JPH0599930A - Automatic chemical analyzing apparatus - Google Patents

Automatic chemical analyzing apparatus

Info

Publication number
JPH0599930A
JPH0599930A JP3032396A JP3239691A JPH0599930A JP H0599930 A JPH0599930 A JP H0599930A JP 3032396 A JP3032396 A JP 3032396A JP 3239691 A JP3239691 A JP 3239691A JP H0599930 A JPH0599930 A JP H0599930A
Authority
JP
Japan
Prior art keywords
reaction
sample
optical density
value
examination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3032396A
Other languages
Japanese (ja)
Inventor
Junichi Matsumoto
本 順 一 松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP3032396A priority Critical patent/JPH0599930A/en
Publication of JPH0599930A publication Critical patent/JPH0599930A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To judge a specimen in need of re-examination quickly and to improve analyzing efficiency by providing a reaction-liquid adjusting part, an optical measuring part, a memory part, an operating part and two re-examination controlling parts for controlling the reaction- liquid adjusting part and the optical measuring part. CONSTITUTION:A re-examination controlling part 6 individually compares an absorbance Ai, which is measured at every constant time, with a limit value Ah and sends a control signal into a driver 7 so as to execute the re-examination for a specimen, whose amount is decreased when Ai>Ah. Even in the case of Ai<=Ah, the computation of an anticipated value and the comparison of the anticipated value and the limit value Ah at this point are performed based on the data of a memory part 9 and a specified expression of relation. When the anticipated value is higher than Ah, a control part 6A starts the re-examination of the reduced amount by the same way. When the result of the comparison is not applicable to any of the above described cases, the anticipated value of the measured concentration is roughly computed in a control part 6B. When the value exceeds a threshold value, the control signal is sent into the driver 7 so as to perform the ordinary re-examination. For the specimen, which does not require the re-examination for the reduced amount, an operating part 5 determines the quantity based on a specified calibration curve.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、自動化学分析装置に
関する。さらに詳しくは、ここに血清、血漿、尿、リン
パ液等の多成分を含む生化学試料中の所定成分を定量す
るのに有用な自動分析装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an automatic chemical analyzer. More specifically, it relates to an automatic analyzer useful for quantifying a predetermined component in a biochemical sample containing multiple components such as serum, plasma, urine and lymph.

【0002】[0002]

【従来の技術】従来から上記のごとき生化学試料(検
体)中の所定成分の分析方法として、検体に1種又は2
種以上の所定の反応試薬を混合して反応させ、この反応
によって生じる反応液の光学濃度値(吸光度値、蛍光光
度値等)の変化や反応途中の変化率に基づいて所定成分
を定量する方法が、いわゆるエンドポイント法やレート
法として知られており、各種自動生化学分析装置に適用
されている。
2. Description of the Related Art Conventionally, as a method of analyzing a predetermined component in a biochemical sample (specimen) as described above, one kind or two kinds of specimens are used.
A method of mixing predetermined reaction reagents of at least one kind and reacting them, and quantifying a predetermined component based on a change in the optical density value (absorbance value, fluorescence value, etc.) of the reaction solution caused by this reaction and the rate of change during the reaction Is known as a so-called end point method or rate method, and is applied to various automatic biochemical analyzers.

【0003】そして、これらの具体的な分析において、
上記光学濃度値の変化や変化率の測定は、別に測定され
る反応試薬ブランク液(試料成分未含有で同じ反応試薬
を含有する溶液)の光学濃度値Abをベースラインとし
て行われ、かつ測定感度上適正な定量を行う点から、あ
る一定の光学濃度値Ah(光学濃度限界値)までの光学
濃度の範囲内で画一的に行われている。
And, in these concrete analyzes,
The change or the rate of change of the optical density value is measured with the optical density value Ab of the reaction reagent blank solution (a solution containing no sample component and containing the same reaction reagent) as a baseline, and the measurement sensitivity. From the point of performing proper quantification, it is performed uniformly within a range of optical density up to a certain fixed optical density value Ah (optical density limit value).

【0004】例えば、エンドポイント法においては、反
応終了状態の光学濃度と前記試薬ブランクの光学濃度A
bとの差に基づいて定量が行われ、この差を求める光学
濃度限界値Ahは、例えば、酵素を用いる反応試薬では
その基質の量等で規制される反応飽和の前の光学濃度値
付近とされていた。
For example, in the end point method, the optical density at the end of the reaction and the optical density A of the reagent blank are
Quantification is performed based on the difference from b, and the optical density limit value Ah for obtaining this difference is, for example, in the vicinity of the optical density value before reaction saturation regulated by the amount of the substrate etc. in a reaction reagent using an enzyme. It had been.

【0005】一方、レート法においては、反応開始後か
ら反応が終了する時間t迄の反応途中における光学濃度
が経時的に複数測定されこれら一連の実測光学濃度と時
間の関係から光学濃度変化率が求められるが、同様にこ
の変化率は光学濃度限界値Ahの範囲内で求められてい
た。
On the other hand, in the rate method, a plurality of optical densities during the reaction from the start of the reaction to the time t at which the reaction ends are measured over time, and the rate of change in the optical density is determined from the relationship between the series of actually measured optical densities and time. Although it is required, this change rate was similarly determined within the range of the optical density limit value Ah.

【0006】そして、反応終了時に上記光学濃度限界値
Ahを超える検体、すなわち超高値検体については、定
量不能又は不適と判断され、検体量を低減した再度の測
定(再検)が行われてた。
At the end of the reaction, a sample exceeding the optical density limit value Ah, that is, a sample having an extremely high value, was judged to be unquantifiable or unsuitable, and another measurement (retest) was carried out with the sample amount reduced.

【0007】一方、上記光学濃度限界値Ahを超えない
定量可能な検体についても、例えば、正常値範囲(閾値
Ch)を超える高値検体については正常値範囲の検体に
比してその定量値の重要度が高く、高い測定信頼性が要
求される。従ってかかる定量可能な高値検体について
は、検体量を変えない文字通りの再検が行なわれてい
た。
On the other hand, regarding a quantifiable sample that does not exceed the optical density limit value Ah, for example, for a high-value sample that exceeds the normal value range (threshold value Ch), the quantitative value of the quantitative value is more important than that of the normal value range sample. High measurement accuracy is required. Therefore, such a quantifiable high-value sample was literally retested without changing the sample amount.

