JPH05996A - Production of isoamyl glycolic acid - Google Patents

Production of isoamyl glycolic acid

Info

Publication number
JPH05996A
JPH05996A JP3174809A JP17480991A JPH05996A JP H05996 A JPH05996 A JP H05996A JP 3174809 A JP3174809 A JP 3174809A JP 17480991 A JP17480991 A JP 17480991A JP H05996 A JPH05996 A JP H05996A
Authority
JP
Japan
Prior art keywords
isoamyl
glycolic acid
reaction
acid
isoamyl alcohol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3174809A
Other languages
Japanese (ja)
Other versions
JP2829799B2 (en
Inventor
Masao Inagaki
正雄 稲垣
Minoru Iwamoto
実 岩本
Tsuneo Kawanobe
恒夫 川野辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
T Hasegawa Co Ltd
Original Assignee
T Hasegawa Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by T Hasegawa Co Ltd filed Critical T Hasegawa Co Ltd
Priority to JP3174809A priority Critical patent/JP2829799B2/en
Publication of JPH05996A publication Critical patent/JPH05996A/en
Application granted granted Critical
Publication of JP2829799B2 publication Critical patent/JP2829799B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To enable to safely and massively produce isoamyl glycolic acid useful as a synthetic intermediate for perfume compounds from isoamyl alcohol as a raw material without metal sodium. CONSTITUTION:Isoamyl alcohol is reacted in the presence of a quaternary ammonium or a compound capable of forming the quaternary ammonium in the reaction system and a metal hydroxide salt, while removing by-produced water, and subsequently reacted with a monohalogenated acetic acid, thereby permitting to produce isoamyl glycolic acid in a high purity and in a high yield.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は,香粧品,医薬品及び飲
食品用香料化合物の合成中間体として極めて有用なイソ
アミルグリコール酸の新規な製造方法に関し,更に詳し
くは金属ナトリウムを使用することなく、イソアミルア
ルコールと相間移動触媒又は反応系内で相間移動触媒を
形成可能な化合物を水酸化金属塩の存在下に反応させて
イソアミルアルコキシドを形成せしめ、次いでモノハロ
ゲン化酢酸と反応せしめるという安全で且つ工業的に極
めて有利なイソアミルグリコール酸の製造方法に関す
る。
FIELD OF THE INVENTION The present invention relates to a novel process for producing isoamyl glycolic acid, which is extremely useful as a synthetic intermediate for perfume compounds for cosmetics, pharmaceuticals and foods and drinks, and more specifically, without using metallic sodium. A safe and industrial process of reacting isoamyl alcohol with a phase transfer catalyst or a compound capable of forming a phase transfer catalyst in the reaction system in the presence of a metal hydroxide salt to form an isoamyl alkoxide, and then reacting with a monohalogenated acetic acid. Relates to a highly advantageous method for producing isoamyl glycolic acid.

【0002】[0002]

【従来の技術】イソアミルグリコール酸は香料化合物の
重要な合成中間体であるが、従来かかる分枝アルコキシ
酢酸類の製法に関する研究は少なく,例えば分枝アルコ
ールを金属ナトリウムを用いてナトリウムアルコキシド
とし,該ナトリウムアルコキシドとモノクロロ酢酸との
脱塩反応により分枝アルコキシ酢酸を合成する方法(鈴
鹿工業高等専門学校紀要、21(1),109−113
(1988)が知られている程度である。
2. Description of the Related Art Isoamyl glycolic acid is an important synthetic intermediate for fragrance compounds. However, there has been little research on a method for producing such branched alkoxyacetic acids, for example, a branched alcohol is converted to sodium alkoxide by using metallic sodium. Method for synthesizing branched alkoxyacetic acid by desalting reaction between sodium alkoxide and monochloroacetic acid (Suzuka National College of Technology, 21 (1), 109-113
(1988) is known.

【0003】[0003]

【発明が解決しようとする課題】しかしながら,金属ナ
トリウムを用いる反応は危険を伴い大規模な製造は困難
であり,更に反応収率が低く価格的にも非常に高価なも
のとなり工業的製法としては多くの課題がある。
However, the reaction using metallic sodium is dangerous and is difficult to manufacture on a large scale. Further, the reaction yield is low and the price is very expensive, which is an industrial method. There are many challenges.

