JPH0599074A - Hydrogen storage tank - Google Patents
Hydrogen storage tankInfo
- Publication number
- JPH0599074A JPH0599074A JP3259061A JP25906191A JPH0599074A JP H0599074 A JPH0599074 A JP H0599074A JP 3259061 A JP3259061 A JP 3259061A JP 25906191 A JP25906191 A JP 25906191A JP H0599074 A JPH0599074 A JP H0599074A
- Authority
- JP
- Japan
- Prior art keywords
- hydrogen
- tank
- hydrogen storage
- tube
- alloy powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/14—Thermal energy storage
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/32—Hydrogen storage
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E70/00—Other energy conversion or management systems reducing GHG emissions
- Y02E70/30—Systems combining energy storage with energy generation of non-fossil origin
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/30—Use of alternative fuels, e.g. biofuels
Landscapes
- Filling Or Discharging Of Gas Storage Vessels (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は水素の吸蔵・放出を行う
水素吸蔵合金粉末が充填された水素貯蔵タンクに関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrogen storage tank filled with hydrogen storage alloy powder for storing and releasing hydrogen.
【0002】[0002]
【従来の技術】近年、地球温暖化等が環境問題として取
り上げられるのに伴ってクリーンな石油代替エネルギー
として水素燃料が注目されてきており、これを例えば自
動車用内燃機関の燃料として利用すべくその開発が進め
られている。ところで、水素を燃料として使用する場合
に重要な位置付けとなるのが水素貯蔵タンクであり、こ
のようなタンクの一つとして、水素吸蔵合金(以下、M
H合金という。)を利用するものが考えられている。こ
のMH合金を用いた水素貯蔵タンクは水素充填率の高さ
や安全性の点で優れた性質を持つことから、特に自動車
等の移動体用の水素貯蔵タンクとして有効であることが
知られている。2. Description of the Related Art In recent years, as global warming has been taken up as an environmental problem, hydrogen fuel has been attracting attention as a clean alternative energy to petroleum. For example, hydrogen fuel should be used as a fuel for internal combustion engines for automobiles. Development is in progress. By the way, when hydrogen is used as a fuel, a hydrogen storage tank is an important position. One of such tanks is a hydrogen storage alloy (hereinafter, referred to as M
It is called H alloy. ) Is considered. Since the hydrogen storage tank using this MH alloy has excellent properties in terms of high hydrogen filling rate and safety, it is known to be particularly effective as a hydrogen storage tank for moving bodies such as automobiles. ..
【0003】図15は従来の水素貯蔵タンクにおけるタ
ンクチューブを示すものである。タンクチューブ1は、
円筒状のチューブ外板2と該外板2の中心部に同心状に
設けられた円筒状フィルタ3とからなる二重管構造であ
って、フィルタ3の内側は水素流路4とされている。ま
た、チューブ外板2とフィルタ3によって画成された空
間にはMH合金粉末5が充填されている。従来の水素貯
蔵タンクは、直方体状のタンク外板に囲まれた空間にこ
のようなタンクチューブ1が複数本互いに間隔を隔てて
千鳥状に配置され、これら複数本のタンクチューブ1間
およびタンクチューブ1とタンク外板との間に形成され
た空隙が熱媒流路とされている。このような構成の水素
貯蔵タンクでは、タンクチューブ1内のMH合金粉末5
が熱媒によって加熱されることにより吸蔵した水素が放
出され、こうして放出された水素はフィルタ3を通って
水素流路4からその端部に接続された配管を介して外部
に取り出される。一方、MH合金粉末5に水素を吸蔵さ
せる時には、該MH合金粉末5を冷却させた状態で高圧
ボンベから水素流路4を介して水素を送り込むようにす
る。FIG. 15 shows a tank tube in a conventional hydrogen storage tank. Tank tube 1
The double tube structure is composed of a cylindrical tube outer plate 2 and a cylindrical filter 3 concentrically provided at the center of the outer plate 2, and the inside of the filter 3 is a hydrogen flow path 4. .. The space defined by the tube outer plate 2 and the filter 3 is filled with MH alloy powder 5. In a conventional hydrogen storage tank, a plurality of such tank tubes 1 are arranged in a zigzag manner at intervals in a space surrounded by a rectangular parallelepiped tank outer plate. The space formed between 1 and the tank outer plate serves as a heat medium passage. In the hydrogen storage tank having such a configuration, the MH alloy powder 5 in the tank tube 1
The hydrogen stored therein is released by being heated by a heat medium, and the hydrogen released in this way passes through the filter 3 and is taken out from the hydrogen flow path 4 to the outside through the pipe connected to the end thereof. On the other hand, when hydrogen is stored in the MH alloy powder 5, hydrogen is fed from the high pressure cylinder through the hydrogen flow path 4 while the MH alloy powder 5 is being cooled.