【0008】そして、このような光学濃度限界値Ahに
基づく定量適否の判断や再検操作及び閾値Chに基づく
再検操作を自動的に制御して定量を行う自動化学分析装
置も従来から知られている。
An automatic chemical analyzer for performing quantitative determination by automatically controlling the determination of suitability for quantification based on the optical density limit value Ah, the retesting operation and the retesting operation based on the threshold value Ch is also known. ..

【0009】[0009]

【発明が解決しようとする課題】しかしながら、従来の
自動化学分析装置においては、上記減量再検や通常再検
が必要かどうかの判断は、各々反応液の反応終了時に行
われるように構成されていた。従って、これらの再検の
必要な検体についてその要否の判断を行うだけで正常な
検体についての定量時間と同程度の時間を要し、分析全
体の迅速化の点で障害となっていた。
However, in the conventional automatic chemical analyzer, the determination as to whether the above-mentioned weight loss retest or normal retest is necessary is made at the end of the reaction of each reaction solution. Therefore, it takes a time about the same as the quantification time for a normal sample just to determine the necessity of the sample requiring retesting, which is an obstacle to speeding up the whole analysis.

【0010】この発明はかかる状況下なされたものであ
り、ことに再検が必要な検体についてはその判断をより
迅速に行なって生化学分析全体の効率を上昇させる事が
出来る自動分析装置を提供しようとするものである。
The present invention has been made under such circumstances, and it is intended to provide an automatic analyzer capable of increasing the efficiency of the whole biochemical analysis by making the judgment more promptly for the specimens requiring retesting. It is what

【0011】[0011]

【課題を解決するための手段】かくしてこの発明によれ
ば、(a)所定量の検体と反応試薬を混合して被検反応
液を調製する反応液調製部と、(b)被検反応液の光学
濃度を、反応開始から反応終了後(時間t)迄一定時間
毎に測定しうる光学測定部と、(c)標準試料と反応試
料を混合した基準反応液についての反応開始から反応終
了後(時間t)迄の一定時間毎の光学濃度とこの標準試
料中の所定成分濃度を記憶する記憶部と、(d)被検反
応液の時間tでの最終光学濃度Atが、所定の光学濃度
限界値Ahの範囲内となる検体について、このAt値に
基づいて検体中の所定成分を定量する演算部と、(e)
被検反応液についての上記時間tでの最終光学濃度At
が上記光学濃度限界値Ahを超えるか否かを、反応途中
の光学濃度値に基づいて予め判断すると共に、Ahを超
えると判断される検体については、検体量を減少した条
件での再検を行うよう上記反応液調製部と光学測定部を
制御する第1再検制御部と、(f)検体中の所定成分の
濃度が所定の閾値Chを超えるか否かを、当該被検反応
液についての反応途中の光学濃度と、上記記憶部におけ
る対応する光学濃度との比に基づいて予め判断し、Ch
を超えると判断される検体について、再検を行うよう上
記反応液調製部と光学測定部を制御する第2再検制御
部、を備えてなる自動化学分析装置が提供される。
Thus, according to the present invention, (a) a reaction solution preparing section for preparing a test reaction solution by mixing a predetermined amount of a sample and a reaction reagent, and (b) a test reaction solution The optical density of the standard reaction solution in which the optical density of the reference reaction solution in which the standard sample and the reaction sample are mixed is measured from the start of the reaction to the end of the reaction (time t) at fixed intervals, and after the end of the reaction. A storage unit for storing the optical density for each constant time until (time t) and the concentration of a predetermined component in this standard sample, and (d) the final optical density At of the reaction liquid to be tested at time t is a predetermined optical density. For a sample that falls within the range of the limit value Ah, a computing unit that quantifies a predetermined component in the sample based on the At value, and (e)
Final optical density At of the reaction liquid to be tested at the time t
Whether or not exceeds the optical density limit value Ah based on the optical density value during the reaction, and for samples judged to exceed Ah, re-examination is performed under the condition that the sample amount is decreased. A first re-examination control unit for controlling the reaction solution preparation unit and the optical measurement unit, and (f) whether or not the concentration of a predetermined component in the sample exceeds a predetermined threshold value Ch. It is determined in advance based on the ratio of the optical density on the way and the corresponding optical density in the storage unit.
There is provided an automatic chemical analyzer comprising a reaction liquid preparation unit and a second re-examination control unit that controls the optical measurement unit so as to re-examine a sample that is determined to exceed the above.

【0012】さらにこの発明によれば、(a)所定量の
検体と反応試薬を混合して被検反応液を調製する反応液
調製部と、(b)被検反応液の光学濃度を、反応開始か
ら反応終了後(時間t)迄一定時間毎に測定しうる光学
測定部と、(c)標準試料と反応試薬を混合した基準反
応液についての反応開始から反応終了後(時間t)迄の
一定時間毎の光学濃度とこの標準試料中の所定成分濃度
を記憶する記憶部と、(d)上記経時的に得られる被検
反応液の光学濃度のうち、所定の光学濃度限界値のAh
範囲内に属する複数の光学濃度の変化率に基づいて検体
中の所定成分を定量する演算部と、(e)反応途中に測
定される被検反応液についての光学濃度が上記光学濃度
限界値Ahを超えるか否かを判断すると共に、Ahを超
えた際にAh範囲内に属する光学濃度値が3点未満であ
る検体について、検体量を減少した条件での再検を行う
よう上記反応液調製部と光学測定部を制御する第1再検
制御部と、(f)検体中の所定成分の濃度が所定の閾値
Chを超えるか否かを、当該被検反応液についての反応
途中の光学濃度と、上記記憶部における対応する光学濃
度の比に基づいて予め判断し、Chを超えると判断され
る検体について、再検を行うよう上記反応液調製部と光
学測定部を制御する第2再検制御部、を備えてなる自動
化学分析装置が提供される。
Further, according to the present invention, (a) a reaction solution preparing section for preparing a test reaction solution by mixing a predetermined amount of a sample and a reaction reagent, and (b) an optical density of the test reaction solution From the start to the end of the reaction (time t), an optical measuring unit capable of measuring at regular intervals, and (c) from the start of the reaction to the end of the reaction (time t) for the reference reaction liquid in which the standard sample and the reaction reagent are mixed. A storage unit for storing the optical density at regular time intervals and the concentration of a predetermined component in this standard sample, and (d) the optical density of a predetermined optical concentration limit value Ah of the optical densities of the test reaction liquid obtained over time.
An arithmetic unit for quantifying a predetermined component in the sample based on a plurality of change rates of the optical density belonging to the range, and (e) the optical density of the test reaction solution measured during the reaction is the optical density limit value Ah. The reaction solution preparation unit is configured to judge whether or not the above is exceeded, and to re-examine a sample having an optical density value of less than 3 points that belongs to the Ah range when it exceeds Ah under the condition that the amount of the sample is reduced. And a first re-examination control unit that controls the optical measurement unit, and (f) whether or not the concentration of a predetermined component in the sample exceeds a predetermined threshold Ch, and an optical concentration during the reaction of the test reaction liquid, A second re-examination control unit that controls the reaction solution preparation unit and the optical measurement unit to perform a re-examination for a sample that is previously determined based on the ratio of the corresponding optical densities in the storage unit and is determined to exceed Ch. Provided automatic chemical analysis equipment It is.