【0004】[0004]

【課題を解決するための手段】本発明者らはかかる課題
を解決すべく鋭意研究を行った。その結果,イソアミル
アルコールと相間移動触媒又は反応系内で相間移動触媒
を形成可能な化合物を水酸化金属塩の存在下に反応させ
てイソアミルアルコキシドを形成せしめ且つ未反応の水
酸化金属塩類を可及的に少なくした後、次いでモノハロ
ゲン化酢酸と反応せしめることにより目的とするイソア
ミルグリコール酸が高純度、高収率をもって合成できる
ことが分かった。本発明方法によれば、金属ナトリウム
を使用することなく、従来の危険性を完全に回避するこ
とができ工業的に極めて有利且つ大規模な製造が可能で
ある。この工程を代表的な反応式で表すと下記の如くで
ある。
[Means for Solving the Problems] The inventors of the present invention have made extensive studies to solve such problems. As a result, a compound capable of forming a phase transfer catalyst with isoamyl alcohol or a compound capable of forming a phase transfer catalyst in the reaction system is reacted in the presence of a metal hydroxide salt to form an isoamyl alkoxide, and an unreacted metal hydroxide salt can be reacted. It was found that the target isoamyl glycolic acid can be synthesized with high purity and high yield by reacting with monohalogenated acetic acid. According to the method of the present invention, the conventional dangers can be completely avoided without using metallic sodium, and industrially extremely advantageous and large-scale production is possible. A typical reaction formula of this step is as follows.

【0005】[0005]

【図1】 [Figure 1]

【0006】次に本発明の実施態様を図1の反応式に従
って具体的に説明する。まずイソアミルアルコールと相
間移動触媒又は反応系内で相間移動触媒を形成可能な化
合物を水酸化金属塩類の存在下に反応せしめる。反応は
イソアミルアルコール1モルと,該アルコールに対し
て、例えばトリエチルベンジルアンモニウムクロリド、
トリエチルオクチルアンモニウムクロリド等の第四級ア
ンモニウム等の相間移動触媒を約0.01〜約0.1重
量%、またはこれに代えて反応系内で相間移動触媒を形
成可能な化合物として例えば、トリエチルアミン、トリ
メチルアミン、トリブチルアミン、トリオクチルアミン
等のアミン類をイソアミルアルコールに対して約0.0
1〜10重量%、好ましくは約0.1〜約5重量%及び
ベンジルクロリド,ベンジルブロミド、ブチルクロリ
ド、ブチルヨーダイド等の有機ハロゲン化物を約0.0
1〜約10重量%、好ましくは約0.1〜約5重量%加
え、約0℃〜約200℃、好ましくは約50〜約150
℃で約10〜約60分間加熱反応させることにより第四
アンモニウムを形成せしめることができる。
Next, an embodiment of the present invention will be specifically described according to the reaction formula of FIG. First, isoamyl alcohol is reacted with a phase transfer catalyst or a compound capable of forming a phase transfer catalyst in the reaction system in the presence of metal hydroxide salts. The reaction is carried out with 1 mol of isoamyl alcohol and, for example, triethylbenzylammonium chloride,
About 0.01 to about 0.1% by weight of a phase transfer catalyst such as quaternary ammonium such as triethyloctyl ammonium chloride, or alternatively, as a compound capable of forming a phase transfer catalyst in the reaction system, for example, triethylamine, Amine such as trimethylamine, tributylamine, trioctylamine, etc. is added to isoamyl alcohol at about 0.0
1 to 10% by weight, preferably about 0.1 to about 5% by weight and about 0.0% of an organic halide such as benzyl chloride, benzyl bromide, butyl chloride and butyl iodide.
1 to about 10% by weight, preferably about 0.1 to about 5% by weight, added to about 0 ° C to about 200 ° C, preferably about 50 to about 150 ° C.
The quaternary ammonium can be formed by heating and reacting at 0 ° C. for about 10 to about 60 minutes.