【0004】また、MH合金材に関しては、MH合金粉
末の凝集体をアルミ等の金属の多数の微粒子によって被
覆するようにしたものが、例えば特開昭63−3109
36号公報に開示されている。Regarding the MH alloy material, for example, an agglomerate of MH alloy powder coated with a large number of fine particles of a metal such as aluminum is disclosed in, for example, JP-A-63-3109.
No. 36 is disclosed.
【0005】[0005]
【発明が解決しようとする課題】しかしながら、上記従
来の水素貯蔵タンクのように、タンクチューブ内に単に
MH合金粉末を充填したものでは、水素の吸蔵,放出に
伴うMH合金粉末の膨張,収縮によってタンクチューブ
が破損したり変形するといった不具合があった。特に、
このような水素貯蔵タンクを自動車等の移動体に搭載し
て使用する場合に、タンクが振動条件下に置かれること
によって、MH合金粉末の水素放出時に微粒化したMH
合金粉末が図15で上側の二点鎖線で示すようにタンク
チューブ下部に移動集中してしまう。そして、こうして
タンクチューブの下部に集中したMH合金粉末が水素吸
蔵時に体積膨張を起こすと、タンクチューブの下部に図
で矢印で示すような圧力がかかって該タンクチューブが
下側の二点鎖線で示すように変形し、場合によっては亀
裂が発生するという問題があった。However, in the case where the tank tube is simply filled with MH alloy powder as in the above-mentioned conventional hydrogen storage tank, the MH alloy powder expands and contracts due to the absorption and desorption of hydrogen. There was a problem that the tank tube was damaged or deformed. In particular,
When such a hydrogen storage tank is used by being mounted on a moving body such as an automobile, the MH alloy powder is atomized when hydrogen is released by placing the tank under vibration conditions.
The alloy powder moves and concentrates in the lower part of the tank tube as shown by the upper two-dot chain line in FIG. Then, when the MH alloy powder concentrated in the lower portion of the tank tube expands in volume when hydrogen is absorbed, pressure is applied to the lower portion of the tank tube as shown by an arrow in the figure, and the tank tube is indicated by a two-dot chain line on the lower side. There is a problem in that it deforms as shown and cracks occur depending on the case.
【0006】なお、上記公報に記載のものは、MH合金
が水素の吸蔵,放出を繰り返すことによる粉末化を防止
するのを目的とするものであって、特に移動体に搭載し
て使用される水素貯蔵タンクにおける上記のような問題
を解消するものではない。The one described in the above publication is intended to prevent MH alloy from being pulverized due to repeated storage and release of hydrogen, and is used by being mounted on a moving body in particular. It does not solve the above problems in the hydrogen storage tank.
【0007】本発明は上記のような問題点に鑑みてなさ
れたものであって、MH合金粉末が充填された水素貯蔵
タンクにおいて、MH合金粉末がタンク下部に偏在しな
いようにして、タンクの変形,破損を防止することを目
的とする。The present invention has been made in view of the above problems, and in a hydrogen storage tank filled with MH alloy powder, the MH alloy powder is prevented from being unevenly distributed in the lower part of the tank, and the tank is deformed. , The purpose is to prevent damage.
【0008】[0008]
【課題を解決するための手段】本発明に係る水素貯蔵タ
ンクは、水素吸蔵合金粉末と弾性を有する粉体とを混合
してなる混合粉体を充填したことを特徴とする。A hydrogen storage tank according to the present invention is characterized by being filled with a mixed powder obtained by mixing a hydrogen storage alloy powder and a powder having elasticity.
【0009】[0009]
【作用】本発明においては、MH合金粉末が例えばシリ
コン等の弾性を有する粉体と混合してタンク内に充填さ
れていることによって、MH合金粉末の水素吸蔵,放出
に伴う膨張,収縮が弾性を有する粉体によって吸収され
ることによって、タンクに振動が加わる場合でもMH合
金粉末がタンク下部に偏在することなく均一に保持さ
れ、タンクの変形,破損が防がれる。In the present invention, since the MH alloy powder is mixed with the powder having elasticity such as silicon and filled in the tank, the expansion and contraction of the MH alloy powder due to hydrogen absorption and release are elastic. Since the MH alloy powder is absorbed by the powder having the MH alloy, the MH alloy powder is uniformly held in the lower portion of the tank even when vibration is applied to the tank, and deformation and damage of the tank are prevented.
【0010】[0010]
【実施例】以下、実施例を図面に基づいて説明する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments will be described below with reference to the drawings.
【0011】図1は本発明の一実施例に係る水素貯蔵タ
ンクにおけるタンクチューブの断面図、図2は同タンク
チューブの斜視図、図3は同実施例に係る水素貯蔵タン
クの部分正面図、図4は図1のA部拡大図である。FIG. 1 is a sectional view of a tank tube in a hydrogen storage tank according to an embodiment of the present invention, FIG. 2 is a perspective view of the tank tube, and FIG. 3 is a partial front view of the hydrogen storage tank according to the embodiment. FIG. 4 is an enlarged view of part A of FIG.
【0012】この実施例において、タンクチューブ1
は、円筒状のチューブ外板2と該チューブ外板2の中心
部に同心状に設けられた円筒状フィルタ3とからなる二
重管構造であって、フィルタ3の内側には水素流路4が
形成されている。また、チューブ外板2とフィルタ3に
よって画成された空間には、MH合金粉末(150μm
以下)6とシリコン樹脂粉体(100μm以下)7とを
混合してなる混合粉体8が充填されている。この混合粉
体8は、MH合金粉末6とシリコン樹脂粉体7をアトラ
イタで混合することにより得られ、該混合粉体8をタン
クチューブ1内に充填する際には、1kgf/cm2程
度の圧力で加圧されてこの加圧状態のまま端部の栓を閉
じるようにされる。ここで、上記MH合金としては、T
i0・64Zr0・36Mn0・8CrCu0・2やTiMn1・5やF
eTiなどを使用するのが好適である。In this embodiment, the tank tube 1
Is a double tube structure composed of a cylindrical tube outer plate 2 and a cylindrical filter 3 concentrically provided at the center of the tube outer plate 2, and a hydrogen flow path 4 is provided inside the filter 3. Are formed. Further, in the space defined by the tube outer plate 2 and the filter 3, the MH alloy powder (150 μm
6) and a silicon resin powder (100 μm or less) 7 are mixed, and a mixed powder 8 is filled. The mixed powder 8 is obtained by mixing the MH alloy powder 6 and the silicon resin powder 7 with an attritor, and when the mixed powder 8 is filled in the tank tube 1, the mixed powder 8 is about 1 kgf / cm 2 . It is pressurized with pressure and the stopper at the end is closed in this pressurized state. Here, as the MH alloy, T
i 0 · 64 Zr 0 · 36 Mn 0 · 8 CrCu 0 · 2 and TiMn 1 · 5 and F
It is preferable to use eTi or the like.
【0013】上記タンクチューブ1は、図3に示すよう
に、タンク外板9を有する直方体状の水素貯蔵タンク1
0の上記タンク外板9に囲まれた空間に互いに間隔を隔
てて千鳥状に装着される。そして、各タンクチューブ1
間およびタンクチューブ1とタンク外板9間に形成され
た空隙が熱媒流路11とされる。このような構成の水素
貯蔵タンク10では、タンクチューブ1内のMH合金粉
末6が熱媒流路11を通過する熱媒によって加熱される
ことにより吸蔵した水素を放出し、放出された水素はフ
ィルタ3を通って水素流路4からその端部に接続された
配管(図示せず)を介して外部に取り出される。一方、
MH合金粉末6に水素を吸蔵させる時には、該MH合金
粉末6を冷却させた状態で高圧ボンベから水素流路4お
よびフィルタ3を介して水素を送り込むようにする。The tank tube 1 is a rectangular parallelepiped hydrogen storage tank 1 having a tank outer plate 9 as shown in FIG.
They are mounted in a zigzag pattern at intervals in a space surrounded by the above-mentioned tank outer plate 9. And each tank tube 1
The space formed between the tank tube 1 and the tank outer plate 9 serves as the heat medium flow passage 11. In the hydrogen storage tank 10 having such a configuration, the MH alloy powder 6 in the tank tube 1 is heated by the heat medium passing through the heat medium passage 11 to release the stored hydrogen, and the released hydrogen is filtered. It is taken out from the hydrogen flow path 4 through the pipe 3 through a pipe (not shown) connected to its end. on the other hand,
When hydrogen is stored in the MH alloy powder 6, hydrogen is fed from the high-pressure cylinder through the hydrogen flow path 4 and the filter 3 while the MH alloy powder 6 is being cooled.
【0014】本実施例によれば、タンクチューブ1内に
MH合金粉末6とシリコン樹脂粉体7とを混合してなる
混合粉体8が加圧,充填され、図4に示すように,MH
合金粉末6の粒子間に弾性を有するシリコン樹脂粉体7
の粒子が入り込んだ状態となるため、MH合金粉末6が
水素の吸蔵,放出に伴って膨張,収縮しても弾性を有す
るシリコン樹脂粉体7によって吸収される。したがっ
て、MH合金粉末6に振動が加わった場合でも、該MH
合金粉末6がタンクチューブ1の下部に偏在することな
く均一に保持され、したがって、タンクチューブ1の破
損,変形を防止することができる。なお、本実施例のタ
ンクチューブ1を用いて、水素を吸蔵していない状態で
約100時間加振テストを行った結果、内部の混合粉体
8がタンクチューブ1下部に偏在しないことが確認され
た。また、この加振テストの後、水素を導入してMH合
金粉末6に吸蔵させたがタンクチューブ1の破損,変形
はなかった。比較例として、MH合金粉末のみを常圧で
タンクチューブに充填して加振テストを行うと、外周の
上部に空隙が生じ、粉末が偏在していることがわかっ
た。また、その後MH合金粉末に水素を導入して吸蔵さ
せるとタンクチューブの下部がわずかに変形するのが認
められた。According to this embodiment, the tank tube 1 is pressurized and filled with the mixed powder 8 obtained by mixing the MH alloy powder 6 and the silicon resin powder 7, and as shown in FIG.
Silicon resin powder 7 having elasticity between particles of alloy powder 6
Since the MH alloy powder 6 expands and contracts due to the absorption and desorption of hydrogen, the silicon resin powder 7 having elasticity is absorbed. Therefore, even when vibration is applied to the MH alloy powder 6,
The alloy powder 6 is uniformly held in the lower part of the tank tube 1 without being unevenly distributed, and therefore, the tank tube 1 can be prevented from being damaged or deformed. As a result of performing a vibration test for about 100 hours using the tank tube 1 of the present example in a state where hydrogen was not stored, it was confirmed that the mixed powder 8 inside was not unevenly distributed in the lower portion of the tank tube 1. It was Further, after this vibration test, hydrogen was introduced and occluded in the MH alloy powder 6, but the tank tube 1 was not damaged or deformed. As a comparative example, when the tank tube was filled with only the MH alloy powder at normal pressure and a vibration test was performed, it was found that voids were formed in the upper part of the outer periphery and the powder was unevenly distributed. Further, when hydrogen was subsequently introduced into the MH alloy powder to occlude it, it was observed that the lower portion of the tank tube was slightly deformed.
【0015】図5乃至図7は上記実施例のタンクチュー
ブの各種変形例を示している。なお、図5は側面側から
見た断面図、図6及び図7はそれぞれ正面側から見た断
面図である。5 to 7 show various modifications of the tank tube of the above embodiment. Note that FIG. 5 is a cross-sectional view as seen from the side surface side, and FIGS. 6 and 7 are cross-sectional views as seen from the front surface side.
【0016】これらの図に示すように、タンクチューブ
1a,1b,1c内に装着するフィルタ3a,3b,3
cは、途中の数箇所で折曲し通路長を長くすることによ
って混合粉体8との接触面積を拡大させるようにしたり
(図5)、断面形状を中心部から周囲に放射状に延びる
溝部を有する形状にしてやはり混合粉体8との接触面積
を拡大させるようにしたり(図6)、あるいは、長方形
断面のタンクチューブ1cに多数本装着して同接触面積
を拡大させるようにする(図7)など、いろいろな形で
実施することが可能である。As shown in these figures, the filters 3a, 3b, 3 mounted in the tank tubes 1a, 1b, 1c are shown.
c may be bent at several points on the way to increase the passage length to increase the contact area with the mixed powder 8 (FIG. 5), or to form a groove portion whose cross-sectional shape extends radially from the central portion to the periphery. It may be formed to have a larger contact area with the mixed powder 8 (FIG. 6), or a large number may be attached to the tank tube 1c having a rectangular cross section to expand the contact area (FIG. 7). ), Etc., and can be implemented in various ways.
【0017】また、水素貯蔵タンクを自動車等の移動体
に搭載した場合等に生じるMH合金粉末のタンクチュー
ブ下部への移動集中の問題は、以下に示すような手段に
よっても解決することができる。すなわち、図8は上記
のような問題に対処した本発明の他の実施例に係るタン
クチューブの断面図、図9は同タンクチューブの斜視図
である。The problem of the concentration of MH alloy powder in the lower portion of the tank tube, which occurs when the hydrogen storage tank is mounted on a moving body such as an automobile, can be solved by the following means. That is, FIG. 8 is a cross-sectional view of a tank tube according to another embodiment of the present invention that addresses the above problems, and FIG. 9 is a perspective view of the tank tube.
【0018】この実施例のタンクチューブ12において
は、チューブ外板13を、熱伝導特性に優れるとともに
水素内圧に耐えられる材質(例えばAl−5082)で
形成し、さらに、フィルタ14を、タンクチューブ12
内部を四つの扇形のMH合金粉末充填領域15と十字形
の水素流路16に仕切るような形状にするとともに、該
フィルタ14をMH合金粉末と水素を分離する能力を持
ち熱伝導性に優れた材質(例えば焼結SUS−304)
で形成したものである。In the tank tube 12 of this embodiment, the tube outer plate 13 is formed of a material (for example, Al-5082) having excellent heat conduction characteristics and capable of withstanding internal hydrogen pressure, and further, the filter 14 is provided with the tank tube 12.
The inside is shaped so as to be partitioned into four fan-shaped MH alloy powder filling regions 15 and a cross-shaped hydrogen flow path 16, and the filter 14 has the ability to separate MH alloy powder and hydrogen and has excellent thermal conductivity. Material (for example, sintered SUS-304)
It was formed in.
【0019】この実施例によれば、フィルタ14が仕切
り板となって、微粒化したMH合金粉末がタンクチュー
ブ12の下部に移動集中するのを防止する。また、この
ような構成にすると、フィルタ14がタンクチューブ1
2の補強材として機能するため、水素内圧に対しても有
利となり、また、同フィルタ14がMH合金粉末とチュ
ーブ外板13との間の熱伝導促進材としても機能するた
め、MH合金粉末と熱媒との間の熱のやり取りが促進さ
れ、それによってMH合金粉末の水素吸蔵,放出反応速
度が速くなる。さらに、上記構成によれば、水素流路1
6の表面積が大きくなるため、水素の出し入れが容易に
なるという効果もある。According to this embodiment, the filter 14 serves as a partition plate to prevent the atomized MH alloy powder from moving and concentrating in the lower portion of the tank tube 12. In addition, with such a configuration, the filter 14 causes the tank tube 1
Since it functions as a reinforcing material of No. 2, it is also advantageous for the internal pressure of hydrogen, and since the filter 14 also functions as a heat conduction promoting material between the MH alloy powder and the tube outer plate 13, Exchange of heat with the heat medium is promoted, and thereby the hydrogen storage / release reaction rate of the MH alloy powder is increased. Further, according to the above configuration, the hydrogen flow path 1
Since the surface area of 6 becomes large, there is an effect that hydrogen can be easily taken in and out.
【0020】図10はこの実施例の変形例を示してい
る。この例のタンクチューブ17では、フィルタ18
を、タンクチューブ17内部を五つの扇形のMH合金粉
末充填領域19に仕切るような形状にするとともに、該
フィルタ18を水素透過特性に優れた材質(例えばSU
S−304繊維フェルト)で形成し、フィルタ18自体
が水素流路の役目を果すようにしたものである。FIG. 10 shows a modification of this embodiment. In the tank tube 17 of this example, the filter 18
Is shaped so as to partition the inside of the tank tube 17 into five fan-shaped MH alloy powder filling regions 19, and the filter 18 is made of a material excellent in hydrogen permeation characteristics (for example, SU.
S-304 fiber felt), and the filter 18 itself serves as a hydrogen flow path.
【0021】このような構成のフィルタ18は、強度的
には図8,図9に示すフィルタ14のように補強材とは
ならないが、仕切り板効果を有する点や水素吸蔵,放出
反応速度が速い点および水素の出し入れが容易である点
については上記実施例と同様の効果を奏する。なお、こ
の実施例のタンクチューブは、テストの結果、従来例の
ものに比べ、変形や亀裂発生の有無の点および水素吸蔵
放出速度の点で優れていることが確認された。The filter 18 having such a structure does not serve as a reinforcing material in terms of strength unlike the filter 14 shown in FIGS. 8 and 9, but has a partition plate effect and a high hydrogen storage / release reaction rate. The same effects as those of the above-described embodiment are obtained with respect to the point and the fact that hydrogen can be easily taken in and out. As a result of the test, it was confirmed that the tank tube of this example was superior to that of the conventional example in terms of the presence or absence of deformation and cracking and in the hydrogen storage / release rate.
【0022】ところで、上記のような水素貯蔵タンクを
搭載した水素エンジン自動車においては、エンジンの冷
却水を熱媒として使用することによりMH合金粉末から
水素を放出させてエンジンに供給するようにしている
が、このように単に冷却水を循環させるだけの構造で
は、定常走行時に比べて水素流量を多く必要とする発進
時や急加速時等に放出水素量が不足してしまうという問
題がある。By the way, in the hydrogen engine vehicle equipped with the hydrogen storage tank as described above, the cooling water of the engine is used as a heat medium to release hydrogen from the MH alloy powder and supply it to the engine. However, in such a structure in which the cooling water is simply circulated, there is a problem that the amount of released hydrogen becomes insufficient at the time of starting or sudden acceleration, which requires a larger hydrogen flow rate than during steady running.
【0023】図11はこのような問題に対処した制御シ
ステムの一例を示している。この例では、エンジン20
から水素貯蔵タンク(MHタンク)21へ通ずる熱媒経
路22の途中に例えば排出量0〜40L/minのポンプ2
3を設ける一方、アクセル24と連動するスロットル部
に開度センサ25を設けて該センサ25によってアクセ
ル24の踏み込み量を検知するようにし、アクセル24
の踏み込み量に応じてポンプ23の排出量を増加させて
熱媒流量を増加させ、それによって水素流路26を介し
てエンジン20に供給される水素流量を増加させるよう
構成している。FIG. 11 shows an example of a control system that addresses such a problem. In this example, the engine 20
From the hydrogen storage tank (MH tank) 21 to the heat medium passage 22 in the middle, for example, a pump 2 with an emission amount of 0 to 40 L / min
3 is provided, an opening sensor 25 is provided in the throttle portion that interlocks with the accelerator 24 so that the sensor 25 detects the depression amount of the accelerator 24.
The discharge amount of the pump 23 is increased according to the depression amount of the heat medium to increase the flow rate of the heat medium, thereby increasing the flow rate of hydrogen supplied to the engine 20 through the hydrogen flow path 26.
【0024】このようなシステムによれば、例えば熱媒
温度が80℃であってポンプ23の排出量が15L/min
の通常走行時には、約400L/minの水素がエンジン2
0に供給されるが、アクセル24の踏み込み量が最大と
なる加速時には、ポンプ23の排出量が40L/minとな
って約1700L/minの水素がンジン20に供給される
こととなり、加速時等のエンジンパワーの向上が図れ
る。According to such a system, for example, the heating medium temperature is 80 ° C. and the discharge amount of the pump 23 is 15 L / min.
During normal driving, approximately 400 L / min of hydrogen is consumed by the engine 2.
0 is supplied, but at the time of acceleration when the amount of depression of the accelerator 24 is maximized, the discharge amount of the pump 23 becomes 40 L / min, and about 1700 L / min of hydrogen is supplied to the engine 20, so during acceleration, etc. Engine power can be improved.
【0025】図12は同制御システムの変形例を示すも
のである。この例では、水素貯蔵タンク27内にエンジ
ン冷却水のほかに供給器28によって排気ガスを循環さ
せるようにし、この供給器28をアクセル開度検出セン
サ29からの信号に応じて制御部30により制御するよ
う構成している。このようなシステムによっても、発進
時や急加速時等に短時間に大容量の水素をエンジン31
に供給することが可能となる。FIG. 12 shows a modification of the control system. In this example, in addition to engine cooling water, exhaust gas is circulated in the hydrogen storage tank 27 by a supply device 28, and the supply device 28 is controlled by a control unit 30 in response to a signal from an accelerator opening detection sensor 29. Configured to do so. Even with such a system, a large amount of hydrogen can be supplied to the engine 31 in a short time at the time of starting or sudden acceleration.
Can be supplied to.
【0026】図13は更に他の変形例を示すものであ
る。この例の場合には、水素貯蔵タンク27′内に電池
32により加熱されるヒーターを内蔵するようにし、こ
の電池32をアクセル開度検出センサ29からの信号に
応じて制御部30′により制御するよう構成している。
このようなシステムによっても、上記と同様、発進時や
急加速時等に短時間に大容量の水素をエンジン31に供
給することができる。FIG. 13 shows still another modification. In the case of this example, a heater heated by the battery 32 is built in the hydrogen storage tank 27 ', and the battery 32 is controlled by the control unit 30' according to a signal from the accelerator opening detection sensor 29. It is configured as follows.
With such a system, as in the above case, a large amount of hydrogen can be supplied to the engine 31 in a short time at the time of starting or sudden acceleration.
【0027】図14は同制御システムの更に他の変形例
を示すものである。この例では、水素貯蔵タンク33か
らエンジンに至る配管系を主管路34とバイパス管路3
5とで構成し、これらの各管路34,35にそれぞれ第
1のバルブ36および第2のバルブ37を設けるととも
に、バイパス管路35における第2のバルブ37の上流
側に、圧縮水素貯蔵用のサージタンク38と該サージタ
ンク38に圧縮水素を貯蔵するための小型圧縮器39を
それぞれ配置し、各バルブ36,37の開閉をアクセル
開度に応じて制御する制御部40を設けるよう構成して
いる。FIG. 14 shows another modification of the control system. In this example, the piping system from the hydrogen storage tank 33 to the engine is connected to the main pipeline 34 and the bypass pipeline 3.
5, and each of these pipelines 34, 35 is provided with a first valve 36 and a second valve 37, and at the upstream side of the second valve 37 in the bypass pipeline 35 for storing compressed hydrogen. The surge tank 38 and the small compressor 39 for storing the compressed hydrogen are respectively arranged in the surge tank 38, and the control unit 40 for controlling the opening and closing of the valves 36 and 37 according to the accelerator opening is provided. ing.
【0028】このシステムにおいては、通常走行時に
は、第1のバルブ36を開,第2のバルブ37を閉にそ
れぞれ制御して、主管路34からエンジン41に水素を
供給するとともに小型圧縮器39の作動によってバイパ
ス管路35を介してサージタンク38内に予備の水素ガ
スを貯蔵するようする。なお、サージタンク38内の圧
縮水素が所定の圧力に到達したら小型圧縮器39の運転
を停止させて大流量供給時に備えて待機する。一方、発
進時や急加速時などエンジン41から所定流量以上の水
素供給が要求された時には、アクセル開度に応じて制御
部40からの信号によって第1のバルブ36を閉じると
ともに第2のバルブ37を開いてサージタンク38に貯
蔵した圧縮水素をエンジンに供給するようにする。この
ようなシステムによっても、上記と同様、発進時や急加
速時等に短時間に大容量の水素をエンジン41に供給す
ることができ、エンジンの動力性能を損なうことなく運
転を継続することができる。In this system, at the time of normal traveling, the first valve 36 is opened and the second valve 37 is closed to supply hydrogen from the main pipe 34 to the engine 41 and the small compressor 39. Upon operation, a spare hydrogen gas is stored in the surge tank 38 via the bypass line 35. When the compressed hydrogen in the surge tank 38 reaches a predetermined pressure, the operation of the small compressor 39 is stopped to stand by in preparation for the large flow rate supply. On the other hand, when hydrogen is supplied from the engine 41 at a predetermined flow rate or more, such as when the vehicle starts or suddenly accelerates, the first valve 36 is closed and the second valve 37 is closed by a signal from the control unit 40 according to the accelerator opening. Is opened to supply the compressed hydrogen stored in the surge tank 38 to the engine. Even with such a system, similarly to the above, a large amount of hydrogen can be supplied to the engine 41 in a short time at the time of starting or sudden acceleration, and the operation can be continued without impairing the power performance of the engine. it can.
【0029】[0029]
【発明の効果】本発明は以上のように構成されているの
で、MH合金粉末の水素吸蔵,放出に伴う膨張,収縮も
弾性を有する粉体によって吸収され、水素貯蔵タンクに
振動が加わった場合でも、MH合金粉末がタンク下部に
偏在することなく均一に保持され、タンクの変形,破損
を防止することができる。EFFECTS OF THE INVENTION Since the present invention is constituted as described above, when the expansion and contraction of MH alloy powder due to hydrogen absorption and desorption is absorbed by the elastic powder, and the hydrogen storage tank is vibrated. However, the MH alloy powder is uniformly held in the lower portion of the tank without being unevenly distributed, and the deformation and damage of the tank can be prevented.
【図1】本発明の一実施例に係る水素貯蔵タンクにおけ
るタンクチューブの断面図FIG. 1 is a sectional view of a tank tube in a hydrogen storage tank according to an embodiment of the present invention.
【図2】同実施例に係る水素貯蔵タンクにおけるタンク
チューブの斜視図FIG. 2 is a perspective view of a tank tube in the hydrogen storage tank according to the embodiment.
【図3】同実施例に係る水素貯蔵タンクの部分正面図FIG. 3 is a partial front view of the hydrogen storage tank according to the embodiment.
【図4】図1のA部拡大図FIG. 4 is an enlarged view of part A of FIG.
【図5】同実施例のタンクチューブの第1の変形例を示
す断面図FIG. 5 is a sectional view showing a first modification of the tank tube of the same embodiment.
【図6】同実施例のタンクチューブの第2の変形例を示
す断面図FIG. 6 is a sectional view showing a second modification of the tank tube of the same embodiment.
【図7】同実施例のタンクチューブの第3の変形例を示
す断面図FIG. 7 is a sectional view showing a third modification of the tank tube of the same embodiment.
【図8】本発明の他の実施例に係る水素貯蔵タンクにお
けるタンクチューブの断面図FIG. 8 is a sectional view of a tank tube in a hydrogen storage tank according to another embodiment of the present invention.
【図9】同実施例のタンクチューブの斜視図FIG. 9 is a perspective view of the tank tube of the embodiment.
【図10】同実施例のタンクチューブの変形例を示す断
面図FIG. 10 is a cross-sectional view showing a modified example of the tank tube of the same embodiment.
【図11】本発明の水素貯蔵タンクを搭載した水素エン
ジン自動車の制御システムの一例を示す図FIG. 11 is a diagram showing an example of a control system for a hydrogen engine vehicle equipped with the hydrogen storage tank of the present invention.
【図12】同制御システムの第1の変形例を示す図FIG. 12 is a diagram showing a first modification of the control system.
【図13】同制御システムの第2の変形例を示す図FIG. 13 is a diagram showing a second modification of the control system.
【図14】同制御システムの第3の変形例を示す図FIG. 14 is a diagram showing a third modification of the control system.
【図15】同制御システムの第4の変形例を示す図FIG. 15 is a diagram showing a fourth modification of the control system.
1 タンクチューブ 6 水素吸蔵(MH)合金粉末 7 シリコン樹脂粉体 8 混合粉体 10 水素貯蔵タンク 1 Tank Tube 6 Hydrogen Storage (MH) Alloy Powder 7 Silicon Resin Powder 8 Mixed Powder 10 Hydrogen Storage Tank
フロントページの続き (72)発明者 清水 勉 広島県安芸郡府中町新地3番1号 マツダ 株式会社内 (72)発明者 小笠原 徹 広島県安芸郡府中町新地3番1号 マツダ 株式会社内Front Page Continuation (72) Inventor Tsutomu Shimizu No. 3 Shinchi, Fuchu-cho, Aki-gun, Hiroshima Prefecture Mazda Co., Ltd. (72) Toru Ogasawara No. 3 Shinchi, Fuchu-cho, Aki-gun, Hiroshima Prefecture Mazda Corporation
Claims (1)
を混合してなる混合粉体を充填したことを特徴とする水
素貯蔵タンク。1. A hydrogen storage tank filled with a mixed powder obtained by mixing a hydrogen storage alloy powder and a powder having elasticity.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3259061A JPH0599074A (en) | 1991-10-07 | 1991-10-07 | Hydrogen storage tank |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3259061A JPH0599074A (en) | 1991-10-07 | 1991-10-07 | Hydrogen storage tank |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0599074A true JPH0599074A (en) | 1993-04-20 |
Family
ID=17328784
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3259061A Pending JPH0599074A (en) | 1991-10-07 | 1991-10-07 | Hydrogen storage tank |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0599074A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001248795A (en) * | 2000-03-07 | 2001-09-14 | Toyota Autom Loom Works Ltd | Hydrogen absorbing alloy tank |
JP2009133248A (en) * | 2007-11-30 | 2009-06-18 | Hitachi Ltd | Engine system |
WO2015133378A1 (en) * | 2014-03-07 | 2015-09-11 | 株式会社日本製鋼所 | Process for loading hydrogen-absorbing alloy |
CN114162366A (en) * | 2021-11-26 | 2022-03-11 | 武汉氢能与燃料电池产业技术研究院有限公司 | Hydrogen storage tank charging and vibrating device and using method thereof |
-
1991
- 1991-10-07 JP JP3259061A patent/JPH0599074A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001248795A (en) * | 2000-03-07 | 2001-09-14 | Toyota Autom Loom Works Ltd | Hydrogen absorbing alloy tank |
JP2009133248A (en) * | 2007-11-30 | 2009-06-18 | Hitachi Ltd | Engine system |
WO2015133378A1 (en) * | 2014-03-07 | 2015-09-11 | 株式会社日本製鋼所 | Process for loading hydrogen-absorbing alloy |
JP2015169269A (en) * | 2014-03-07 | 2015-09-28 | 株式会社日本製鋼所 | Method for charging hydrogen storage alloy |
US20170016578A1 (en) * | 2014-03-07 | 2017-01-19 | The Japan Steel Works, Ltd. | Method for filling hydrogen storage alloy |
US10247360B2 (en) | 2014-03-07 | 2019-04-02 | The Japan Steel Works, Ltd. | Method for filling hydrogen storage alloy |
CN114162366A (en) * | 2021-11-26 | 2022-03-11 | 武汉氢能与燃料电池产业技术研究院有限公司 | Hydrogen storage tank charging and vibrating device and using method thereof |
CN114162366B (en) * | 2021-11-26 | 2023-08-25 | 武汉氢能与燃料电池产业技术研究院有限公司 | Hydrogen storage tank filling compaction device and application method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4365118B2 (en) | Method and apparatus for operating an internal combustion engine with multiple fuels | |
US7175826B2 (en) | Compositions and methods for hydrogen storage and recovery | |
US20110048388A1 (en) | Heat accumulation element | |
JP3788152B2 (en) | Internal combustion engine canister | |
US8506691B2 (en) | Shaped heat storage materials including heat transfer members | |
JP2003301713A (en) | Exhaust emission control device of engine | |
JPH0599074A (en) | Hydrogen storage tank | |
US20020073847A1 (en) | Cell within a cell monolith structure for an evaporative emissions hydrocarbon scrubber | |
JP4001957B2 (en) | Fuel transpiration prevention device | |
JP6959945B2 (en) | Heat generation system, exhaust gas purification device, and honeycomb structure regeneration method | |
JP2004189585A (en) | Gaseous hydrogen producing system | |
JP2841803B2 (en) | Particle trap media for diesel engine exhaust | |
JP2003028012A (en) | Leaked fuel vapor removing device | |
JPH09500434A (en) | Exhaust collector with primary piping | |
JP3727397B2 (en) | Fuel tank equipment | |
JP4047215B2 (en) | Fuel evaporation suppression method for fuel storage device and fuel storage device | |
CN208564803U (en) | A kind of automobile canister to radiate from deodorization | |
JP4519300B2 (en) | Boil-off gas processing equipment | |
EP1416132B1 (en) | Exhaust emission control devices and method of making the same | |
JPH06221500A (en) | Alloy storage tank for storing hydrogen | |
JP3594039B2 (en) | Exhaust gas purification device | |
CN214787624U (en) | Air-fuel ratio adjusting device, gas engine, and vehicle | |
JP4213512B2 (en) | Pressure vessel | |
JPH09184464A (en) | Fuel pressure control device of inside cylinder direct injection engine | |
JPH10196348A (en) | Engine exhaust emission control device |