【0013】この発明は、減量再検及び通常再検の要否
を、反応が終了する迄の光学濃度変動領域の光学濃度値
に基づいてリアルタイムに判断し、かつその判断によっ
てこれらの再検操作の指示を反応終了前に行うことがで
きるように構成したものである。
According to the present invention, the necessity of re-examination for weight reduction and normal re-examination is judged in real time based on the optical density value in the optical density fluctuation region until the reaction is completed, and the instruction of these re-examination operations is made by the judgment. It is configured so that the reaction can be performed before the end of the reaction.

【0014】第1発明は、エンドポイント法を適用した
自動化学分析装置についてのものである。第1再検制御
部における最終光学濃度AtがAhを超えるか否かの判
断は、マイクロコンピュータを用い、反応途中の実測光
学濃度Ai毎にAhとの比較する工程と、このAiがA
h未満の場合にはAi迄の複数の光学濃度Ai-1、Ai-2
……、から反応時終了時の光学濃度Atを近似的に予
測し、この予測値と上記Ahとを比較する工程によって
行うのが適している。ここでAiがAhを超えた場合に
は、再検制御部はAtがAhを超えると判断し、その際
の反応液の反応度に拘わらず、この検体について検体量
を減少した条件で再検を行うように反応液調製部と光学
測定部を駆動させる。AiがAhを超えない場合におい
ても上記したAtの予測値がAhを超えると判断される
場合には再検制御部は、同様に再検を実行させる。そし
て、いずれもAhを超えない場合には再検を行われず、
実際の最終光学濃度Atに基づいて演算部での定量が行
われる。
The first aspect of the present invention relates to an automatic chemical analyzer using the end point method. The determination of whether the final optical density At exceeds Ah in the first re-examination control unit is performed by using a microcomputer, comparing the measured optical density Ai with Ah for each measured optical density Ai during the reaction, and this Ai is A
If it is less than h, a plurality of optical densities A i -1 , A i -2 up to A i
It is suitable to carry out by a step of approximately predicting the optical density At at the end of the reaction from ..., and comparing the predicted value with the above Ah. Here, when Ai exceeds Ah, the re-examination control unit determines that At exceeds Ah, and the re-examination is performed on the condition that the amount of the sample is reduced, regardless of the reactivity of the reaction solution at that time. The reaction solution preparation section and the optical measurement section are driven in this manner. Even when Ai does not exceed Ah, if the above-described predicted value of At is determined to exceed Ah, the re-examination control unit similarly causes re-examination to be performed. If neither exceeds Ah, no re-examination will be conducted,
The quantification is performed in the calculation unit based on the actual final optical density At.

【0015】ここで上記予測値の算出は、複数ことに3
点以上の光学濃度値と反応時間との関係から回帰式を求
め、この回帰式によって反応終了時tにおけるAtを求
める演算方式(例えば二次回帰又は三次回帰式を基準と
する最小自乗法)で行うことができるが、記憶部におけ
る標準試料についての光学濃度データとの比を利用して
より簡便に算出することができる。
Here, the above-mentioned prediction value is calculated in three or more ways.
A regression equation is calculated from the relationship between the optical density value above the point and the reaction time, and the regression equation is used to calculate At at the end of the reaction t (for example, the least squares method based on the quadratic regression or cubic regression equation). Although it can be performed, it can be calculated more easily by using the ratio with the optical density data of the standard sample in the storage unit.

【0016】すなわち、時刻iにおいて所定成分濃度と
反応液の光学濃度との間には原則的に下記式(1)の比
例関係: (Ai −Ab)・Cst=(Ai ・st−Ab)・Cs……(1) 〔式中、Aiは時刻iにおける被検反応液の光学濃度、
Ai ・stは時刻iにおける基準反応液(標準試料使
用)の光学濃度、Abは試薬ブランクの光学濃度、Cs
tは標準試料の所定成分濃度( 又は活性値)、Csは被検
試料の所定成分濃度(又は活性値)を各々示す〕が成立
する。
That is, at time i, the proportional relationship between the predetermined component concentration and the optical concentration of the reaction solution is in principle expressed by the following equation (1): (Ai-Ab) .Cst = (Ai.st-Ab). Cs ... (1) [wherein Ai is the optical density of the test reaction solution at time i,
Ai · st is the optical density of the reference reaction liquid (using a standard sample) at time i, Ab is the optical density of the reagent blank, and Cs
t represents the concentration (or activity value) of the predetermined component of the standard sample, and Cs represents the concentration (or activity value) of the predetermined component of the test sample].