【0007】次いで約0〜約100℃、好ましくは室温
程度まで冷却した後,例えば水酸化ナトリウム,水酸化
カリウム,水酸化バリウム,水酸化カルシウム等の水酸
化金属塩類約0.1〜約1モルを約1〜約60分間、好
ましくは約1〜約30分間で加え、イソアミルアルコキ
シドを形成せしめる。この際、アルコキシドの形成に伴
って生成する水を強制的に系外に除去し、未反応の水酸
化金属塩類を可及的に少なくすることが望ましい。かか
る反応系外への水の除去は既知の任意の手段を採用する
ことができるが、例えば加熱蒸留法、減圧蒸留法、水と
共沸する溶剤を加える共沸蒸留法等を挙げることができ
るが、比較的低温で該反応を行える共沸蒸留法を好まし
く挙げることができる。かかる共沸蒸留法の具体例とし
ては、例えばシクロヘキサン,ベンゼン、トルエン、キ
シレン等の水と共沸する溶媒を反応混合物に対して約
0.1〜約100重量%添加し、例えば反応温度約10
0〜約140℃、好ましくは約120〜約130℃で約
2〜約10時間共沸蒸留して水を除去することによって
効率よくイソアミルアルコキシドを形成せしめる方法を
例示することができる。
After cooling to about 0 to about 100 ° C., preferably about room temperature, for example, about 0.1 to about 1 mol of metal hydroxide salts such as sodium hydroxide, potassium hydroxide, barium hydroxide and calcium hydroxide. Is added for about 1 to about 60 minutes, preferably about 1 to about 30 minutes to form the isoamyl alkoxide. At this time, it is desirable to forcibly remove the water generated along with the formation of the alkoxide out of the system to reduce unreacted metal hydroxide salts as much as possible. Any known means can be used to remove water outside the reaction system, and examples thereof include a heating distillation method, a reduced pressure distillation method, and an azeotropic distillation method in which a solvent that is azeotropic with water is added. However, an azeotropic distillation method capable of carrying out the reaction at a relatively low temperature can be preferably mentioned. As a specific example of the azeotropic distillation method, for example, a solvent such as cyclohexane, benzene, toluene, and xylene which is azeotropic with water is added in an amount of about 0.1 to about 100% by weight with respect to the reaction mixture.
An example is a method of efficiently forming an isoamyl alkoxide by azeotropic distillation at 0 to about 140 ° C., preferably about 120 to about 130 ° C. for about 2 to about 10 hours to remove water.

【0008】得られた反応混合物に例えばモノクロロ酢
酸,モノブロモ酢酸,モノクロロ酢酸エチル、モノクロ
ロ酢酸イソアミル等から選ばれた少なくとも1種のモノ
ハロゲン化酢酸約0.01〜約1モルを約50〜約15
0℃、好ましくは約40〜約80℃にて約5分〜約3時
間、好ましくは約10分〜約30分で加え,更に還流条
件下に約1〜約50時間、一般的には約2〜約40時間
反応させる。反応終了後,常圧条件下に過剰のイソアミ
ルアルコールを回収し,さらに反応液中に使用したイソ
アミルアルコールの約1.5重量倍の水を滴下し,水と
共沸させてイソアミルアルコールを完全に回収すること
によりイソアミルグリコール酸のアルカリ金属塩を得る
ことができる。
To the resulting reaction mixture is added about 0.01 to about 1 mol of at least one monohalogenated acetic acid selected from monochloroacetic acid, monobromoacetic acid, ethyl monochloroacetate, isoamyl monochloroacetate, etc.
Add at 0 ° C., preferably about 40 to about 80 ° C. for about 5 minutes to about 3 hours, preferably about 10 minutes to about 30 minutes, and further under reflux conditions for about 1 to about 50 hours, generally about Let react for 2 to about 40 hours. After completion of the reaction, excess isoamyl alcohol was recovered under normal pressure conditions, and about 1.5 times by weight of water of the isoamyl alcohol used was dropped into the reaction solution and azeotroped with water to completely remove the isoamyl alcohol. By recovering, an alkali metal salt of isoamyl glycolic acid can be obtained.

【0009】イソアミルグリコール酸のアルカリ金属塩
は既知の脱塩反応を利用し,例えば塩酸,硫酸,燐酸等
の無機酸を加えて酸性とすることにより遊離の酸を形成
させ,例えばトルエン,ベンゼン,キシレン、シクロヘ
キサン等の溶媒で抽出することによりイソアミルグリコ
ール酸を得ることができる。該カルボン酸はさらに減圧
蒸留などにより精製することができる。
The alkali metal salt of isoamyl glycolic acid utilizes a known desalting reaction. For example, a free acid is formed by adding an inorganic acid such as hydrochloric acid, sulfuric acid, phosphoric acid or the like to make it acidic, and for example toluene, benzene, Isoamyl glycolic acid can be obtained by extraction with a solvent such as xylene or cyclohexane. The carboxylic acid can be further purified by vacuum distillation or the like.

