JPH06100087B2 - Secondary combustion chamber of engine - Google Patents

Secondary combustion chamber of engine

Info

Publication number
JPH06100087B2
JPH06100087B2 JP61029498A JP2949886A JPH06100087B2 JP H06100087 B2 JPH06100087 B2 JP H06100087B2 JP 61029498 A JP61029498 A JP 61029498A JP 2949886 A JP2949886 A JP 2949886A JP H06100087 B2 JPH06100087 B2 JP H06100087B2
Authority
JP
Japan
Prior art keywords
sub
chamber
combustion chamber
engine
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61029498A
Other languages
Japanese (ja)
Other versions
JPS62189312A (en
Inventor
兼嘉 下野
立人 福島
雅彦 重津
洋二 塚脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP61029498A priority Critical patent/JPH06100087B2/en
Publication of JPS62189312A publication Critical patent/JPS62189312A/en
Publication of JPH06100087B2 publication Critical patent/JPH06100087B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Combustion Methods Of Internal-Combustion Engines (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は主としてディーゼルエンジンに設けられる副燃
焼室、特にセラミック製副室構成部材の外周囲に金属製
筒体を嵌合してなる副燃焼室に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention mainly relates to a sub-combustion chamber provided in a diesel engine, particularly a sub-combustion in which a metal cylinder is fitted around the outer periphery of a ceramic sub-chamber constituting member. Regarding the room.

(従来技術) ディーゼルエンジンにおいては、主燃焼室に加えて渦流
室や予燃焼室等の副燃焼室がシリンダヘッドに設けられ
るが、この副燃焼室内は著しく高温の燃焼ガスに曝され
ると共に、良好な燃焼性を得るためには室内を高温に保
持する必要があり、そこで、この副燃焼室を耐熱性及び
断熱性に優れたセラミック材で形成することが試みられ
ている。その場合に、該セラミック材は強度やシリンダ
ヘッドへの取付性に欠けるので、例えば実開昭58−1751
18号公報に示されているように、上下に分割された一対
のセラミック製副室構成部材を金属製の筒体内に嵌合保
持させるのが通例である。
(Prior Art) In a diesel engine, auxiliary combustion chambers such as a swirl chamber and a pre-combustion chamber are provided in the cylinder head in addition to the main combustion chamber, but this auxiliary combustion chamber is exposed to combustion gas of extremely high temperature, In order to obtain good combustion properties, it is necessary to keep the temperature inside the chamber high. Therefore, it has been attempted to form the auxiliary combustion chamber with a ceramic material having excellent heat resistance and heat insulation. In that case, the ceramic material lacks strength and mountability to the cylinder head.
As disclosed in Japanese Patent No. 18, it is customary to fit and hold a pair of vertically divided ceramic sub-chamber constituent members in a metallic cylinder.

然してこの金属製筒体の材料としては、所要の耐熱性と
良好な加工性等を具備すると共に、エンジン運転時にお
ける温度上昇時にもセラミック材に対する保持性が維持
されるように低熱膨張係数材料であることが必要であ
り、そこで、このような条件を満足するものとして、従
来、SUH3やSUS403等のマルテンサイト系耐熱鋼の使用が
検討されて来た(実公昭58−51371号公報によればSUS43
0の使用が示されている)。
However, as the material of the metal cylinder, a material having a required heat resistance and good workability, and a low coefficient of thermal expansion so as to maintain the ceramic material even when the temperature rises during engine operation. Therefore, it has been considered to use a martensitic heat resistant steel such as SUH3 or SUS403 as a material satisfying such a condition (according to Japanese Utility Model Publication No. 58-51371). SUS43
The use of 0 is indicated).