【0017】一方、標準試料についての基準反応液の2
つの時刻i、 jでの光学濃度Ai ・stとAj ・stに
ついては下記式(2):(Ai ・st−Ab)/(Aj
・st−Ab)=(Ai −Ab)/(Aj −Ab)=k
(一定) 〔式中、Ai、 Ajは、 時刻i、 jにおける被検反応液
の光学濃度〕の関係が成立する。
On the other hand, 2 of the standard reaction solution for the standard sample
For the optical densities Ai.st and Aj.st at two times i and j, the following equation (2): (Ai.st-Ab) / (Aj
-St-Ab) = (Ai-Ab) / (Aj-Ab) = k
(Constant) [wherein Ai and Aj are optical densities of the test reaction liquids at time points i and j].

【0018】従って、 これらの式( 1) 及び式(2)と
から下式(3): Aj=Ab+(Ai −Ab)・(Aj・st−Ab)/
(Ai ・st−Ab)…(3)が導かれ、これにより基
準反応液の既知のデータAi・st、 Aj・st及び試
薬ブランク値並びに反応途中の被検反応液の光学濃度A
iからその後の光学濃度の予測値( Aj) が簡便に概算
でさることとなり、j=tの際の最終吸光度Atの予測
及びAhとの比較を行なうことができる。
Therefore, from these equations (1) and (2), the following equation (3): Aj = Ab + (Ai-Ab). (Aj.st-Ab) /
(Ai.st-Ab) ... (3) is derived, and the known data Ai.st, Aj.st and the reagent blank value of the reference reaction solution and the optical density A of the test reaction solution in the middle of the reaction are thereby derived.
The predicted value (Aj) of the optical density after that can be easily estimated from i, and the final absorbance At when j = t can be predicted and compared with Ah.

【0019】一方、第2再検制御部は、前記第1再検制
御部において最終光学濃度AtがAhを超えない被検反
応液、すなわち、定量可能な被検反応液について、更
に、その反応途中においてその被検成分濃度が正常値の
上限(閾値Ch)を超えるかどうかを予測し、超える場
合に、その検体についての通常再検を行うよう制御す
る。
On the other hand, the second re-examination control unit is further provided with a test reaction liquid whose final optical density At does not exceed Ah in the first re-examination control unit, that is, a quantifiable test reaction liquid, during the reaction. It is predicted whether or not the concentration of the test component exceeds the upper limit (threshold value Ch) of the normal value, and when it exceeds, control is performed so that a normal retest is performed on the sample.

【0020】かかる濃度の予測は、前記した式(1)に
基づいて、下式(4):Cs=Cst・(Ai-Ab)/
(Ai ・st−Ab)…(4)により算出することができ
る。
Prediction of the concentration is based on the above equation (1), and the following equation (4): Cs = Cst. (Ai-Ab) /
(Ai.st-Ab) ... (4) can be calculated.

【0021】一方、第2発明は、レート法を適用した自
動化学分析装置についてのものである。この装置におい
ても、第1再検制御部で反応途中の実測化学濃度Ai毎
にAhとの比較が行われる。但し、Ahを超えた検体に
ついては、さらにAhの範囲内に属する光学濃度のサン
プル数がチェックされ、このサンプル数が3点に満たな
い場合にのみ減量再検が実施される。
On the other hand, the second invention relates to an automatic chemical analysis device to which the rate method is applied. Also in this apparatus, the first re-examination control unit compares each measured chemical concentration Ai during the reaction with Ah. However, for samples exceeding Ah, the number of optical density samples belonging to the range of Ah is further checked, and the weight loss retest is performed only when the number of samples is less than 3.

【0022】そして、この場合にはさらに、第2再検制
御部でレート反応により定量可能な検体の反応液につい
て、基準反応液についてのデータに基づいてその被検成
分濃度が正常値の上限(閾値Ch)を超えるかどうかを
概算して予測し、超える場合に、その検体について通常
再検を行なうよう制御する。かかる予測は、前記と同様
に、式(4)に基づいて行われる。
Further, in this case, further, with respect to the reaction liquid of the sample that can be quantified by the rate reaction in the second re-examination control unit, the concentration of the test component is higher than the normal value (threshold value) based on the data of the reference reaction liquid. It is roughly estimated whether or not Ch) is exceeded, and when it exceeds, control is performed so that a normal retest is performed for the sample. The prediction is performed based on the equation (4) as in the above.

【0023】なお、いずれの場合においても、検体個々
に反応前のベースラインの光学濃度が異なる場合がある
ため、これに対応して検体毎に光学濃度限界値Ahを補
正(Ah′)する演算処理がなされてもよい。このAh
の補正は、反応初期の段階の複数の実測光学濃度値に基
づいて反応開始時、即ち反応液調整時(t =0)の光学
濃度を算出してこれをAhに加算又は減算することによ
り行うことができる(〔図6〕参照)。
In any case, since the optical density of the baseline before the reaction may differ for each sample, the optical density limit value Ah is corrected (Ah ') for each sample correspondingly. Processing may be done. This Ah
Is corrected by calculating the optical density at the start of the reaction, that is, at the time of adjusting the reaction solution (t = 0) based on a plurality of actually measured optical density values at the initial stage of the reaction, and adding or subtracting the calculated optical density to Ah. (See FIG. 6).

【0024】[0024]

【作用】演算部での定量が行われる反応終了段階に至る
迄に、各検体について減量再検及び通常再検の要否が判
断され、かつそれによって各再検の実行の制御が行われ
る。従って、反応終了迄に必要な検体についての再検の
開始を行うことができ、分析時間の短縮化が可能とな
る。
By the time the end of the reaction in which the quantification is performed in the computing unit is reached, the necessity or non-necessity of the re-examination for weight reduction and normal re-examination is determined for each sample, and the execution of each re-examination is controlled accordingly. Therefore, it is possible to start the retesting for the required sample by the end of the reaction, and the analysis time can be shortened.

【0025】[0025]

【実施例】以下、添付図面を参照しつつこの発明の実施
例について説明する。〔図1〕は、実施例の自動化学分
析装置1を示すものである。この自動化学分析装置1
は、エンドポイント法及びレート法による測定を選択し
て行うことができるように構成されたデュアルモードの
多項目分析用の構成からなる。そして、基本的に、検体
容器22内の検体を分注器21によって反応容器41内
へ分注する検体サンプリングテーブル2と、試薬容器3
2内の所定の反応試薬を分注器31によって反応容器4
1内に分注する試薬分注テーブル3(以上、反応液調製
部)と、光学測定部4と、演算部5と、再検制御部6
(第1再検制御部6Aと第2再検制御部6B)と記憶部
9を備えてなる。なお、7は反応液調製部と光学測定部
4のドライバであり、8は表示部である。
Embodiments of the present invention will be described below with reference to the accompanying drawings. [FIG. 1] shows an automatic chemical analyzer 1 of an example. This automatic chemical analyzer 1
Consists of a dual-mode multi-item analysis configuration that is configured to allow selective selection of endpoint and rate measurements. Then, basically, the sample sampling table 2 for dispensing the sample in the sample container 22 into the reaction container 41 by the dispenser 21, and the reagent container 3
The predetermined reaction reagent in 2 is supplied to the reaction container 4 by the dispenser 31.
Reagent dispensing table 3 for dispensing into 1 (above, reaction solution preparing section), optical measuring section 4, computing section 5, and retest control section 6
(First re-examination control unit 6A and second re-examination control unit 6B) and a storage unit 9 are provided. In addition, 7 is a driver for the reaction solution preparing section and the optical measuring section 4, and 8 is a display section.

【0026】上記光学測定部4は、多数の反応容器41
を配列して一定周期で回転移動させるテーブルと回転可
能な吸光測定光学系42と洗浄部43を備え、分注位置
Bで分注された検体と分注位置Aで分注された反応試薬
との混合液(反応液)について、予め設定された反応終
了時間t迄に、一定時間毎に吸光度をモニタリングでき
るように構成されてなる。
The above-mentioned optical measuring section 4 comprises a large number of reaction vessels 41.
And a rotation absorption optical system 42 and a washing section 43, which are arranged in a fixed cycle to arrange a sample, a sample dispensed at the dispensing position B, and a reaction reagent dispensed at the dispensing position A. With respect to the mixed solution (reaction solution), the absorbance can be monitored at regular intervals by a preset reaction end time t.

【0027】そして、記憶部9には、被検項目について
の標準試料と反応試薬とを混合した基準反応液の反応開
始から反応終了(時間t)迄の一定時間毎の吸光度と、
この標準試料中の所定成分濃度が予めデータとして記憶
されている。また、演算部5と再検制御部6は、測定モ
ードに対応して各々再検の迅速な判断及び開始と、定量
演算を行うようプログラムされている。
Then, the storage unit 9 stores the absorbance of the reference reaction liquid obtained by mixing the standard sample and the reaction reagent for the test item at a constant time interval from the reaction start to the reaction end (time t).
The concentration of the predetermined component in this standard sample is stored in advance as data. In addition, the calculation unit 5 and the re-examination control unit 6 are programmed so as to perform quick determination and start of re-examination and quantitative calculation, respectively, corresponding to the measurement mode.

【0028】まず、エンドポイントモードを選択した際
に設定される第1再検制御部6Aのプログラムを〔図
2〕に示した。このフローチャートに示されるように、
再検制御部6は、まず、一定時間毎に計測される光学濃
度(吸光度)Aiについて個々に限界値Ahとの比較を
行い、Ai>Ahの場合に、検体量を低下させた減量再
検の実行を行うようドライバ7に制御信号を送る。な
お、ここでAi、Ahは各々試薬ブランクとの差の絶対
値を意味する。これにより反応液調製部において、検体
分注量を低減(この実施例では、約1/2に減少)させ
た条件下で反応液の調製が行われ、かつ光学測定部でこ
の反応液についての再検が行われる。一方、Ai≦Ah
の場合でも、記憶部9のデータと式(3)の関係に基づ
いてその時点でAtの予測値の算出及びこの予測値とA
hの比較がなされ、予測値がAh以上となった場合には
第1再検制御部6Aは上記と同様に減量再検の開始を行
う。いずれにも該当しない場合には、第2再検制御部6
Bにおいて、その時点の吸光度Aiと対応する記憶部9
の吸光度Ai・stを利用し前記式(4)に基づいて測
定濃度の予測値(Cs)を概算し、これが所定の閾値C
h(当該被検項目の正常値範囲の上限)と比較し、Ch
を超えた場合に、通常再検(同一検体量についての同条
件での再検)を行うようドライバ7に制御信号を送る。
First, FIG. 2 shows a program of the first re-examination control section 6A which is set when the endpoint mode is selected. As shown in this flow chart,
The re-examination control unit 6 first compares the optical density (absorbance) Ai measured at regular time intervals with the limit value Ah, and when Ai> Ah, executes the weight loss re-examination in which the sample amount is reduced. A control signal is sent to the driver 7 so that Here, Ai and Ah mean the absolute value of the difference from the reagent blank, respectively. As a result, the reaction solution preparation section prepares the reaction solution under the condition that the sample dispensing amount is reduced (in this embodiment, it is reduced to about 1/2), and the optical measurement section prepares the reaction solution for the reaction solution. A re-examination will be conducted. On the other hand, Ai ≦ Ah
In this case, the predicted value of At is calculated based on the relationship between the data in the storage unit 9 and the equation (3), and the predicted value and A
When h is compared and the predicted value becomes Ah or more, the first re-examination control unit 6A starts the weight reduction re-examination in the same manner as above. If none of the above applies, the second re-examination control unit 6
In B, the storage unit 9 corresponding to the absorbance Ai at that time
The estimated value (Cs) of the measured concentration is roughly calculated based on the equation (4) using the absorbance Ai · st of
Compared with h (upper limit of normal value range of the subject item), Ch
When it exceeds, a control signal is sent to the driver 7 so as to perform a normal retest (retest under the same conditions for the same sample amount).

【0029】そして、かかる判断の後、At≦Ahを満
足する反応液については、次の吸光度測定が行われて同
様な判断が時間tの直前までリアルタイムに繰り返され
る。そして、減量再検が不要であった検体について、演
算部5は、その際の吸光度Atに基づいて所定の検量線
をベースとして定量を行う。なお、再検の定量の際に
は、容量補正が行われてもよい。
After the above determination, for the reaction solution satisfying At≤Ah, the next absorbance measurement is performed and the same determination is repeated in real time until just before time t. Then, with respect to the sample that does not require the weight loss retest, the calculation unit 5 performs the quantification on the basis of the predetermined calibration curve based on the absorbance At at that time. It should be noted that the capacity may be corrected during the quantification of the retest.

【0030】かかる再検制御によれば、例えば図4に示
すごとく、吸光度増加反応における最終吸光度(t11の
時点)がAhを超える超高値検体S2 について、ts の
時点の吸光度又はt4 迄の吸光度の変化に基づいて減量
再検の要否の判断及びその開始が行われると共に、Ah
を超えない検体については、所定成分濃度がChを超え
る高値検体について通常再検の要否の判断及び開始が行
われる。従って、反応終了を待つまでもなく、早期の再
検操作を行うことができることとなる。そして、正常検
体S1 については従来と同様に定量が行われる。
According to the re-examination control, for example, as shown in FIG. 4, for the ultrahigh-value sample S2 whose final absorbance (time t11) in the absorbance increasing reaction exceeds Ah, the change in the absorbance at the time ts or the absorbance up to t4. Whether or not a weight loss re-examination is necessary is started based on the
For samples that do not exceed the threshold, determination and start of necessity of retesting are usually performed for high-value samples in which the concentration of the predetermined component exceeds Ch. Therefore, it is possible to carry out an early retest operation without waiting for the end of the reaction. Then, the normal sample S1 is quantified as in the conventional case.

【0031】一方、レートモードを選択した場合のプロ
グラムを図3に示した。このような第1再検制御部6は
前記と同様に個々の吸光度Aiについて限界値Ahとの
比較を行う。そして、Ai>Ahの場合に、Ahの範囲
内に属するサンプル数(実測値数)をカウントし、この
数が2以下の場合には前記と同様に検体量を減少した再
検が開始される。なお、ここでAi、Ahは試薬ブラン
クとの差の絶対値を意味する。そしてサンプル数が3以
上の場合及びAi≦Ahの場合には、第2再検制御部に
おいて前記と同様にその時点の吸光度Aiと対応する記
憶部9の吸光度Ai・stと式(4)に基づいて測定濃
度の予測値(Cs)を概算し、これが所定の閾値Chと
比較し、Chを越えた場合に通常再検を行うようドライ
バ7に制御信号を送る。
On the other hand, a program when the rate mode is selected is shown in FIG. The first re-examination control unit 6 as described above compares each absorbance Ai with the limit value Ah in the same manner as described above. Then, in the case of Ai> Ah, the number of samples (the number of actually measured values) belonging to the range of Ah is counted, and when this number is 2 or less, the retesting with the reduced sample amount is started as described above. Here, Ai and Ah mean absolute values of the difference from the reagent blank. Then, when the number of samples is 3 or more and when Ai ≦ Ah, the second re-examination control unit is based on the absorbance Ai · st of the storage unit 9 and the equation (4) corresponding to the absorbance Ai at that point in the same manner as described above. The estimated value (Cs) of the measured concentration is roughly estimated, this is compared with a predetermined threshold value Ch, and if it exceeds Ch, a control signal is sent to the driver 7 so that a normal retest is performed.

【0032】そして、かかる判断の後、減量再検が行な
われる以外の検体の反応液について同様な判断が時間t
の直前迄リアルタイムに繰り返された後、時間tにおい
て、Ah範囲内に含まれる複数の吸光度の変化率に基づ
いて所定の検量線をべースとして定量が行われる。な
お、レートモードの場合も、再検の定量時に容量補正が
行われてもよい。
After the above determination, the same determination is made at the time t for the reaction liquid of the sample other than that the weight loss retest is performed.
After being repeated in real time until immediately before, at time t, quantification is performed based on a predetermined calibration curve based on the change rates of the plurality of absorbances included in the Ah range. Also in the case of the rate mode, the capacity correction may be performed at the time of quantification of the retest.

【0033】かかる再検制御によれば、短時間で吸光度
Ahを超え吸光度変化率の測定が不能な超高値検体につ
いて、リアルタイムに減量再検の要否の判断及びその開
始が行われる。例えば、〔図5〕に示すごとく超高値検
体S3については、Ah範囲内に属するサンプル数が1
点であるため、t2の時点で再検が必要と判断され迅速
な減量再検操作が行われる。これに対し、最終吸光度が
Ahを超える検体S2についても、Ah内に属するサン
プル数が3点以上であれば、変化率の適切な測定が可能
であるため、再検は行われず、演算部は正常検体S1 と
同様にAh内の吸光度の変化率に基づいて定量が行われ
る。
According to such re-examination control, it is possible to judge in real time whether or not the re-examination of weight reduction is necessary and to start the ultra-high value sample which exceeds the absorbance Ah and cannot measure the rate of change in absorbance in a short time. For example, as shown in [FIG. 5], the number of samples belonging to the Ah range is 1 for the ultrahigh sample S 3.
Since it is a point, it is judged that re-examination is necessary at the time of t 2 , and a rapid weight reduction re-examination operation is performed. On the other hand, with respect to the sample S 2 whose final absorbance exceeds Ah, if the number of samples belonging to Ah is 3 or more, the change rate can be appropriately measured, and therefore the retest is not performed, and the calculation unit The quantification is performed based on the rate of change of the absorbance in Ah as in the normal sample S1.

【0034】さらに、減量再検が要な検体についても、
閾値Chを超える高値検体についてリアルタイムに通常
再検の要否の判断及びその開始が行なわれることとな
る。
Furthermore, for samples requiring weight loss retest,
For a high-value sample that exceeds the threshold value Ch, it is determined in real time whether or not a normal retest is necessary and its start.

【0035】なお、この実施例においては、エンドポイ
ントモードとレートモードを切換設定できるデュアルモ
ードの装置について説明したが、いずれか単独のモード
からなるように構成されていてもよい。
In this embodiment, the dual mode device capable of switching and setting the end point mode and the rate mode has been described, but any one of the modes may be constituted.

【0036】[0036]

【発明の効果】この発明の自動分析装置によれば、超高
値検体についての減量再検要否の判断及び再検の開始、
並びに高値検体についての通常再検要否の判断及び再検
の開始が、反応終了に至る反応途中において行われるた
め、多数の検体を対象とする化学分析全体の分析効率を
向上でき、最終結果を得るまでの時間を著しく短縮する
ことが可能となる。
EFFECT OF THE INVENTION According to the automatic analyzer of the present invention, it is judged whether or not weight reduction retest is necessary for an ultrahigh value sample and the retest is started.
In addition, it is possible to improve the analytical efficiency of the overall chemical analysis of a large number of samples and determine the final results, because the determination of the necessity of retesting for high value samples and the start of retesting are performed in the middle of the reaction until the end of the reaction. It is possible to significantly reduce the time.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例の自動化学分析装置を示す
構成説明図である。
FIG. 1 is a structural explanatory view showing an automatic chemical analyzer according to an embodiment of the present invention.

【図2】同じく再検制御部及び演算部の制御を示すフロ
ーチャート図である。
FIG. 2 is a flowchart showing the control of the re-examination control unit and the arithmetic unit.

【図3】同じく再検制御部及び演算部の制御を示すフロ
ーチャート図である。
FIG. 3 is a flowchart showing the control of the re-examination control unit and the arithmetic unit.

【図4】この発明の自動化学分析装置による動作及び効
果を説明するためのグラフ図である。
FIG. 4 is a graph diagram for explaining the operation and effect of the automatic chemical analysis device of the present invention.

【図5】この発明の自動化学分析装置による動作及び効
果を説明するためのグラフ図である。
FIG. 5 is a graph diagram for explaining the operation and effect of the automatic chemical analysis device of the present invention.

【図6】この発明の自動化学分析装置による動作及び効
果を説明するためのグラフ図である。
FIG. 6 is a graph diagram for explaining the operation and effect of the automatic chemical analysis device of the present invention.

【符号の説明】[Explanation of symbols]

1 自動化学分析装置 2 検体サンプリングテーブル 3 試薬分注テーブル 4 光学測定部 5 演算部 6 再検制御部 6A 第1再検制御部 6B 第2再検制御部 7 ドライバ 8 表示部 9 記憶部 21 分注器 22 検体容器 31 分注器 32 試薬容器 41 反応容器 42 吸光度測定光学系 43 洗浄部 1 Automatic Chemistry Analyzer 2 Sample Sampling Table 3 Reagent Dispensing Table 4 Optical Measuring Section 5 Computing Section 6 Retest Control Section 6A First Retest Control Section 6B Second Retest Control Section 7 Driver 8 Display Section 9 Storage Section 21 Dispenser 22 Sample container 31 Dispenser 32 Reagent container 41 Reaction container 42 Absorbance measurement optical system 43 Cleaning unit

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 (a)所定量の検体と反応試薬を混合し
て被検反応液を調製する反応液調製部と、 (b)被検反応液の光学濃度を、反応開始から反応終了
後(時間t)迄一定時間毎に測定しうる光学測定部と、 (c)標準試料と反応試料を混合した基準反応液につい
ての反応開始から反応終了後(時間t)迄の一定時間毎
の光学濃度とこの標準試料中の所定成分濃度を記憶する
記憶部と、 (d)被検反応液の時間tでの最終光学濃度Atが、所
定の光学濃度限界値Ahの範囲内となる検体について、
このAt値に基づいて検体中の所定成分を定量する演算
部と、 (e)被検反応液についての上記時間tでの最終光学濃
度Atが上記光学濃度限界値Ahを超えるか否かを、反
応途中の光学濃度値に基づいて予め判断すると共に、A
hを超えると判断される検体については、検体量を減少
した条件での再検を行うよう上記反応液調製部と光学測
定部を制御する第1再検制御部と、 (f)検体中の所定成分の濃度が所定の閾値Chを超え
るか否かを、当該被検反応液についての反応途中の光学
濃度と、上記記憶部における対応する光学濃度との比に
基づいて予め判断し、Chを超えると判断される検体に
ついて、再検を行うよう上記反応液調製部と光学測定部
を制御する第2再検制御部、を備えてなる自動化学分析
装置。
1. A reaction solution preparation part for preparing a test reaction solution by mixing a predetermined amount of a sample and a reaction reagent, and (b) an optical density of the test reaction solution after starting the reaction and after finishing the reaction. An optical measuring unit capable of measuring at a constant time up to (time t), and (c) an optical measuring unit at a constant time from the reaction start to the reaction end (time t) for a reference reaction liquid in which a standard sample and a reaction sample are mixed. A storage unit that stores the concentration and the concentration of a predetermined component in the standard sample, and (d) a sample whose final optical density At at the time t of the test reaction liquid is within a predetermined optical density limit value Ah,
An arithmetic unit for quantifying a predetermined component in the sample based on the At value, and (e) whether or not the final optical density At at the time t with respect to the test reaction liquid exceeds the optical density limit value Ah, A judgment is made based on the optical density value during the reaction, and A
For a sample determined to exceed h, a first retest control unit that controls the reaction solution preparation unit and the optical measurement unit to perform a retest under the condition that the amount of the sample is reduced; (f) a predetermined component in the sample Whether or not the concentration exceeds the predetermined threshold value Ch, based on the ratio between the optical density in the course of the reaction of the test reaction liquid and the corresponding optical density in the storage unit. An automatic chemical analyzer comprising a reaction sample preparation section and a second retest control section for controlling the optical measurement section so as to retest the sample to be judged.
【請求項2】 (a)所定量の検体と反応試薬を混合し
て被検反応液を調製する反応液調製部と、 (b)被検反応液の光学濃度を、反応開始から反応終了
後(時間t)迄一定時間毎に測定しうる光学測定部と、 (c)標準試料と反応試薬を混合した基準反応液につい
ての反応開始から反応終了後(時間t)迄の一定時間毎
の光学濃度とこの標準試料中の所定成分濃度を記憶する
記憶部と、 (d)上記経時的に得られる被検反応液の光学濃度のう
ち、所定の光学濃度限界値のAh範囲内に属する複数の
光学濃度の変化率に基づいて検体中の所定成分を定量す
る演算部と、 (e)反応途中に測定される被検反応液についての光学
濃度が上記光学濃度限界値Ahを超えるか否かを判断す
ると共に、Ahを超えた際にAh範囲内に属する光学濃
度値が3点未満である検体について、検体量を減少した
条件での再検を行うよう上記反応液調製部と光学測定部
を制御する第1再検制御部と、 (f)検体中の所定成分の濃度が所定の閾値Chを超え
るか否かを、当該被検反応液についての反応途中の光学
濃度と、上記記憶部における対応する光学濃度の比に基
づいて予め判断し、Chを超えると判断される検体につ
いて、再検を行うよう上記反応液調製部と光学測定部を
制御する第2再検制御部、を備えてなる自動化学分析装
置。
2. A reaction solution preparation section for preparing a test reaction solution by mixing (a) a predetermined amount of a sample and a reaction reagent, and (b) an optical density of the test reaction solution from the start of the reaction to the end of the reaction. An optical measurement unit capable of measuring at a constant time up to (time t), and (c) an optical measurement at a constant time from the reaction start to the reaction end (time t) for the reference reaction liquid in which the standard sample and the reaction reagent are mixed. A storage unit for storing the concentration and the concentration of a predetermined component in the standard sample; and (d) a plurality of optical concentrations of the test reaction liquid obtained over time, which belong to a predetermined optical concentration limit value within the Ah range. An arithmetic unit for quantifying a predetermined component in the sample based on the change rate of the optical density, and (e) whether or not the optical density of the test reaction solution measured during the reaction exceeds the optical density limit value Ah. Along with the judgment, the optical density value that falls within the Ah range when Ah is exceeded For samples with less than 3 points, a first re-examination control unit that controls the reaction solution preparation unit and the optical measurement unit so as to perform re-examination under the condition that the amount of the sample is reduced; Whether or not a predetermined threshold value Ch is exceeded is determined in advance based on the ratio between the optical density during the reaction of the test reaction liquid and the corresponding optical density in the storage unit, and the sample determined to exceed Ch Regarding the above, an automatic chemical analysis device comprising the above-mentioned reaction solution preparation unit and a second re-inspection control unit for controlling the optical measurement unit so as to perform re-inspection.
JP3032396A 1991-01-31 1991-01-31 Automatic chemical analyzing apparatus Pending JPH0599930A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3032396A JPH0599930A (en) 1991-01-31 1991-01-31 Automatic chemical analyzing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3032396A JPH0599930A (en) 1991-01-31 1991-01-31 Automatic chemical analyzing apparatus

Publications (1)

Publication Number Publication Date
JPH0599930A true JPH0599930A (en) 1993-04-23

Family

ID=12357795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3032396A Pending JPH0599930A (en) 1991-01-31 1991-01-31 Automatic chemical analyzing apparatus

Country Status (1)

Country Link
JP (1) JPH0599930A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08194005A (en) * 1995-01-19 1996-07-30 Toshiba Medical Eng Co Ltd Instrument for automatic analysis
WO2003056312A1 (en) * 2001-12-27 2003-07-10 Arkray, Inc. Concentration measuring method
JP2006119044A (en) * 2004-10-22 2006-05-11 Sysmex Corp Biological sample analyzer and method
US7670846B2 (en) 2002-06-29 2010-03-02 Roche Diagnostics Operations, Inc. Automatic differentiation of a sample solution and a control solution

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6061647A (en) * 1983-09-14 1985-04-09 Jeol Ltd Automatic chemical analysis
JPH02240569A (en) * 1989-03-14 1990-09-25 Hitachi Ltd Automatic analysis apparatus and automatic analysis for clinical examination

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6061647A (en) * 1983-09-14 1985-04-09 Jeol Ltd Automatic chemical analysis
JPH02240569A (en) * 1989-03-14 1990-09-25 Hitachi Ltd Automatic analysis apparatus and automatic analysis for clinical examination

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08194005A (en) * 1995-01-19 1996-07-30 Toshiba Medical Eng Co Ltd Instrument for automatic analysis
WO2003056312A1 (en) * 2001-12-27 2003-07-10 Arkray, Inc. Concentration measuring method
US7054759B2 (en) 2001-12-27 2006-05-30 Arkray, Inc Concentration measuring method
CN100410650C (en) * 2001-12-27 2008-08-13 爱科来株式会社 Concentration measuring method
US7670846B2 (en) 2002-06-29 2010-03-02 Roche Diagnostics Operations, Inc. Automatic differentiation of a sample solution and a control solution
JP2006119044A (en) * 2004-10-22 2006-05-11 Sysmex Corp Biological sample analyzer and method
US9568488B2 (en) 2004-10-22 2017-02-14 Sysmex Corporation Biological sample analyzing apparatus

Similar Documents

Publication Publication Date Title
US8580198B2 (en) Automatic analyzer
US11674970B2 (en) Automatic analysis device and automatic analysis method
EP2562547B1 (en) Automatic analysis device and automatic analysis method
JPH0224337B2 (en)
US6635488B1 (en) Automated analyzer and automated analysis
EP3584581B1 (en) Automatic analyzer and automatic analysis method
JPH0599930A (en) Automatic chemical analyzing apparatus
WO2022139803A1 (en) System and method for conducting virtual crossover studies in clinical diagnostic processes
JP2666568B2 (en) Biochemical automatic analyzer
JP2001264283A (en) Method and device for measuring electrolyte
JP2000221195A (en) Prozone judging method, storage medium storing the same and automatic analyzer using the same
JP7395392B2 (en) Automatic analyzer and analysis method
JP4800027B2 (en) Adding movement during the assay
JP2018040796A (en) Determination and correction of signal off set
JP4287753B2 (en) Analysis equipment
JPH0593725A (en) Prozone adjustment and analysis method in antigen-antibody reaction
JPH0359461A (en) Automatic biochemical analysis apparatus
JP2508115B2 (en) Automatic biochemical analyzer
JPS63200066A (en) Automatic chemical analyzer
JP7420976B2 (en) Automatic analyzer and analysis method
US11971425B2 (en) Automatic analysis device and automatic analysis method
JPH03170851A (en) Automatic chemical analyser
JPH04204378A (en) Immune reaction automatic analyzer
JPH09257804A (en) Method and apparatus for automatically analyzing multiple items
JP7237569B2 (en) automatic analyzer

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees