cover 3 to the outside of the molding chamber 6 and bent downward, and then through the bellows pipe 36, the solenoid valve 37 and the flow rate control valve 38, and then to the nitrogen gas supply device 30. It is plumbed. The outer peripheral blow pipe 35 is connected to the end of the movable rod 39a of the air cylinder 39 fixed to the upper base 4 in the vertical direction outside the molding chamber 6, and the operation of the air cylinder 39 and the bellows pipe accompanying it. By expansion and contraction of 36, the outer peripheral blow ring 34 can be moved up and down between the middle of the upper die 17 and the lower die 22 and the height above it.
【0017】次に、上記構成の成形装置を用いた光学素
子の成形方法の実施例を作用と共に説明する。まず、成
形室6内に上、下ベース4,5のノズル7から窒素ガス
等を供給し、成形室6内部の酸素濃度を1%以下に置換
する。次にヒータ2a,上型ヒータ15及び下型ヒータ
20により、加熱炉2,上型17及び下型22を所定の
温度に加熱する。この状態において、キャリア23内に
光学ガラス素材24を載置し、キャリア搬送用アーム2
5を加熱炉2内に搬送し、上下のヒータ2aにより光学
ガラス素材24を成形可能状態(軟化点)になるまで加
熱軟化処理する。Next, an embodiment of a method of molding an optical element using the molding apparatus having the above construction will be described together with its operation. First, nitrogen gas or the like is supplied into the molding chamber 6 from the nozzles 7 of the upper and lower bases 4 and 5 to replace the oxygen concentration in the molding chamber 6 with 1% or less. Next, the heater 2a, the upper die heater 15 and the lower die heater 20 heat the heating furnace 2, the upper die 17 and the lower die 22 to a predetermined temperature. In this state, the optical glass material 24 is placed in the carrier 23, and the carrier conveying arm 2
5 is conveyed into the heating furnace 2, and the upper and lower heaters 2a heat and soften the optical glass material 24 until it becomes a moldable state (softening point).
【0018】次に、搬送用アーム25前進させ、キャリ
ア23と共に光学ガラス素材24を上型17,下型22
間に搬送する。そして、下型22をシリンダ13により
プレス軸10を介して上動し、上、下型17,22の各
成形面17a,22aにより軟化状態の光学ガラス素材
24をプレス成形する。Next, the carrier arm 25 is moved forward, and the optical glass material 24 together with the carrier 23 is moved to the upper mold 17 and the lower mold 22.
Transport between. Then, the lower mold 22 is moved upward by the cylinder 13 via the press shaft 10, and the softened optical glass material 24 is press-molded by the molding surfaces 17a and 22a of the upper and lower molds 17 and 22, respectively.
【0019】プレス成形の開始と同時に搬送用アーム2
5を後退し、それとともに外周ブローリング34を下降
させて、キャリア23の外周に位置させる。この時、プ
レス成形の時間の中で、図3に示すガラス内部の温度変
化となるように、窒素ガスによる冷却制御を行なう。即
ち、窒素ガス供給装置30から窒素ガスを供給し、外周
ブローリング34の吐出孔34aから流出させてプレス
成形中のガラス素材24を外周部から冷却を行い、外周
の厚肉部のガラス温度を中央の薄肉部のガラス温度に近
付けつつ、図5のT1 秒よりも短いT3 秒後にほぼ同温
度とさせてから、窒素ガスの供給を切り替えて、上型内
部ブロー管27及び下型内部ブロー管31の先端部から
窒素ガスを流出し、成形型内部からガラス素材24の冷
却を行なって、外径の大きいレンズ(例えば、φ20m
m以上)に特有なガラス中央部の高温化を防止しつつガ
ラス素材24をガラス転移点付近まで冷却する。以上の
冷却プロセスを実現することによって、図5のT2 秒よ
り短いT4 秒(図3参照)で、ほぼ外周の厚肉部と中央
の薄肉部を均温化させつつ、ガラス転移点付近までガラ
スを冷却してプレス成形することができる。At the same time as the start of press molding, the transfer arm 2
5 is retracted, and the outer peripheral blow ring 34 is lowered with it, and is positioned on the outer periphery of the carrier 23. At this time, cooling control by nitrogen gas is performed so that the temperature inside the glass changes as shown in FIG. 3 during the press molding. That is, the nitrogen gas is supplied from the nitrogen gas supply device 30, is made to flow out from the discharge hole 34a of the outer peripheral blow ring 34, and the glass material 24 being press-molded is cooled from the outer peripheral portion, and the glass temperature of the thick wall portion on the outer periphery is adjusted. While keeping the glass temperature of the thin portion in the center close to the glass temperature of T 3 seconds, which is shorter than T 1 seconds of FIG. 5, the nitrogen gas supply is switched to the inside of the upper mold blow pipe 27 and the lower mold interior. Nitrogen gas is caused to flow out from the tip of the blow tube 31 to cool the glass material 24 from the inside of the mold, and a lens having a large outer diameter (for example, φ20 m
(m or more), the glass material 24 is cooled to near the glass transition point while preventing the central part of the glass from having a high temperature. By implementing the above cooling process, a short T 4 seconds from 2 seconds T in FIG. 5 (see FIG. 3), while a substantially thick portion of the outer periphery and the center of the thin portion is uniform Yutakaka, near the glass transition point The glass can be cooled down and pressed.
【0020】上、下型17,22でのプレス成形が終了
した後、下型22を下降して離型し、加熱炉2と反対側
の成形室6側面に設けた徐冷炉(図示省略)中に搬送ア
ーム25より搬送して、プレス成形された光学素子を徐
冷する。そして、徐冷が終了した後、徐冷内から搬出
し、光学素子をキャリア23から取り出す。After the press molding by the upper and lower molds 17 and 22 is completed, the lower mold 22 is lowered and released, and in a slow cooling furnace (not shown) provided on the side surface of the molding chamber 6 opposite to the heating furnace 2. The optical element that has been press-molded is gradually cooled by being transported by the transport arm 25. Then, after the slow cooling is completed, the optical element is taken out from the slow cooling and the optical element is taken out from the carrier 23.
【0021】本実施例によれば、成形中の凹レンズ外周
の厚肉部における転移点温度到達速度を早めてから、引
き続いて中央の薄肉部における転移点温度到達速度を早
めるように冷却制御することにより、短時間の内にプレ
ス成形中のレンズ内の温度分布を均一化させてガラス転
移点まで冷却することができる。従って、短時間の成形
で形状精度の良好な凹レンズ形状のガラス光学素子を得
ることができる。According to this embodiment, after the transition point temperature reaching speed in the thick portion on the outer periphery of the concave lens during molding is accelerated, the cooling control is subsequently performed so as to accelerate the transition point temperature reaching speed in the central thin portion. This makes it possible to make the temperature distribution in the lens during press molding uniform and cool it to the glass transition point in a short time. Therefore, a concave lens-shaped glass optical element with good shape accuracy can be obtained by molding in a short time.
【0022】本実施例の変形例として、凹メニスカスレ
ンズの成形においては、凸面側のみ型内部からの窒素ガ
スの流入による型冷却を行なって成形でき、上記と同様
の効果を得ることができる。また、流入させる気体は窒
素ガスに限定させることなく、高温下での引火性あるい
は人体への有害性がなく成形型の劣化を招かない不活性
な気体であればよく、例えばアルゴンガス等を用いるこ
とができる。また、上記外周ブロー及び型内部ブローは
完全に切り替えなくとも、例えば窒素ガスの流量の強弱
を切り変えるようにしてもよい。なお、この場合には、
プレス圧力を増加させて、プレス成形中のプレス量を増
やしてやることが望ましい。As a modified example of this embodiment, in forming a concave meniscus lens, only the convex surface side can be formed by cooling the mold by inflowing nitrogen gas from the inside of the mold, and the same effect as described above can be obtained. Further, the gas to be introduced is not limited to nitrogen gas, and may be an inert gas that is not flammable at high temperatures or harmful to the human body and does not cause deterioration of the mold, for example, argon gas is used. be able to. Further, it is also possible to switch the strength of the flow rate of nitrogen gas, for example, without completely switching the outer peripheral blow and the mold internal blow. In this case,
It is desirable to increase the press pressure to increase the press amount during press forming.
【0023】[0023]
【実施例2】図4は、本発明の実施例2に用いる成形装
置を示す断面図である。上記成形装置には、型温度検出
用の温度センサー40が下型22内に設置されるととも
に、温度センサー40と接続したコントローラ41が設
けられている。このコントローラ41は、上記ソレノイ
ド弁28,37とそれぞれ接続されている。その他の構
成は、図2に示した成形装置と同様である。[Embodiment 2] FIG. 4 is a sectional view showing a molding apparatus used in Embodiment 2 of the present invention. The molding apparatus is provided with a temperature sensor 40 for detecting a mold temperature in the lower mold 22, and a controller 41 connected to the temperature sensor 40. The controller 41 is connected to the solenoid valves 28 and 37, respectively. Other configurations are the same as those of the molding apparatus shown in FIG.
【0024】次に、本実施例の成形方法を説明する。本
実施例の特徴は、プレス成形中に外周ブローから型内部
ブローへの切り替えを、型温度検出用の温度センサー4
0の信号をコントローラ41が判断して、ソレノイド弁
28,32,37の作動を制御することによって行なう
もので、その他は実施例1と同様である。図3に示した
ように、型温度の変化はプレス成形中のガラス温度の変
化と対応しているので、厚肉部と薄肉部が均温化すると
きの型温度を予め計測しておき、この型温度まで冷却さ
れたときに、前記のようにして、外周ブローから型内部
ブローへの切り替えを行なう。本実施例によれば、プレ
ス成形工程における冷却のインプロセス制御が可能にな
るので、形状精度の良好な成形品をばらつきなく製造す
ることができる。Next, the molding method of this embodiment will be described. The feature of this embodiment is that the temperature sensor 4 for detecting the mold temperature is used to switch from the outer peripheral blow to the internal mold blow during press molding.
This is performed by the controller 41 judging the signal of 0 and controlling the operation of the solenoid valves 28, 32, 37, and the other points are the same as in the first embodiment. As shown in FIG. 3, since the change of the mold temperature corresponds to the change of the glass temperature during the press forming, the mold temperature when the temperature of the thick portion and the thin portion is equalized is measured in advance, When cooled to this mold temperature, the outer peripheral blow is switched to the mold internal blow as described above. According to the present embodiment, in-process control of cooling in the press molding process becomes possible, so that it is possible to manufacture a molded product with good shape accuracy without variation.
【0025】[0025]
【発明の効果】以上のように本発明によれば、成形中の
凹レンズ外周の厚肉部における転移点温度到達速度を早
めてから、引き続いて中央の薄肉部における転移点温度
到達速度を早めるように冷却制御して、短時間の内に形
状精度の良好な凹形状のガラス光学素子を得ることがで
きる。As described above, according to the present invention, the transition point temperature reaching speed in the thick portion on the outer circumference of the concave lens during molding is accelerated, and subsequently, the transition point temperature reaching speed in the central thin portion is accelerated. By controlling the cooling to 2, it is possible to obtain a concave glass optical element having good shape accuracy in a short time.
【図1】本発明の実施例1に用いる成形装置の成形部を
示す断面図である。FIG. 1 is a cross-sectional view showing a molding part of a molding apparatus used in Example 1 of the present invention.
【図2】本発明の実施例1に用いる成形装置を示す断面
図である。FIG. 2 is a sectional view showing a molding apparatus used in Example 1 of the present invention.
【図3】ガラス素材内部の温度変化を経時的に示すグラ
フである。FIG. 3 is a graph showing changes in temperature inside the glass material over time.
【図4】本発明の実施例2に用いる成形装置を示す断面
図である。FIG. 4 is a sectional view showing a molding apparatus used in Example 2 of the present invention.
【図5】従来技術におけるガラス素材内部の温度変化を
経時的に示すグラフ図である。FIG. 5 is a graph showing changes in temperature inside the glass material with time in the prior art.
17 上型 22 下型 24 光学ガラス素材 27 上型内部ブロー管 30 窒素ガス供給装置 31 下型内部ブロー管 34 外周ブローリング 35 外周ブロー管 17 Upper mold 22 Lower mold 24 Optical glass material 27 Upper mold internal blow pipe 30 Nitrogen gas supply device 31 Lower mold internal blow pipe 34 Peripheral blow ring 35 Peripheral blow pipe
Claims (1)
にて押圧し、この押圧状態を維持しつつガラス素材を冷
却して光学素子を得る光学素子の成形方法において、ガ
ラス素材を冷却する際、まず、ガラス素材の外周部から
の冷却を行なった後、押圧しているガラス素材の中心部
に対応する成形型内からの冷却を行なってガラス素材を
冷却しつつ押圧成形することを特徴とするガラス光学素
子の成形方法。1. A method of molding an optical element, comprising pressing a heated and softened glass material with a pair of molding dies, and cooling the glass material while maintaining the pressed state to obtain an optical element. First, after cooling from the outer peripheral portion of the glass material, the glass material is cooled and pressure-molded by cooling from inside the molding die corresponding to the central portion of the glass material being pressed. A method for molding a glass optical element.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27519192A JPH06100323A (en) | 1992-09-19 | 1992-09-19 | Method for molding glass optical device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27519192A JPH06100323A (en) | 1992-09-19 | 1992-09-19 | Method for molding glass optical device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06100323A true JPH06100323A (en) | 1994-04-12 |
Family
ID=17551954
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP27519192A Withdrawn JPH06100323A (en) | 1992-09-19 | 1992-09-19 | Method for molding glass optical device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06100323A (en) |
-
1992
- 1992-09-19 JP JP27519192A patent/JPH06100323A/en not_active Withdrawn
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0356068B1 (en) | Mold and molding method for molding optical elements | |
JP3103243B2 (en) | Glass compression molding machine and its processing room | |
JP2001180946A (en) | Method for forming optical glass element and forming apparatus for optical glass with method | |
KR100552609B1 (en) | Press-forming method and machine for glass | |
JP3162180B2 (en) | Glass optical element molding method | |
JPH06100323A (en) | Method for molding glass optical device | |
JPH05193962A (en) | Method for forming glass optical element | |
JP2001048552A (en) | Holding method for optical element and molding unit for optical element | |
JPH0581540B2 (en) | ||
JP3068261B2 (en) | Glass optical element molding method | |
JP3854113B2 (en) | Method and apparatus for forming quartz glass element | |
JP2946003B2 (en) | Method and apparatus for molding optical element | |
JP4232305B2 (en) | Precision glass optical element manufacturing method and precision glass optical element manufacturing apparatus using the method | |
JPH11171556A (en) | Glass gob for forming optical element and forming device and forming method therefor | |
JP2975167B2 (en) | Glass optical element molding method | |
JP3187902B2 (en) | Glass optical element molding method | |
JP3585260B2 (en) | Apparatus and method for manufacturing optical element | |
JP2723139B2 (en) | Optical element molding method and molding apparatus | |
JPH10287434A (en) | Formation of optical element material, and apparatus therefor | |
JPH0248498B2 (en) | KOGAKUBUHINNOSEIKEISOCHI | |
JP2718451B2 (en) | Optical glass parts molding method | |
JP2001335330A (en) | Method for forming optical elements | |
JPH06321560A (en) | Press-forming apparatus for glass mold | |
JPH09286622A (en) | Optical device producing device | |
JPH0761826A (en) | Cooling of mold of molding machine for optics and device therefor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 19991130 |