JPH0599784A - Method for evaluating shock strength of object - Google Patents

Method for evaluating shock strength of object

Info

Publication number
JPH0599784A
JPH0599784A JP3257585A JP25758591A JPH0599784A JP H0599784 A JPH0599784 A JP H0599784A JP 3257585 A JP3257585 A JP 3257585A JP 25758591 A JP25758591 A JP 25758591A JP H0599784 A JPH0599784 A JP H0599784A
Authority
JP
Japan
Prior art keywords
wheel
load
weight
vibration system
weight body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3257585A
Other languages
Japanese (ja)
Inventor
Haruyuki Konishi
晴之 小西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP3257585A priority Critical patent/JPH0599784A/en
Publication of JPH0599784A publication Critical patent/JPH0599784A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

PURPOSE:To enable a shock strength for a wheel to be estimated properly without manufacturing a prototype of the wheel actually or performing a shock test. CONSTITUTION:Mechanical characteristics of a the material of a wheel 3 are examined and at the same time a finite element analysis is performed while a load which is operated on this wheel 3 is substituted for a static load. Then, the wheel 3 is substituted for a spring element with its spring characteristic being K2 and then a relation between the wheel 3 and a weight body 7 is modeled as a vibration system according to this spring element and the weight body 7 which is operated to the wheel 3. Then, a vibration system model is solved based on initial conditions according to a drop height for the wheel 3 of the weight body 7 and then a maximum load which is operated on the wheel 3 is calculated. By comparing this maximum load and various kinds of data which are obtained by finite element analysis, for example a drop- allowable height when operating the weight body 7 to the wheel 3 with a shock can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は,物体に錘を衝撃的に作
用させた際のこの物体の衝撃強度に対する評価の方法に
係り,例えば自動車用ホイールの落下衝撃試験時におけ
る衝撃強度の推定を行う場合などに好適である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of evaluating impact strength of an object when a weight is impacted on the object, and for example, estimation of impact strength during a drop impact test of an automobile wheel is performed. It is suitable when performing.

【0002】[0002]

【従来の技術】例えば運輸省の「乗用車用軽合金製ディ
スクホイールの技術基準」や日本自動車技術会の「軽合
金製ディスクホイール」においては,自動車用ホイール
(以下ホイール)に対して衝撃強度の確認を行わなけれ
ばならない旨が規定されている。上記のような衝撃強度
の確認を行う際に供される試験装置の一例を図7に示
す。即ち,上記試験装置では,同図に示すように,充分
な剛性と強度を有する支持台1に,タイヤ2を装着した
ホイール3が水平より30°の角度で固定されている。
上記のようにして固定されたホイール3に対し,主錘4
と副錘5とをコイルバネ6により連結してなる錘体7が
リム径の呼び寸法に応じて予め設定された所定の落下高
さHから落下される。そして,上記のような試験の結
果,上記ホイール3における有害な亀裂の発生や著しい
変形及び急激な空気もれなどがあってはならないとされ
ている。但し,上記錘体7が上記ホイール3に直接接触
したことによる損傷,変形などは判定の対象とはされな
い。上記判定の結果,上記ホイール3においては所定の
衝撃強度を満足し得ないものとなった場合,新たなホイ
ールが試作され,このホイールに対して上記のような手
順にて衝撃試験が繰り返し実施される。
2. Description of the Related Art For example, in the "Technical Standard of Light Alloy Disc Wheels for Passenger Cars" of the Ministry of Transport and the "Light Alloy Disc Wheels" of the Japan Automobile Manufacturers Association, the impact strength of automobile wheels (hereinafter "wheels") It stipulates that confirmation must be made. FIG. 7 shows an example of a test apparatus used when confirming the impact strength as described above. That is, in the above-mentioned test apparatus, as shown in the figure, the wheel 3 having the tire 2 mounted thereon is fixed to the support base 1 having sufficient rigidity and strength at an angle of 30 ° from the horizontal.
For the wheel 3 fixed as described above, the main weight 4
A weight body 7 formed by connecting the sub-weight 5 and the sub-weight 5 with a coil spring 6 is dropped from a predetermined drop height H that is preset according to the nominal dimension of the rim diameter. As a result of the above-mentioned test, it is said that there should be no occurrence of harmful cracks, remarkable deformation, and sudden air leakage in the wheel 3. However, damage, deformation, etc. due to the weight 7 directly contacting the wheel 3 are not subject to determination. As a result of the above judgment, when the wheel 3 does not satisfy the predetermined impact strength, a new wheel is prototyped, and the impact test is repeatedly performed on this wheel by the above procedure. It

【0003】[0003]

【発明が解決しようとする課題】上記のようなホイール
に対する衝撃強度の評価に際しては,このホイールにお
いて所定の強度が満足されるまで,設計変更,試作,衝
撃試験の手順を繰り返し実施しなければならず,多大な
費用と手間とがかかる。そこで,本発明は,上記事情に
鑑みて創案されたものであり,実際にホイール(物体)
の試作や衝撃試験などを行うことなく,このホイールに
かかる衝撃強度などの特性を推定することのできる物体
の衝撃強度に対する評価方法の提供を目的とするもので
ある。
In evaluating the impact strength of the wheel as described above, the steps of design change, trial manufacture, and impact test must be repeated until the wheel satisfies a predetermined strength. However, it costs a lot of money and effort. Therefore, the present invention was devised in view of the above circumstances, and actually the wheel (object)
The purpose of the present invention is to provide an evaluation method for the impact strength of an object, which can estimate the characteristics such as the impact strength applied to this wheel without carrying out the trial manufacture and the impact test.

【0004】[0004]

【課題を解決するための手段】上記目的を達成するため
に,本発明が採用する主たる手段は,その要旨とすると
ころが,物体に錘を衝撃的に作用させた際のこの物体の
衝撃強度に対する評価の方法であって,上記物体に作用
する荷重を静的荷重に置換した解析を行うことによりそ
の荷重に対する物体の物性を求め,上記物体を上記物性
に基づいたバネ特性とするバネ要素に置換してこのバネ
要素と上記錘による振動系として上記物体と錘の関係を
モデル化し,上記錘の上記物体に対する所定の作用距離
と運動に応じた初期条件に基づいてこの振動系モデルよ
り上記物体に作用する最大負荷を算出し,この最大負荷
と上記物性より上記物体に錘を衝撃的に作用させた際の
該物体の特性を評価する点に係る物体の衝撃強度に対す
る評価方法である。
In order to achieve the above-mentioned object, the main means adopted by the present invention is the gist of the main means, which is to measure the impact strength of an object when a weight is impacted on the object. A method of evaluation, in which the load acting on the object is replaced with a static load to obtain the physical properties of the object with respect to that load, and the object is replaced with a spring element having spring characteristics based on the physical properties Then, the relationship between the object and the weight is modeled as a vibration system by the spring element and the weight, and the object is determined from the vibration system model based on the predetermined working distance of the weight and the initial condition corresponding to the motion. A method for evaluating the impact strength of an object according to the point of evaluating the characteristics of the object when a weight is impacted on the object based on the maximum load and the above-mentioned physical properties.

【0005】[0005]

【実施例】以下添付図面を参照して,本発明を具体化し
た実施例につき説明し,本発明の理解に供する。尚,以
下の実施例は,本発明を具体化した一例であって,本発
明の技術的範囲を限定する性格のものではない。ここ
に,図1は本発明に係る評価方法の一具体例の手順を示
すフローチャート,図2は有限要素モデル化されたホイ
ールに対する荷重条件を示す図,図3は上記ホイールに
掛かる荷重と変形量との関係を示すグラフ,図4はホイ
ールに係る衝撃試験をモデル化した図,図5は上記衝撃
試験モデルにおけるコイルバネの特性を示すグラフ,図
6は上記衝撃試験モデルにおける錘の運動と荷重との関
係を示すグラフである。以下の実施例では,当該評価方
法を,ホイールに係る衝撃強度の推定に供する場合を例
に,図1〜図6に基づいて説明する。尚,図1中,S
1,S2,…はこの方法に係る手順の処理ステップを示
す。図7に示した試験装置において衝撃試験の対象とさ
れるホイール3に関し,その材料の機械的特性に係る各
種データを得る為に,当該材料の試験片を用いた例えば
引張試験や衝撃試験などの材料試験が実施される(S
1,S2)。そして,上記ホイール3に対して例えば有
限要素(以下FEM)解析を行う為,図2に示すような
FEMモデルが定義される(S3)。図2に示すFEM
モデルに対し,同図中にベクトルで示される様な荷重条
件にてボルト部などの境界条件が考慮された状態で静的
なFEM解析が実施される(S4,S5)。即ち,上記
ホイール3に作用する荷重を静的荷重に置換した解析が
実施される。上記のような解析の結果,上記ホイール3
に作用する荷重と変形量(たわみ)及び応力などの履歴
が求められる。上記解析結果におけるホイール3に作用
する荷重と変形量との関係を図3に示す(S6)。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments embodying the present invention will be described below with reference to the accompanying drawings for the understanding of the present invention. The following embodiments are examples of embodying the present invention and are not of the nature to limit the technical scope of the present invention. Here, FIG. 1 is a flow chart showing the procedure of a specific example of the evaluation method according to the present invention, FIG. 2 is a view showing load conditions for a wheel modeled by a finite element model, and FIG. 3 is a load and deformation amount applied to the wheel. 4 is a graph showing a model of a shock test relating to a wheel, FIG. 5 is a graph showing characteristics of a coil spring in the shock test model, and FIG. 6 is a graph showing a motion of a weight and a load in the shock test model. It is a graph which shows the relationship of. In the following embodiments, the evaluation method will be described with reference to FIGS. 1 to 6 by taking as an example a case where the evaluation method is used to estimate the impact strength of a wheel. Incidentally, in FIG. 1, S
1, S2, ... Show the processing steps of the procedure according to this method. In order to obtain various data relating to the mechanical properties of the material of the wheel 3 which is the object of the impact test in the test apparatus shown in FIG. Material test is carried out (S
1, S2). Then, for example, a finite element (hereinafter FEM) analysis is performed on the wheel 3, so an FEM model as shown in FIG. 2 is defined (S3). FEM shown in FIG.
A static FEM analysis is performed on the model under the load conditions as shown by vectors in the figure, with the boundary conditions such as the bolt portion taken into consideration (S4, S5). That is, an analysis is performed in which the load acting on the wheel 3 is replaced with a static load. As a result of the above analysis, the above wheel 3
The history of the load acting on, the amount of deformation (deflection), and the stress is obtained. The relationship between the load acting on the wheel 3 and the deformation amount in the above analysis result is shown in FIG. 3 (S6).

【0006】引き続き,図7に示した試験装置のホイー
ル3と錘体7との関係が図4に示すような2自由度の振
動系としてモデル化される。この場合,ホイール3はそ
のバネ特性をK2 とするバネ要素に置換され,このバネ
特性K2 には,図3に示したホイール3における荷重と
変形量との関係が適用される。また,コイルバネ6のバ
ネ特性はK1 (図5参照)にて表される。(S7)。そ
して,上記振動系が,所定の落下高さHに応じた初期条
件にて解方される(S8)。この場合の運動方程式を以
下に示す。 m1 ・d2 1 /dt2 =m1 g−Ps 2 ・d2 2 /dt2 =m2 g−Pw (x2 )+Ps 但し,Ps =K1 (x1 −x2 )…x1 −x2 <63 Ps =100K1 (x1 −x2 )…x1 −x2 >63 初期条件としては, x1 =x2 =0 (t=0) dx1 /dt=dx2 /dt=v0 =(2gH)1/2 その結果,図6に示すように落下高さHを初期条件とし
た振動系においてホイール3に作用する最大荷重(衝撃
荷重)Pmaxの値が得られる。尚,同図中,x1 は主
錘4の,x2 は副錘5のそれぞれの運動を示す(S
9)。上記落下高さHを例えば1インチ,2インチ,…
の値に設定し,これを初期条件として上記振動系を解方
することにより得られたホイール3に対する最大荷重の
値が,図3における荷重との関係においてグラフ上にプ
ロットされる。そして,前記したFEM解析と材料試験
とから得られたホイール3における破壊部位及びその破
壊時における最大荷重の値と,上記のようにしてプロッ
トされた図3におけるグラフとの関係より,上記ホイー
ル3における許容落下高さが推定される(S10,S1
1)。
Subsequently, the relationship between the wheel 3 and the weight 7 of the test apparatus shown in FIG. 7 is modeled as a vibration system having two degrees of freedom as shown in FIG. In this case, the wheel 3 is replaced by a spring element whose spring characteristic is K 2 , and the relationship between the load and the deformation amount of the wheel 3 shown in FIG. 3 is applied to this spring characteristic K 2 . The spring characteristic of the coil spring 6 is represented by K 1 (see FIG. 5). (S7). Then, the vibration system is solved under the initial condition according to the predetermined drop height H (S8). The equation of motion in this case is shown below. m 1 · d 2 x 1 / dt 2 = m 1 g-P s m 2 · d 2 x 2 / dt 2 = m 2 g-P w (x 2 ) + P s However, P s = K 1 (x 1 −x 2 ) ... x 1 −x 2 <63 P s = 100K 1 (x 1 −x 2 ) ... x 1 −x 2 > 63 As an initial condition, x 1 = x 2 = 0 (t = 0) dx 1 / dt = dx 2 / dt = v 0 = (2gH) 1/2 As a result, as shown in FIG. 6, the maximum load (impact load) that acts on the wheel 3 in the vibration system with the drop height H as the initial condition. The value of Pmax is obtained. In the figure, x 1 indicates the movement of the main weight 4 and x 2 indicates the movement of the sub-weight 5 (S
9). The drop height H is, for example, 1 inch, 2 inches, ...
The value of the maximum load on the wheel 3 obtained by solving the above-mentioned vibration system by setting the value of the above as the initial condition is plotted on the graph in relation to the load in FIG. Then, from the relationship between the fractured portion of the wheel 3 obtained from the above-mentioned FEM analysis and the material test and the value of the maximum load at the time of the fracture, and the relationship between the graph plotted in FIG. The allowable drop height at is estimated (S10, S1
1).

【0007】即ち,図3における荷重の目盛において,
ホイール3の許容荷重に対応する値と上記グラフとの交
点から許容落下高さが推定される。ちなみに,上記のよ
うな手順にて推定された許容落下高さが約4.2インチ
の場合,実際の落下衝撃試験においては,4.5〜5イ
ンチ(複数回の試験により得られたデータの平均値)に
て破壊することが判明し,上記推定値は高い精度にてホ
イール3の落下衝撃試験における特性を表していること
が判明した。即ち,上記のように,ホイール3と錘体7
の関係をバネ要素と錘による振動系としてモデル化し,
これを落下高さに応じた初期条件にて解方することによ
り,上記ホイール3に係る静的解析の結果を前提とし,
該ホイール3に錘体7を衝撃的に作用させた際の該ホイ
ール3の特性を高い精度にて評価することが出来る。上
記のようにして得られた情報に基づいて,上記ホイール
3に関しては,耐衝撃性向上を図る為に設計変更がなさ
れる(S12)。上記したように,本実施例方法を適用
することにより,実際に試作や試験等を繰り返し実施す
ることなく,ホイール3に係る衝撃強度などを推定する
ことができる。この際,衝撃荷重作用時のホイール各部
における力学状態が定量的にとらえられる為,設計変更
に際してはその指針をたてやすくなることも特筆すべき
効果である。上記実施例においては,錘を自由落下させ
た際に生じる衝撃を例に説明したが,当該方法は,錘の
運動方向が重力の作用する方向と同一の場合のみなら
ず,更にはその運動が等速運動の場合にも適用し得るも
のであることは言うまでもない。
That is, in the scale of the load in FIG.
The allowable drop height is estimated from the intersection of the value corresponding to the allowable load of the wheel 3 and the above graph. By the way, when the allowable drop height estimated by the above procedure is about 4.2 inches, 4.5 to 5 inches (in the data obtained by multiple tests, in the actual drop impact test). It was found that the wheel breaks at the average value), and the above estimated value shows the characteristics of the wheel 3 in the drop impact test with high accuracy. That is, as described above, the wheel 3 and the weight 7
Is modeled as a vibration system consisting of a spring element and a weight,
By solving this under the initial condition according to the drop height, assuming the result of the static analysis of the wheel 3 above,
The characteristics of the wheel 3 when the weight 7 is impacted on the wheel 3 can be evaluated with high accuracy. Based on the information obtained as described above, the design of the wheel 3 is changed to improve the impact resistance (S12). As described above, by applying the method of this embodiment, it is possible to estimate the impact strength of the wheel 3 and the like without actually repeating trial manufacture and tests. At this time, it is also noteworthy that the mechanical state of each part of the wheel under impact load can be quantitatively grasped, so that it is easy to set guidelines when design changes. In the above embodiment, the impact that occurs when the weight is allowed to fall freely has been described as an example. However, the method is not limited to the case where the movement direction of the weight is the same as the direction in which gravity acts, It goes without saying that it can also be applied to the case of constant velocity motion.

【0008】[0008]

【発明の効果】本発明は,上記したように,物体に錘を
衝撃的に作用させた際のこの物体の衝撃強度に対する評
価の方法であって,上記物体に作用する荷重を静的荷重
に置換した解析を行うことによりその荷重に対する物体
の物性を求め,上記物体を上記物性に基づいたバネ特性
とするバネ要素に置換してこのバネ要素と上記錘による
振動系として上記物体と錘の関係をモデル化し,上記錘
の上記物体に対する所定の作用距離と運動に応じた初期
条件に基づいてこの振動系モデルより上記物体に作用す
る最大負荷を算出し,この最大負荷と上記物性より上記
物体に錘を衝撃的に作用させた際の該物体の特性を評価
する物体の衝撃強度に対する評価方法であるから,実際
に物体の試作や衝撃試験などを行うことなく,この物体
に係る衝撃強度などの特性を好適に推定することができ
る。
As described above, the present invention is a method for evaluating the impact strength of an object when a weight is impacted on the object, wherein the load acting on the object is a static load. The physical properties of the object with respect to the load are obtained by performing the replaced analysis, and the object is replaced with a spring element having a spring characteristic based on the physical properties, and the relationship between the object and the weight is defined as a vibration system by the spring element and the weight. The maximum load acting on the object is calculated from this vibration system model based on the predetermined working distance of the weight to the object and the initial condition according to the motion, and the maximum load and the physical properties are applied to the object. Since this is a method for evaluating the impact strength of an object when the weight is impacted, the impact strength of this object can be determined without actually performing trial manufacture of the object or impact test. It is possible to estimate the characteristics suitably.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明に係る評価方法の一具体例の手順を示
すフローチャート。
FIG. 1 is a flowchart showing a procedure of a specific example of an evaluation method according to the present invention.

【図2】 有限要素モデル化されたホイールに対する荷
重条件を示す図。
FIG. 2 is a diagram showing a load condition for a finite element modeled wheel.

【図3】 上記ホイールに掛かる荷重と変形量との関係
を示すグラフ。
FIG. 3 is a graph showing a relationship between a load applied to the wheel and a deformation amount.

【図4】 ホイールに係る衝撃試験をモデル化した図。FIG. 4 is a diagram modeling a shock test related to a wheel.

【図5】 上記衝撃試験モデルにおけるコイルバネの特
性を示すグラフ。
FIG. 5 is a graph showing characteristics of a coil spring in the impact test model.

【図6】 上記衝撃試験モデルにおける錘の運動と荷重
との関係を示すグラフ。
FIG. 6 is a graph showing the relationship between the motion of the weight and the load in the impact test model.

【図7】 本発明の背景技術を説明するためのものであ
ってホイールの落下衝撃試験に供される装置の構成図。
FIG. 7 is a configuration diagram of an apparatus used for a drop impact test of a wheel for explaining the background art of the present invention.

【符号の説明】[Explanation of symbols]

3…ホイール 4…主錘 5…副錘 6…コイルバネ 7…錘体 S1〜S12…処理ステップ 3 ... Wheel 4 ... Main weight 5 ... Sub weight 6 ... Coil spring 7 ... Weight body S1-S12 ... Processing step

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 物体に錘を衝撃的に作用させた際のこの
物体の衝撃強度に対する評価の方法であって, 上記物体に作用する荷重を静的荷重に置換した解析を行
うことによりその荷重に対する物体の物性を求め,上記
物体を上記物性に基づいたバネ特性とするバネ要素に置
換してこのバネ要素と上記錘による振動系として上記物
体と錘の関係をモデル化し,上記錘の上記物体に対する
所定の作用距離と運動に応じた初期条件に基づいてこの
振動系モデルより上記物体に作用する最大負荷を算出
し,この最大負荷と上記物性より上記物体に錘を衝撃的
に作用させた際の該物体の特性を評価する物体の衝撃強
度に対する評価方法。
1. A method for evaluating impact strength of a body when a weight is impacted on the body, wherein the load acting on the body is replaced by a static load to analyze the load. The physical properties of the object with respect to, and replace the object with a spring element having a spring characteristic based on the physical properties, and model the relationship between the object and the weight as a vibration system by the spring element and the weight. The maximum load that acts on the object is calculated from this vibration system model based on the specified working distance and the initial condition according to the motion, and when the weight is impacted on the object by the maximum load and the physical properties, A method for evaluating the impact strength of an object for evaluating the characteristics of the object.
JP3257585A 1991-10-04 1991-10-04 Method for evaluating shock strength of object Pending JPH0599784A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3257585A JPH0599784A (en) 1991-10-04 1991-10-04 Method for evaluating shock strength of object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3257585A JPH0599784A (en) 1991-10-04 1991-10-04 Method for evaluating shock strength of object

Publications (1)

Publication Number Publication Date
JPH0599784A true JPH0599784A (en) 1993-04-23

Family

ID=17308313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3257585A Pending JPH0599784A (en) 1991-10-04 1991-10-04 Method for evaluating shock strength of object

Country Status (1)

Country Link
JP (1) JPH0599784A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010256319A (en) * 2009-03-31 2010-11-11 Hitachi Metals Ltd Method of simulating impact properties of wheel with tire
JP2016051392A (en) * 2014-09-01 2016-04-11 住友ゴム工業株式会社 Deformation simulation method of tire-spring assembly
CN112697378A (en) * 2020-12-29 2021-04-23 东风汽车集团有限公司 Virtual rack model for impact test of aluminum alloy rim

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010256319A (en) * 2009-03-31 2010-11-11 Hitachi Metals Ltd Method of simulating impact properties of wheel with tire
JP2016051392A (en) * 2014-09-01 2016-04-11 住友ゴム工業株式会社 Deformation simulation method of tire-spring assembly
CN112697378A (en) * 2020-12-29 2021-04-23 东风汽车集团有限公司 Virtual rack model for impact test of aluminum alloy rim

Similar Documents

Publication Publication Date Title
US5610330A (en) Effective road profile control method for a spindle-coupled road simulator
US6134957A (en) Multiple degree-of-freedom tire modeling method and system for use with a vehicle spindle-coupled simulator
US6161419A (en) Process and device for determining the characteristics of a motor &#39; vehicles built-in shock-absorbers
US20050241366A1 (en) Method for testing vibration dampers in motor vehicle
Dodds et al. Laboratory road simulation for full vehicle testing: a review
KR20000048781A (en) Method to specify random vibration tests for product durability validation
JP5488963B2 (en) Simulation method for impact performance of wheels with tires
JPH0562940B2 (en)
EP2243640A1 (en) Method of determining parameter used in air pressure reduction detecting method
CN105651473A (en) Method for automatic determination of dynamic stiffness of object
US5900542A (en) Method and apparatus for modelling a tire for use with a vehicle spindle-coupled simulator
ITMI952399A1 (en) CHECK METHOD FOR DETERMINING THE DEGREE OF COMFORT OF A TIRE OF A WHEEL PER VEHICLE
EP0984261B1 (en) Effective road profile simulation method and system with tyre loss-of-contact compensation
JPH0599784A (en) Method for evaluating shock strength of object
Gipser ADAMS/FTire-A Tire Model for Ride & Durability Simulations
US20200355577A1 (en) Method for correcting tire uniformity data and tire uniformity machine
Papadrakakis et al. Tmeasy 6.0-a handling tire model that incorporates the first two belt eigenmodes
Azrulhisham et al. Evaluation of fatigue life reliability of steering knuckle using pearson parametric distribution model
JPH11264785A (en) Method and device for inspecting installed shock absorber
JP2002116080A (en) Apparatus for estimating and computing vehicle mass
Koulocheris et al. Dynamic analysis of the suspension system of a heavy vehicle through experimental and simulation procedure
Yin et al. Nonlinear Dynamic Modelling of a Suspension Seat for Predicting the Vertical Seat Transmissibility
Klapka et al. Reinvention of the EUSAMA diagnostic methodology
Malmedahl Analysis of automotive damper data and design of a portable measurement system
Kindt et al. Measurement of the tire dynamic transfer stiffness at operational excitation levels

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term