しかし、この筒体が高温時にもセラミック材を十分な拘
束力で確実に保持し、しかも長期間にわたってその保持
性が維持されるためには上記のように熱膨張係数が小さ
いだけでは不十分で、焼きばめ性に優れていること、即
ち焼きばめによってセラミック材に対する締付力に対応
する十分な引張応力が得られることや、該筒体自体の熱
間での強度が十分であること等が必要であり、更に燃焼
ガスによって酸化されることがないように耐酸化性にも
優れている必要がある。然るに、上記SUH3やSUS403等の
材料はこれらの点で必ずしも満足すべきものではなく、
実験によれば、エンジン運転中に筒体とセラミック材と
の間に隙間が生じて、上下一対のセラミック材の合せ面
における破損や、この合せ面からの燃焼ガスの漏出等の
不具合が発生し、また筒体自体にもクラックが発生する
等の不具合が認められた。
However, it is not enough that the thermal expansion coefficient is small as described above in order for this cylindrical body to securely hold the ceramic material with sufficient restraining force even at high temperature and to maintain the holding property for a long period of time. , Shrink-fitting property is excellent, that is, shrink-fitting can obtain sufficient tensile stress corresponding to the tightening force on the ceramic material, and the tubular body itself has sufficient hot strength. And the like, and it is also necessary to have excellent oxidation resistance so as not to be oxidized by combustion gas. However, the above materials such as SUH3 and SUS403 are not necessarily satisfactory in these points.
According to the experiment, a gap is created between the cylinder and the ceramic material during engine operation, which causes problems such as damage to the mating surfaces of the pair of upper and lower ceramic materials and leakage of combustion gas from the mating surfaces. In addition, defects such as cracks were found in the cylinder itself.

(発明の目的) 本発明はセラミック製副室構成部材を金属製筒体内に嵌
合保持させてなるエンジンの副燃焼室に関する上記のよ
うな実情に対処するもので、上記筒体の材料として、熱
膨張係数が小さく且つ耐熱性や加工性に優れているだけ
でなく、焼いばめ性、熱間強度、耐酸化性等にも優れた
材料を実現し、これにより長期の使用にあっても該筒体
のセラミック材に対する良好な保持性が維持されるよう
にして、セラミック材の損傷や燃焼ガスの漏出等を防止
すると共に、該筒体自体におけるクラックの発生や破損
等をも防止することを目的とする。
(Object of the Invention) The present invention addresses the above-described situation regarding an auxiliary combustion chamber of an engine in which a ceramic sub-chamber constituent member is fitted and held in a metal cylinder, and as a material of the cylinder, Not only does it have a small coefficient of thermal expansion and excellent heat resistance and workability, but it also has a material that is excellent in shrink fit, hot strength, and oxidation resistance. Maintaining good retainability of the cylindrical body with respect to the ceramic material to prevent damage to the ceramic material, leakage of combustion gas, and the like, and also to prevent cracks and damages in the cylindrical body itself. With the goal.

(発明の構成) 即ち、本発明はセラミック製副室構成部材の外周囲に金
属製筒体を焼きばめしてなるエンジンの副燃焼室におい
て、上記筒体の材料の組成を、重量比で、0.13〜0.20%
のC(炭素)と、0.30〜0.70%のSi(ケイ素)と、0.50
〜1.00%のMn(マンガン)と、10.50〜12.50%のCr(ク
ロム)と、0.60〜1.00%のMo(モリブデン)と、0.10〜
0.30%のV(バナジウム)と、0.15〜0.35%のNb(ニオ
ブ)と、0.02〜0.05%のB(ホウ素)と、残部を実質的
に占めるFe(鉄)とで構成し、且つこの材料の組織を焼
入れ及び焼戻し処理によりソルバイト組織としたことを
特徴とする。
(Structure of the invention) That is, in the present invention, in a sub-combustion chamber of an engine formed by shrink-fitting a metal cylinder on the outer periphery of a ceramic sub-chamber constituting member, the composition of the material of the cylinder is expressed by weight ratio, 0.13 to 0.20%
C (carbon), 0.30-0.70% Si (silicon), 0.50
~ 1.00% Mn (manganese), 10.50 ~ 12.50% Cr (chromium), 0.60 ~ 1.00% Mo (molybdenum), 0.10 ~
It is composed of 0.30% V (vanadium), 0.15 to 0.35% Nb (niobium), 0.02 to 0.05% B (boron), and Fe (iron) that substantially occupies the balance, and It is characterized in that the structure is made into a sorbite structure by quenching and tempering.

上記組成は基本的にはマルテンサイト系耐熱鋼を構成す
るもので、上記各比率の成分は、夫々次のような働きを
有する。
The above composition basically constitutes a martensitic heat-resistant steel, and the components in the respective ratios have the following functions.

即ち、0.13〜0.20%のCは合金元素としてのMoとの共存
において、1000〜1250℃の温度による焼入れにより均一
なオーステナイト相を形成するのに必要且つ十分な量で
あって、この量より多くなると炭化物の析出が著しくな
ってクリープ強度を低下させることになる。
That is, 0.13 to 0.20% of C is a necessary and sufficient amount to form a uniform austenite phase by quenching at a temperature of 1000 to 1250 ° C. in the coexistence with Mo as an alloying element, and more than this amount. If so, the precipitation of carbides becomes remarkable and the creep strength is lowered.

0.30〜0.70%のSiと、0.50〜1.00%のMnとは脱酸剤とし
て必要且つ十分な量である。
0.30 to 0.70% Si and 0.50 to 1.00% Mn are necessary and sufficient amounts as a deoxidizing agent.

10.50〜12.50%のCrは、耐熱性を向上させるもので、こ
れより少いと耐熱性が不十分となり、また多過ぎると10
00〜1300℃付近におけるオーステナイト領域が狭くな
り、クリープ強度が低下する。
10.50 to 12.50% of Cr improves heat resistance. If it is less than this, the heat resistance becomes insufficient, and if it is too much, it becomes 10
The austenite region near 00 to 1300 ° C becomes narrow and the creep strength decreases.

0.60〜1.00%のMoは、焼鈍によって2次効果現象を強化
し、熱間でのクリープ強度を高める。
0.60 to 1.00% Mo strengthens the secondary effect phenomenon by annealing and increases the creep strength during hot working.

そして、これらの基本的組成に加えられる0.10〜0.30%
のVと、0.15〜0.35%のNbとは、上記Moと同様に焼鈍に
よって2次効果現象を強化して熱間でのクリープ強度を
向上させると共に、特にVは結晶粒を微細化させて耐熱
性を一層向上させ、またNbは耐酸化性を向上させる。
And 0.10-0.30% added to these basic compositions
V and 0.15 to 0.35% of Nb enhance the secondary effect phenomenon by annealing like the above-mentioned Mo to improve the creep strength during hot work, and especially V makes the crystal grains fine and heat-resistant. Property is further improved, and Nb improves oxidation resistance.

また、0.02〜0.05%のBは、熱間強度、特にクリープ強
度を著しく向上させる。
Further, 0.02 to 0.05% of B remarkably improves the hot strength, especially the creep strength.

そして、更に以上のような組成の材料でなる筒体をセラ
ミック製副室構成部材に焼きばめ嵌合する前における焼
入れ及び焼き戻し処理により、組織がマルテンサイト組
織からソルバイト組織に変化され、該金属製筒体の引張
強度及び靭性が向上する。
Then, the structure is changed from a martensite structure to a sorbite structure by quenching and tempering treatment before shrink fitting and fitting a cylindrical body made of a material having the above composition into a ceramic sub chamber constituent member, The tensile strength and toughness of the metal cylinder are improved.

(発明の効果) 以上のように本発明によれば、セラミック製副室構成部
材の外周囲に焼きばめ嵌合される金属製筒体の材料とし
て、低熱膨張係数を有し且つ耐熱性や加工性に優れてい
ると共に、焼きばめ性に優れて上記副室構成部材に対す
る所要な締付力が維持され、しかも該筒体自体としての
熱間強度及び耐酸化性等に優れた材料が実現されること
になる。これにより、セラミック製副室構成部材の外周
囲に金属製筒体を嵌合してなるエンジンの副燃焼室とし
て、長期間の使用にあってもセラミック製副室構成部材
が良好に保持されて該部材の破損や合せ面からの燃焼ガ
スの漏出がなく、また筒体におけるクラックの発生や酸
化による劣化等のない副燃焼室が得られることになる。
(Effects of the Invention) As described above, according to the present invention, as a material of a metal tubular body that is shrink-fitted to the outer periphery of a ceramic sub-chamber constituent member, it has a low thermal expansion coefficient and heat resistance and In addition to being excellent in workability, a material that is excellent in shrink fit and maintains the required tightening force for the sub-chamber constituent members, and that is excellent in hot strength and oxidation resistance as the cylinder itself Will be realized. As a result, the ceramic sub-chamber component can be held well even during long-term use as an engine sub-combustion chamber in which a metal cylinder is fitted around the outer periphery of the ceramic sub-chamber component. It is possible to obtain a sub-combustion chamber in which there is no breakage of the member or leakage of combustion gas from the mating surfaces, and there is no occurrence of cracks in the cylindrical body or deterioration due to oxidation.

(実施例) 以下、本発明の実施例を図面に基づいて説明する。(Example) Hereinafter, the Example of this invention is described based on drawing.

第1図に示すように、ディーゼルエンジンの副燃焼室1
は主燃焼室2の上面を形成するシリンダヘッド3内に該
主燃焼室2に対して偏心させて設けられている。この副
燃焼室1は、いずれも例えばSi3N4(チッ化ケイ素)等
のセラミック材で形成された上部部材4と下部部材5と
でなり且つ内部が略球状の副室6とされたセラミック製
副室構成部材7と、該部材7の外周囲に嵌合された金属
製筒体8とでなり、両者が一体化された状態で上記シリ
ンダヘッド3に設けられた取付凹部3a内に嵌合されてい
る。そして、副室構成部材7の下部部材5に副室6と主
燃焼室2とを連通させる噴口5aが形成されていると共
に、上部部材4にはグロープラグ挿入孔4a及び燃料噴射
孔4bが設けられ、シリンダヘッド3に装着されたグロー
プラグ9の先端が上記挿入孔4aから副室6内に突入さ
れ、また同じくシリンダヘッド3に装着された燃料噴射
ノズル10の先端が上記噴射孔4bを介して副室6内に臨ん
でいる。また、上記金属製筒体8の下端部には鍔部8aが
形成され、該鍔部8aが上記取付凹部3aの下端部に圧入さ
れていると共に、その上方における筒体8の外周面と凹
部3aの内周面との間は断熱空間11とされている。
As shown in FIG. 1, a secondary combustion chamber 1 of a diesel engine
Is provided eccentrically with respect to the main combustion chamber 2 in the cylinder head 3 forming the upper surface of the main combustion chamber 2. The sub-combustion chamber 1 is composed of an upper member 4 and a lower member 5, each of which is made of a ceramic material such as Si 3 N 4 (silicon nitride), and a sub-chamber 6 having a substantially spherical interior. The sub-chamber forming member 7 and the metal cylinder 8 fitted around the outer periphery of the member 7 are fitted in the mounting recess 3a provided in the cylinder head 3 in a state where the both are integrated. Have been combined. The lower member 5 of the auxiliary chamber constituent member 7 is formed with an injection port 5a for communicating the auxiliary chamber 6 with the main combustion chamber 2, and the upper member 4 is provided with a glow plug insertion hole 4a and a fuel injection hole 4b. The tip of the glow plug 9 attached to the cylinder head 3 is projected into the sub chamber 6 through the insertion hole 4a, and the tip of the fuel injection nozzle 10 also attached to the cylinder head 3 is inserted through the injection hole 4b. It faces the sub-chamber 6. Further, a flange 8a is formed at the lower end of the metal tubular body 8, the flange 8a is press-fitted into the lower end of the mounting recess 3a, and the outer peripheral surface of the tubular body 8 and the recessed portion above the flange 8a are depressed. A heat insulating space 11 is formed between the inner peripheral surface of 3a.

然して、上記金属製筒体8は焼きばめによってセラミッ
ク製副室構成部材7の外周囲に嵌合されているが、エン
ジン運転中において副室6内やシリンダヘッド3が高温
の状態となった場合にも焼きばめ効果が維持されて副室
構成部材7に対する良好な保持性が得られ、且つこの保
持性が長期間にわたって維持される必要がある。
However, the metal tubular body 8 is fitted to the outer periphery of the ceramic sub chamber constituent member 7 by shrink fitting, but the sub chamber 6 and the cylinder head 3 are in a high temperature state during engine operation. Also in this case, it is necessary that the shrink-fitting effect is maintained, good holding property for the sub chamber constituent member 7 is obtained, and this holding property is maintained for a long period of time.

そこで、この実施例においては、上記の如き要求を満足
する筒体8の材料として、次のような組成の材料が用い
られている。
Therefore, in this embodiment, a material having the following composition is used as the material of the cylindrical body 8 that satisfies the above requirements.

即ち、この筒体8の材料は、重量比で、0.14%のCと、
0.43%のSiと、0.66%のMnと、0.024%のPと、0.002%
のSと、11.03%のCrと、0.64%のMoと、更にこれに加
えて、0.17%のVと、0.18%のNbと、0.022%のBと、
残部を実質的に占めるFeとを組成とする(第1表参
照)。
That is, the material of the cylindrical body 8 is 0.14% by weight of C,
0.43% Si, 0.66% Mn, 0.024% P, 0.002%
S, 11.03% Cr, 0.64% Mo, and 0.17% V, 0.18% Nb, 0.022% B, in addition to this,
The composition is Fe and substantially occupies the rest (see Table 1).

この組成は基本的にはマルテンサイト系耐熱鋼の組成で
あって、低熱膨張係数を有すると共に、耐熱性や加工性
に優れた性質を有するが、更に、0.17%のVを含有する
ことにより結晶粒が微細化されて耐熱性が向上され、ま
た、0.18%のNbを含有することにより耐酸化性が向上さ
れ、更に、0.022%のBを含有することにより熱間強度
が向上されている。
This composition is basically that of a martensitic heat-resistant steel, which has a low coefficient of thermal expansion and excellent heat resistance and workability, but it also contains 0.17% V to form crystals. The grains are refined to improve the heat resistance, the oxidation resistance is improved by containing 0.18% of Nb, and the hot strength is improved by containing 0.022% of B.

そして、該筒体8は、1100℃、60分の加熱の後、油冷を
行う焼入れ処理を行った上で、690℃、3時間の加熱
後、空冷を行う焼戻し処理により、組織がマルテンサイ
ト系組織からソルバイト組織に変化され、その後600〜8
50℃の加熱下で上記副室構成部材7の外周囲に焼きばめ
嵌合される。これにより筒体8は収縮し、副室構成部材
7に対する所要の拘束力が得られることになる。
Then, the cylindrical body 8 is heated at 1100 ° C. for 60 minutes, then subjected to a quenching treatment for oil cooling, then heated at 690 ° C. for 3 hours, and then tempered for cooling by air, so that the structure is martensite. Change from system organization to solvite organization, then 600-8
It is heat-fitted at 50 ° C. and fitted onto the outer periphery of the sub chamber constituent member 7 by shrink fitting. As a result, the cylindrical body 8 contracts, and a required restraining force for the sub chamber forming member 7 is obtained.

以上のようにして、金属製筒体8の熱間での長期使用に
よる酸化による劣化や熱間強度が不十分なことによるク
ラックの発生や破損等が防止されると共に、セラミック
製副室構成部材7が確実に保持されて上部部材4と下部
部材5との合せ面等における破損や該合せ面からの燃焼
ガスの漏出等の不具合が解消されることになる。
As described above, it is possible to prevent deterioration due to oxidation due to long-term use of the metal tubular body 8 during hot use, generation of cracks and damage due to insufficient hot strength, and a ceramic sub-chamber constituent member. 7 is reliably held, and problems such as damage at the mating surface of the upper member 4 and the lower member 5 and leakage of combustion gas from the mating surface are eliminated.

尚、この実施例に係る上記組成の材料の熱膨張係数、熱
間強度及び耐酸化性について、他のマルテンサイト系耐
熱鋼であるSUH3(比較例I)及びSUS403(比較例II)と
共に確認実験を行い、またこれらの材料でなる筒体とセ
ラミック製副室構成部材とでなる副燃焼室を実際にエン
ジンに装備して、焼きばめ性及び該副燃焼室の状況の確
認実験を行ったので、これらの結果を以下に説明する。
In addition, the thermal expansion coefficient, hot strength and oxidation resistance of the material having the above composition according to this example were confirmed together with other martensitic heat resistant steels SUH3 (Comparative Example I) and SUS403 (Comparative Example II). The engine was actually equipped with a sub-combustion chamber consisting of a cylindrical body made of these materials and a ceramic sub-chamber constituent member, and a test for confirming the shrink fit and the condition of the sub-combustion chamber was conducted. Therefore, these results will be described below.

ここで、上記実施例及び比較例I,IIの組成は第1表の通
りであり、また焼入れ及び焼戻しの条件は第2表の通り
である(実施例については既述の通り)。
Here, the compositions of the above Examples and Comparative Examples I and II are as shown in Table 1, and the conditions for quenching and tempering are as shown in Table 2 (Examples are as described above).

先ず、第2図は本案実施例及び比較例I,IIの組成を有す
る材料(テストピース)の各温度における熱膨張係数を
示すもので、いずれもエンジン運転中の高温時において
も、14.0×10-6/℃以下であって、この種の焼きばめ材
として十分な低熱膨張係数を有することが認められた。
First, FIG. 2 shows the coefficient of thermal expansion at each temperature of the materials (test pieces) having the compositions of the example of the present invention and the comparative examples I and II, both of which are 14.0 × 10 even at high temperature during engine operation. It was found that the thermal expansion coefficient was -6 / ℃ or less and had a sufficiently low coefficient of thermal expansion as a shrink fit material of this kind.

次に、第3図は熱間での0.2%耐力(降伏点)を示すも
ので、いずれも約500℃近傍から耐力の低下が著しくな
るが、実施例は全温度範囲で比較例I,IIよりも大きな値
を示すことが確認された。
Next, FIG. 3 shows 0.2% proof stress (yield point) in the hot state. In both cases, the proof stress decreases remarkably from around 500 ° C., but in Examples, Comparative Examples I and II It was confirmed that the value was larger than that.

また、第4図は熱間での1000時間クリープ破断強さを示
すもので、この強さも温度上昇に従って低下するが、実
施例は全温度範囲で比較例I,IIよりも大きな値を示し
た。
Further, FIG. 4 shows the 1000-hour creep rupture strength in the hot state, and this strength also decreases as the temperature rises, but the Example showed a larger value than Comparative Examples I and II in the entire temperature range. .

この熱間での0.2%耐力と1000時間クリープ破断強さと
は材料の熱間強度を示すもので、実施例の組成が比較例
I,IIに比較して熱間強度が優れていることになる。
The 0.2% proof stress and the 1000-hour creep rupture strength in the hot state show the hot strength of the material.
The hot strength is superior to I and II.

更に、第5図は熱間での耐酸化性を100時間の大気放置
による酸化増量によって示すもので、実施例及び比較例
Iが比較例IIに比べて酸化増量が少なく、耐酸化性に優
れていることが確認された。
Further, FIG. 5 shows the resistance to hot oxidation by increasing the amount of oxidation by leaving it in the air for 100 hours. The example and the comparative example I showed less increase in the amount of oxidation than the comparative example II and were excellent in the oxidation resistance. Was confirmed.

また、第6図は第1表の各組成を有する材料で形成した
筒体をセラミック製副室構成部材に焼きばめした状態で
の該筒体表面の引張応力を焼きばめしろの各値に対して
示すもので、この引張応力が大きい程、副室構成部材に
対する締付力が大きく、焼きばめ性に優れていることに
なる。尚、この引張応力の測定は、当該副燃焼室を装備
したエンジンの耐久実験(全負荷の4650rpmで2分間運
転し、その後、無負荷アイドルの650rpmで1分間運転す
るニューサーマル耐久実験を12000サイクル行うもの)
の前後に行った。
Further, FIG. 6 shows the values of shrink fit values of the tensile stress on the surface of the cylindrical body when the cylindrical body formed of the material having each composition shown in Table 1 is shrink fitted to the ceramic sub chamber constituent member. The higher the tensile stress, the greater the tightening force with respect to the sub chamber constituent member, and the better the shrink fit. In addition, this tensile stress was measured by a durability test of an engine equipped with the auxiliary combustion chamber (12,000 cycles of a new thermal endurance test in which the engine was operated at 4650 rpm at full load for 2 minutes and then at idle at 650 rpm for 1 minute. What to do)
I went before and after.

ここで、筒体と副室構成部材(Si3N4)の常温時と運転
時の温度差をΔt1,Δt2、熱膨張係数をα1、嵌合
面の直径をd1,d2とすれば、運転時に両者間に隙間が生
じないようにするための最小焼きばめしろδは、 δ=(Δt1×α×d1)−(Δt2×α×d2) で示され、これに次のように具体的数値を代入すれば、 δ=(480×12.5×10-6×30)−(680×3.5×10-6×3
0) =0.1086(mm) となる。従って、長期使用による筒体の応力低下を考慮
すれば、焼きばめしろとしては約150μが必要となる。
Here, the temperature difference between the cylindrical body and the sub chamber constituent member (Si 3 N 4 ) at room temperature and during operation is Δt 1 , Δt 2 , the thermal expansion coefficients are α 1 and α 2 , and the diameter of the fitting surface is d 1 , d 2 , the minimum shrinkage allowance δ for preventing a gap between the two during operation is δ = (Δt 1 × α 1 × d 1 ) − (Δt 2 × α 2 × d 2 ), and by substituting concrete numerical values into it, δ = (480 × 12.5 × 10 -6 × 30) − (680 × 3.5 × 10 -6 × 3
0) = 0.1086 (mm). Therefore, considering shrinkage of the cylinder due to long-term use, a shrink fit of about 150 μm is required.

そして、この焼きばめしろでの筒体表面の引張応力は、
実施例で約70Kg/mm2(耐久実験前)、55Kg/mm2(耐久実
験後)であって、比較例I,IIに比較して大きな値を示
し、焼きばめ性に優れていることが確認された。
And, the tensile stress on the surface of the cylinder at this shrink fit is
EXAMPLE about 70 Kg / mm 2 (endurance experiment before), that a 55 Kg / mm 2 (after durability experiment) showed a large value compared Comparative Example I, the II, it has excellent ocular shrink Was confirmed.

最後に、上記耐久実実験における副燃焼室の状況をまと
めると第3表の通りであり、比較例I,IIで認められたセ
ラミック製副室構成部材及び金属製筒体の損傷等が実施
例ではなく、またカーボンの付着によって認められる副
室構成部材の合せ面からの燃焼ガスの漏出も実施例は比
較例I,IIに比べて軽微であることが確認された。
Finally, the conditions of the auxiliary combustion chamber in the above-mentioned actual durability test are summarized in Table 3, and the damages of the ceramic auxiliary chamber constituent members and the metal cylinders recognized in Comparative Examples I and II are shown in the examples. Moreover, it was confirmed that the leakage of the combustion gas from the mating surfaces of the sub-chamber constituent members, which was observed due to the adhesion of carbon, was smaller in the examples than in the comparative examples I and II.

尚、当該筒体の材料として、上記実施例及び比較例I,II
のマルテンサイト系耐熱鋼以外に、オーステナイト系耐
熱鋼としてのSUS304、Ni基超耐熱合金としてのNimonic8
0A(商品名)、Fe−Ni基低膨張合金としてのIncoloy90
3,904(商品名)についても確認したが、SUS304及びNim
onic80Aは熱膨張係数が大きすぎ、またIncoloy903,904
は加工性や耐酸化性が悪いため、この種の筒体としての
使用に適さないことが確認された。
Incidentally, as the material of the cylindrical body, the above-mentioned Examples and Comparative Examples I and II
In addition to martensitic heat resistant steel, SUS304 as austenitic heat resistant steel, Nimonic8 as Ni based super heat resistant alloy
0A (trade name), Incoloy 90 as a Fe-Ni based low expansion alloy
I also confirmed 3,904 (trade name), but SUS304 and Nim
The thermal expansion coefficient of onic80A is too large, and Incoloy 903,904
It was confirmed that is not suitable for use as this type of cylinder because of poor workability and oxidation resistance.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明に係る副燃焼室及びその周辺の構成を示
す断面図、第2〜6図は本発明の実施例に係る材料の熱
膨張係数、0.2%耐力、クリープ破断強さ、酸化増量、
及び筒体表面の引張応力を比較例と共に夫々示すグラフ
である。 1……副燃焼室、7……セラミック製副室構成部材、8
……金属製筒体
FIG. 1 is a cross-sectional view showing the constitution of the auxiliary combustion chamber and its periphery according to the present invention, and FIGS. 2 to 6 are the thermal expansion coefficient, 0.2% proof stress, creep rupture strength and oxidation of the material according to the embodiment of the present invention. Increase,
3 is a graph showing tensile stress on the surface of a cylinder and a comparative example together with a comparative example. 1 ... Sub combustion chamber, 7 ... Ceramic sub chamber constituent member, 8
...... Metal cylinder

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】セラミック製副室構成部材の外周囲に金属
製筒体を焼ばめしてなるエンジンの副燃焼室であって、
上記金属製筒体の材料が、重量比で、0.13〜0.20%のC
と、0.30〜0.70%のSiと、0.50〜1.00%のMnと、10.50
〜12.50%のCrと、0.60〜1.00%のMoと、0.10〜0.30%
のVと、0.15〜0.35%のNbと、0.02〜0.05%のBと、残
部を実質的に占めるFeとでなる組成を有し、且つ該筒体
の組織がソルバイト組織とされていることを特徴とする
エンジンの副燃焼室。
1. A sub-combustion chamber of an engine, which is obtained by shrink-fitting a metal cylinder around an outer periphery of a ceramic sub-chamber constituting member,
The material of the metal cylinder is 0.13 to 0.20% C by weight.
And 0.30-0.70% Si, 0.50-1.00% Mn, 10.50
~ 12.50% Cr, 0.60-1.00% Mo, 0.10-0.30%
V, 0.15 to 0.35% Nb, 0.02 to 0.05% B, and Fe that substantially occupies the balance, and the structure of the cylindrical body is a sorbite structure. Characteristic engine secondary combustion chamber.
JP61029498A 1986-02-13 1986-02-13 Secondary combustion chamber of engine Expired - Lifetime JPH06100087B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61029498A JPH06100087B2 (en) 1986-02-13 1986-02-13 Secondary combustion chamber of engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61029498A JPH06100087B2 (en) 1986-02-13 1986-02-13 Secondary combustion chamber of engine

Publications (2)

Publication Number Publication Date
JPS62189312A JPS62189312A (en) 1987-08-19
JPH06100087B2 true JPH06100087B2 (en) 1994-12-12

Family

ID=12277740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61029498A Expired - Lifetime JPH06100087B2 (en) 1986-02-13 1986-02-13 Secondary combustion chamber of engine

Country Status (1)

Country Link
JP (1) JPH06100087B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110983178B (en) * 2019-12-09 2021-09-07 江阴兴澄特种钢铁有限公司 Steel for ball screw bearing and manufacturing method thereof

Also Published As

Publication number Publication date
JPS62189312A (en) 1987-08-19

Similar Documents

Publication Publication Date Title
US8592050B2 (en) Piston ring
US20080274005A1 (en) Cast Iron With Improved High Temperature Properties
US5194220A (en) Austenitic cast steel and articles made thereof
JPH0826438B2 (en) Ferritic heat-resistant cast steel with excellent thermal fatigue life
KR100435324B1 (en) Cast iron with improved oxidation resistance at high temperature
US5106578A (en) Cast-to-near-net-shape steel body of heat-resistant cast steel
JPH06100087B2 (en) Secondary combustion chamber of engine
US4948556A (en) Piston ring material and piston ring
JP2001271144A (en) Martensitic stainless steel for piston ring and deformed wire for piston ring
EP0480461B1 (en) Aluminum-containing ferritic stainless steel having excellent high temperature oxidation resistance and toughness
JPH0639095Y2 (en) Fuel injection nozzle for diesel engine
US5575972A (en) FE-CR alloy and nozzle for diesel engines
JPH1068050A (en) Stainless steel for spring excellent in thermal settling resistance
JP2866868B2 (en) Piston ring material
JPS63280960A (en) Piston ring made of steel
JPH0448985B2 (en)
JPH0359967B2 (en)
JP3142224B2 (en) Ferritic heat-resistant cast steel and diesel engine pre-combustion chamber member using the same
JPH06212366A (en) Austenitic heat resistant cast steel excellent in high temperature strength and exhaust system parts made thereof
JPS63289373A (en) Piston ring made of steel
JPH0670369B2 (en) Secondary combustion chamber of engine
JPS62151548A (en) Heat resistance ferritic high-cr cast steel
JPS58171556A (en) Valve material for internal-combustion engine
KR20030068881A (en) A heat-resistance stainless steel composition for engine of automobile
JPH0925822A (en) Insert material for indirect combustion chamber type diesel engine