【0010】上記反応は、イソアミルアルコールと相間
移動触媒又は反応系内で相間移動触媒を形成可能な化合
物及びモノハロゲン化酢酸を水酸化金属塩の存在下に反
応させることによっても行うことが可能であるが、その
際には水酸化金属塩類とモノハロゲン化酢酸が反応して
モノヒドロキシ酢酸が生成し、収率を著しくが低下させ
る原因となるので好ましくない。以下実施例により本発
明の態様をさらに詳しく説明する。
The above reaction can also be carried out by reacting isoamyl alcohol with a phase transfer catalyst or a compound capable of forming a phase transfer catalyst in the reaction system and a monohalogenated acetic acid in the presence of a metal hydroxide salt. However, in that case, the metal hydroxide salts and the monohalogenated acetic acid react with each other to form monohydroxyacetic acid, which causes a significant decrease in yield, which is not preferable. Hereinafter, embodiments of the present invention will be described in more detail with reference to Examples.

【0011】[0011]

【実施例1 1lの4径フラスコにイソアミルアルコール352g
(4モル),トリエチルアミン3g及びベンジルクロリ
ド2.5gを仕込み,約110℃で30分間加熱反応さ
せ,80℃以下に冷却後水酸化ナトリウム48g(1.
2モル)を10分間で加えた。次いで冷却器付き側管を
取り付け、混合物を約135〜145℃に加熱し約10
時間かけて水を留出させた。反応混合物を冷却し約55
〜65℃に保ちながらモノクロロ酢酸47.3g(0.
5モル)を約10分間かけて滴下し,加え終わった後さ
らに約120〜約130℃で3時間反応した。反応終了
後過剰のイソアミルアルコールを回収し,さらに水25
0mlを加え共沸によってイソアミルアルコールを除去
した。冷却後,水250mlを加え濃塩酸で酸性とした
後,トルエン150mlを用いて抽出した。抽出液から
トルエンを除去し,次いで粗蒸留を行って沸点93〜9
8℃/2mmHgのイソアミルグリコール酸留分65.
9gを得た(収率90.3%)。 【0012】
Example 1 352 g of isoamyl alcohol in a 1-liter 4-diameter flask
(4 mol), 3 g of triethylamine and 2.5 g of benzyl chloride were charged and reacted by heating at about 110 ° C. for 30 minutes, cooled to 80 ° C. or lower and 48 g of sodium hydroxide (1.
2 mol) was added in 10 minutes. Then attach a side tube with a condenser and heat the mixture to about 135-145 ° C to about 10
The water was distilled over time. Cool the reaction mixture to about 55
47.3 g of monochloroacetic acid (0.
5 mol) was added dropwise over about 10 minutes, and after the addition was completed, the reaction was further continued at about 120 to about 130 ° C. for 3 hours. After completion of the reaction, excess isoamyl alcohol was recovered, and water 25
0 ml was added and isoamyl alcohol was removed azeotropically. After cooling, 250 ml of water was added, acidified with concentrated hydrochloric acid, and then extracted with 150 ml of toluene. Toluene was removed from the extract, and then crude distillation was performed to give a boiling point of 93-9.
Isoamyl glycolic acid fraction of 8 ° C./2 mmHg 65.
9 g was obtained (yield 90.3%). [0012]

【実施例2】5lの4径フラスコにイソアミルアルコー
ル2816g(32モル),トリエチルアミン24g及
びベンジルクロリド20gを仕込み,約110℃で30
分間加熱反応させ,80℃以下に冷却後水酸化ナトリウ
ム384g(9.6モル)を30分間で加えた。次いで
冷却器付き側管を取り付け、トルエン350mlを加え
た後混合物を約125〜130℃に加熱し約10時間か
けて水を留出させた。反応混合物を冷却し約55〜65
℃に保ちながらモノクロロ酢酸378g(4モル)を約
10分間かけて滴下し,加え終わった後さらに約120
〜約130℃で12時間反応させた。反応終了後過剰の
イソアミルアルコールを回収し,さらに水2.5lを加
え共沸によってイソアミルアルコールを除去した。冷却
後,水1.5lを加え濃塩酸で酸性とした後,トルエン
を用いて抽出した。抽出液からトルエンを除去し,次い
で粗蒸留を行って沸点93〜98℃/2mmHgのイソ
アミルグリコール酸留分505gを得た(収率87
%)。
Example 2 A 5 l 4-diameter flask was charged with 2816 g (32 mol) of isoamyl alcohol, 24 g of triethylamine and 20 g of benzyl chloride, and the mixture was heated at about 110 ° C. for 30 minutes.
The mixture was heated and reacted for 1 minute, cooled to 80 ° C. or lower, and 384 g (9.6 mol) of sodium hydroxide was added over 30 minutes. Then, a side tube equipped with a condenser was attached, 350 ml of toluene was added, and then the mixture was heated to about 125 to 130 ° C. and water was distilled out over about 10 hours. Cool the reaction mixture to about 55-65
While maintaining the temperature at ℃, 378 g (4 mol) of monochloroacetic acid was added dropwise over about 10 minutes.
The reaction was carried out at about 130 ° C for 12 hours. After completion of the reaction, excess isoamyl alcohol was recovered, and 2.5 l of water was further added to remove isoamyl alcohol by azeotropic distillation. After cooling, 1.5 l of water was added, acidified with concentrated hydrochloric acid, and then extracted with toluene. Toluene was removed from the extract, and then crude distillation was performed to obtain 505 g of an isoamyl glycolic acid fraction having a boiling point of 93 to 98 ° C / 2 mmHg (yield 87
%).

【0013】[0013]

【比較例1】実施例1と同様に、1lの4径フラスコに
イソアミルアルコール352g(4モル),トリエチル
アミン3g及びベンジルクロリド2.5gを仕込み,約
110℃で30分間加熱反応させ,80℃以下に冷却後
水酸化ナトリウム48g(1.2モル)を10分間で加
えた。次いで還流冷却器を取り付け混合物を約135〜
145℃に加熱し、水を留出させることなく約10時間
反応させた。反応混合物を冷却し約55〜65℃に保ち
ながらモノクロロ酢酸47.3g(0.5モル)を約1
0分間かけて滴下し,加え終わった後さらに約120〜
約130℃で3時間反応した。反応終了後過剰のイソア
ミルアルコールを回収し,さらに水250mlを加え共
沸によってイソアミルアルコールを除去した。冷却後,
水250mlを加え濃塩酸で酸性とした後,トルエン1
50mlを用いて抽出した。抽出液からトルエンを除去
し,次いで粗蒸留を行い沸点93〜98℃/2mmHg
のイソアミルグリコール酸39g(収率53%)を得
た。
Comparative Example 1 In the same manner as in Example 1, 352 g (4 mol) of isoamyl alcohol, 3 g of triethylamine and 2.5 g of benzyl chloride were charged into a 1-liter four-diameter flask, and the mixture was heated at about 110 ° C. for 30 minutes to react at 80 ° C. or lower. After cooling, 48 g (1.2 mol) of sodium hydroxide was added over 10 minutes. Then a reflux condenser was attached and the mixture was heated to about 135
It was heated to 145 ° C. and reacted for about 10 hours without distilling water. While cooling the reaction mixture and maintaining it at about 55 to 65 ° C, about 47.3 g (0.5 mol) of monochloroacetic acid was added to about 1
Drop it over 0 minutes and add about 120-
The reaction was carried out at about 130 ° C. for 3 hours. After completion of the reaction, excess isoamyl alcohol was recovered, and 250 ml of water was further added to remove isoamyl alcohol by azeotropic distillation. After cooling,
After adding 250 ml of water and acidifying with concentrated hydrochloric acid, toluene 1
Extracted with 50 ml. Toluene is removed from the extract, and then crude distillation is carried out to give a boiling point of 93 to 98 ° C / 2 mmHg.
39 g (yield 53%) of isoamyl glycolic acid were obtained.

【0014】[0014]

【発明の効果】本発明によれば、イソアミルアルコール
と相間移動触媒又は反応系内で相間移動触媒を形成可能
な化合物を水酸化金属塩の存在下に反応させてイソアミ
ルアルコキシドを形成せしめる際に、該反応を、生成す
る水を除去しながら行うことによって未反応の水酸化金
属塩類が極めて少なくなり、次いでモノハロゲン化酢酸
と反応せしめることにより目的とするイソアミルグリコ
ール酸を高純度、高収率をもって合成することができ
る。さらに本発明によれば従来の金属ナトリウム又はナ
トリウムアルコキシド等を用いる危険性の高い方法では
不可能であった大規模製造が可能になり,かかる従来法
に比較して原料費及び製造コストを大幅に低減すること
ができる。本発明によって得られるイソアミルグリコー
ル酸は香料化合部の合成中間体としてに極めて有用であ
る。
According to the present invention, when isoamyl alcohol and a phase transfer catalyst or a compound capable of forming a phase transfer catalyst in a reaction system are reacted in the presence of a metal hydroxide salt to form an isoamyl alkoxide, By carrying out the reaction while removing the produced water, the unreacted metal hydroxide salts are extremely reduced, and then by reacting with monohalogenated acetic acid, the desired isoamyl glycolic acid can be obtained with high purity and high yield. Can be synthesized. Furthermore, according to the present invention, large-scale production, which has been impossible with the conventional high-risk method using metallic sodium or sodium alkoxide, etc., becomes possible, and the raw material cost and the production cost are significantly increased as compared with the conventional method. It can be reduced. The isoamyl glycolic acid obtained by the present invention is extremely useful as a synthetic intermediate for a fragrance compound.

Claims (1)

【特許請求の範囲】 【請求項1】 イソアミルアルコールと相間移動触媒又
は反応系内で相間移動触媒を形成可能な化合物を水酸化
金属塩の存在下に反応せしめてイソアミルアルコキシド
を形成せしめ、次いでモノハロゲン化酢酸と反応せしめ
ることを特徴とするイソアミルグリコール酸の製造方
法。
Claim: What is claimed is: 1. An isoamyl alcohol and a phase transfer catalyst or a compound capable of forming a phase transfer catalyst in a reaction system are reacted in the presence of a metal hydroxide salt to form an isoamyl alkoxide. A method for producing isoamyl glycolic acid, which comprises reacting with halogenated acetic acid.
JP3174809A 1991-06-20 1991-06-20 Method for producing isoamyl glycolic acid Expired - Fee Related JP2829799B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3174809A JP2829799B2 (en) 1991-06-20 1991-06-20 Method for producing isoamyl glycolic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3174809A JP2829799B2 (en) 1991-06-20 1991-06-20 Method for producing isoamyl glycolic acid

Publications (2)

Publication Number Publication Date
JPH05996A true JPH05996A (en) 1993-01-08
JP2829799B2 JP2829799B2 (en) 1998-12-02

Family

ID=15985048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3174809A Expired - Fee Related JP2829799B2 (en) 1991-06-20 1991-06-20 Method for producing isoamyl glycolic acid

Country Status (1)

Country Link
JP (1) JP2829799B2 (en)

Also Published As

Publication number Publication date
JP2829799B2 (en) 1998-12-02

Similar Documents

Publication Publication Date Title
WO1993008152A1 (en) Process for producing halomethyl ester of aliphatic carboxylic acid
JP2829799B2 (en) Method for producing isoamyl glycolic acid
US4167641A (en) Preparation of long-chain carboxylic acids and alcohols
JPH0764789B2 (en) Manufacturing method of methacrylic acid ester
JP2000072719A (en) Production of allyl 2-hydroxyisobutyrate
US3769338A (en) Process for synthesizing citric acid
CA1142957A (en) PROCESS FOR PREPARING .alpha.-ARYL PROPIONIC ACIDS
JP3677786B2 (en) Method for producing aryloxypropionic acid
JP2631769B2 (en) Method for producing allyl isoamyl glycolate
JPH07242587A (en) Production of difluoroacetic acid and difluoroacetamide
JP2996780B2 (en) Method for separating fluoro-substituted benzaldehyde
JP3164284B2 (en) Method for producing 2-chloro-4-trifluoromethylbenzal chloride
JP2000095730A (en) Production of halogenated phenylmalonic ester
JPH01113336A (en) Production of alkylphenoxyacetic acid
JPH0586012A (en) Production of aminooxyacetic acid
JPH045657B2 (en)
US4031136A (en) Process for the preparation of trans, trans-muconic acid
JP2000143590A (en) Production of 3-oxocarboxylic ester
EP0306936A2 (en) Process for producing aminooxyacetic acid salts
JP3192975B2 (en) Method for producing halogenated benzene
JP4000278B2 (en) Process for producing ω-bromoalkylmalonic acid and ω-bromoalkylcarboxylic acid
JPH09227447A (en) Production of sorbic acid
JPH10204020A (en) Production of chloro-benzoyl chloride compounds
JPH04312563A (en) Method of manufacturing 2,4-dichloro-5-fluoro- benzonitrile
JPS63295529A (en) Production of 2,3,4,5-tetrafluorobenzoic acid

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees