JPH0599043A - Method for judging failure of air fuel ratio sensing system - Google Patents

Method for judging failure of air fuel ratio sensing system

Info

Publication number
JPH0599043A
JPH0599043A JP26367291A JP26367291A JPH0599043A JP H0599043 A JPH0599043 A JP H0599043A JP 26367291 A JP26367291 A JP 26367291A JP 26367291 A JP26367291 A JP 26367291A JP H0599043 A JPH0599043 A JP H0599043A
Authority
JP
Japan
Prior art keywords
fuel ratio
air
sensing system
air fuel
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26367291A
Other languages
Japanese (ja)
Inventor
Yoshihiro Konno
義博 紺野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP26367291A priority Critical patent/JPH0599043A/en
Publication of JPH0599043A publication Critical patent/JPH0599043A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • F02D41/1456Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio with sensor output signal being linear or quasi-linear with the concentration of oxygen

Abstract

PURPOSE:To surely detect failures such as disconnection, short circuit and the like by judging an output signal value of an air fuel ratio sensing system on the basis of upper and lower limit judging values never obtained in the normal running of an engine. CONSTITUTION:An electronic controller 40 compares an air fuel ratio signal outputted from a linear A/F sensor amplifier 45 with a desired air fuel ratio by the use of a linear air fuel ratio sensor S to judge which controls the air fuel raio either stoichiometric A/F feed-back or lean A/F feed-back. When the output signal value from the air fuel ratio sensing system is larger than a predetermined upper limit judging value continuously for a predetermined time in either one of the control conditions or when an engine is not under the predetermined acceleration or deceleration running condition and the output signal value from the air fuel ratio sensing system is smaller than the predetermined lower limit judging value continuously for the predetermined time, the air fuel sensing system is judged to be failured.

Description

【発明の詳細な説明】Detailed Description of the Invention

【産業上の利用分野】本発明は、いわゆるリニア空燃比
センサと呼ばれ、エンジン運転状態に応じて空燃比を理
論空燃比近傍或いは理論空燃比より燃料希薄側の目標空
燃比にフィードバック制御する際に使用する空燃比セン
サを含む空燃比センシングシステムの故障判定方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is called a so-called linear air-fuel ratio sensor and is used for feedback control of the air-fuel ratio to a target air-fuel ratio near the stoichiometric air-fuel ratio or on the fuel lean side of the stoichiometric air-fuel ratio according to the engine operating condition. The present invention relates to a failure determination method for an air-fuel ratio sensing system including an air-fuel ratio sensor used in the.

【従来の技術】従来、ジルコニアの酸素濃淡電池作用と
酸素イオンポンピング作用という特性を利用して、排気
ガス中の酸素濃度からエンジンに供給される混合気の空
燃比が単に理論空燃比より燃料リッチ側にあるか燃料リ
ーン側にあるかだけでなく、どの程度の値であるかを検
出することが出来る、いわゆるリニア空燃比センサが知
られている。リニア空燃比センサを使用すると、空燃比
センサアンプ、電子制御装置、燃料噴射弁、およびエン
ジンを運転状態を検出する各種センサと協働して、例え
ば加速時や発進時等の、比較的大きい機関出力が要求さ
れるエンジン運転状態においては、空燃比を理論空燃比
近傍にフィードバック制御し、それ以外の定常走行時に
は空燃比を22程度の燃料リーン側の目標空燃比にフィ
ードバック制御することができる。このように、空燃比
を目標値に精度よく制御することは、燃費の向上、エン
ジン出力の向上、アイドル回転の安定化、排気ガス特性
の改善、ドライバビリティの改善等、エンジン性能の改
善の上で極めて重要である。なお、リニア空燃比センサ
は、排気ガス中の酸素濃度に応じた電気信号を出力する
センサセル、供給されるポンプ電流に応じて酸素イオン
を移動させるポンプセル、センサセルとポンプセルを活
性温度に加熱するヒータ等を備えている。空燃比センサ
アンプは、センサセルからの出力が設定値となるように
ポンプ電流をポンプセルに出力する制御回路、制御回路
とポンプセル間で授受されるポンプ電流に応じた空燃比
信号を出力する空燃比検出回路等を備えている。
2. Description of the Related Art Conventionally, the characteristics of zirconia such as oxygen concentration cell action and oxygen ion pumping action have been utilized to make the air-fuel ratio of the air-fuel mixture supplied to the engine from the oxygen concentration in the exhaust gas more fuel-rich than the theoretical air-fuel ratio. There is known a so-called linear air-fuel ratio sensor capable of detecting not only the value on the fuel-lean side or the fuel-lean side, but also the value of the value. When a linear air-fuel ratio sensor is used, it works in cooperation with an air-fuel ratio sensor amplifier, an electronic control unit, a fuel injection valve, and various sensors that detect the operating state of the engine, and it is a relatively large engine, for example, during acceleration or starting. In the engine operating state where the output is required, the air-fuel ratio can be feedback-controlled near the stoichiometric air-fuel ratio, and during other steady running, the air-fuel ratio can be feedback-controlled to the target air-fuel ratio on the fuel lean side of about 22. In this way, accurately controlling the air-fuel ratio to the target value will improve engine performance by improving fuel efficiency, improving engine output, stabilizing idle rotation, improving exhaust gas characteristics, improving drivability, etc. Is extremely important. The linear air-fuel ratio sensor is a sensor cell that outputs an electric signal according to the oxygen concentration in the exhaust gas, a pump cell that moves oxygen ions according to the supplied pump current, a heater that heats the sensor cell and the pump cell to an active temperature, etc. Is equipped with. The air-fuel ratio sensor amplifier is a control circuit that outputs a pump current to the pump cell so that the output from the sensor cell becomes a set value, and an air-fuel ratio detection that outputs an air-fuel ratio signal according to the pump current exchanged between the control circuit and the pump cell. It is equipped with circuits.

【発明が解決しようとする課題】しかしながら、リニア
空燃比センサ、センサとアンプ間の配線、空燃比センサ
アンプ、アンプと電子制御装置間の配線等を含む空燃比
センシングシステムにおいて断線やショートが生じた場
合、電子制御装置における空燃比制御が不能となり、排
気ガス特性やアイドル回転の安定化に悪影響を及ぼすば
かりか、エンジンの不調、最悪の場合にはエンジンの停
止を招来する虞がある。本発明はこのような不都合を解
消するためになされたもので、断線やショート等の空燃
比センシングシステムの故障を確実に検出することがで
きる空燃比センシングシステムの故障判定方法を提供す
ることを目的とする。
However, in the air-fuel ratio sensing system including the linear air-fuel ratio sensor, the wiring between the sensor and the amplifier, the air-fuel ratio sensor amplifier, the wiring between the amplifier and the electronic control unit, a disconnection or a short circuit occurs. In this case, the air-fuel ratio control in the electronic control unit becomes impossible, which not only adversely affects the exhaust gas characteristics and the stabilization of the idle rotation, but also causes the engine to malfunction and, in the worst case, to stop the engine. The present invention has been made to solve such an inconvenience, and an object thereof is to provide a failure determination method of an air-fuel ratio sensing system capable of reliably detecting a failure of the air-fuel ratio sensing system such as disconnection or short circuit. And

【課題を解決するための手段】上記した目的を達成する
ために、本発明においては、排気ガス中の酸素濃度を検
出して内燃エンジンに供給される混合気の空燃比に対応
した信号値を出力し、この出力信号値に応じて空燃比を
理論空燃比近傍の第1の目標空燃比および第1の目標空
燃比より燃料希薄側の第2の目標空燃比の何れか一方に
フィードバック制御を行なう、空燃比センシングシステ
ムの故障判別方法において、空燃比を前記第1および第
2の目標空燃比の何れか一方にフィードバック制御する
際に、空燃比センシングシステムからの出力信号値が所
定上限判別値より大の状態が第1の所定時間に亘って継
続するか、前記内燃エンジンが所定の加速又は減速運転
状態になく、且つ、空燃比センシングシステムからの出
力信号値が所定下限判別値より小の状態が第2の所定時
間に亘って継続したとき、空燃比センシングシステムが
故障であると判定することを特徴とする、空燃比センシ
ングシステムの故障判定方法が提供される。
In order to achieve the above object, in the present invention, a signal value corresponding to the air-fuel ratio of the air-fuel mixture supplied to the internal combustion engine is detected by detecting the oxygen concentration in the exhaust gas. According to the output signal value, the air-fuel ratio is feedback-controlled to one of the first target air-fuel ratio near the stoichiometric air-fuel ratio and the second target air-fuel ratio on the fuel lean side of the first target air-fuel ratio. In a method of determining a failure of an air-fuel ratio sensing system, the output signal value from the air-fuel ratio sensing system is a predetermined upper limit determination value when the air-fuel ratio is feedback-controlled to either one of the first and second target air-fuel ratios. A larger state continues for a first predetermined time, or the internal combustion engine is not in a predetermined acceleration or deceleration operation state, and the output signal value from the air-fuel ratio sensing system is below a predetermined value. When than determination value small state has continued over a second predetermined time, and judging that the air-fuel ratio sensing system is faulty, the fault determination method of the air-fuel ratio sensing system is provided.

【作用】空燃比センシングシステムの故障は、その出力
信号値がエンジンの通常運転時に起こりえない上下限判
別値を逸脱するか否かにより判別することができる。こ
の場合、空燃比センシングシステムが正常に作動してい
ると、内燃エンジンが所定の加速又は減速運転状態にあ
る場合を除いて、空燃比センシングシステムからの出力
信号値は所定下限判別値以上の値を示す。空燃比センシ
ングシステムからの出力信号値がこの所定下限判別値よ
り小であることを検出して空燃比センシングシステムの
故障判定を行なう場合、上述の内燃エンジンが所定の加
速又は減速運転状態での故障判定を禁止することによ
り、空燃比センシングシステムの故障を確実に検出する
ことができる。
The malfunction of the air-fuel ratio sensing system can be determined by whether or not the output signal value deviates from the upper and lower limit determination values that cannot occur during normal operation of the engine. In this case, when the air-fuel ratio sensing system is operating normally, the output signal value from the air-fuel ratio sensing system is a value equal to or higher than the predetermined lower limit determination value, except when the internal combustion engine is in a predetermined acceleration or deceleration operation state. Indicates. When detecting that the output signal value from the air-fuel ratio sensing system is smaller than this predetermined lower limit judgment value and making a failure judgment of the air-fuel ratio sensing system, the above-mentioned internal combustion engine fails in a predetermined acceleration or deceleration operation state. By prohibiting the determination, it is possible to reliably detect the failure of the air-fuel ratio sensing system.

【実施例】以下に、本発明の一実施例を添付図面に基づ
いて説明する。図1は、本発明の空燃比センシングシス
テムの故障判定方法が適用された空燃比制御装置の概略
構成を示す。エンジンEは、例えば4気筒ガソリンエン
ジンであり、気筒内に供給される混合気の流れが、理論
空燃比では勿論のこと、空燃比22程度のリーン空燃比
でも燃焼が可能なように設計されている。エンジンEの
各気筒の吸気ポートには燃料噴射弁2がそれぞれ配設さ
れている。この燃料噴射弁2は、後述する電子制御装置
40の出力側に電気的に接続されており、電子制御装置
40からの開弁駆動信号により開弁して、所要の燃料量
をエンジンEに噴射供給する。一方、排気通路3の途中
には、排気ガス中の酸素濃度を検出するリニア空燃比セ
ンサSが配設されおり、リニアA/Fセンサアンプ45
を介して電子制御装置40に接続されている。図2はリ
ニア空燃比センサSおよびリニアA/Fセンサアンプ4
5の内部構成を示す。リニア空燃比センサSは、その基
部がそれぞれ安定化ジルコニア素子であるセンサセル2
0とポンプセル21とを絶縁層22を介して結合して構
成されている。両セルには排気ガスの通過する拡散口2
3,24が形成され、絶縁層22内には拡散口23,2
4からの排気ガスを収容する検出室25が形成され、こ
れらにより拡散律速体が構成されている。また、絶縁層
22にはリファレンス室25aが形成され、ここに参照
気体の大気を導くように構成されている。更に、両セル
には触媒を兼ねて白金の電極26〜29が設けてあり、
これらの電極は多数の微少孔を有している。図中符号3
0は電気ヒータを示し、この電気ヒータ30は、ヒータ
駆動回路32により電流制御されて、セル全体を所定温
度に加熱して各セルを活性化状態で作動させている。セ
ンサセル20は、従来の酸素センサと同様の原理で電極
26,27間に酸素濃度差があると起電力を生じる性質
を備え、ポンプセル21は逆に電極28,29間に強制
的にポンプ電流Ip が流されると酸素をマイナス電極側
からプラス電極側に汲み出す性質を備えている。そこ
で、リニアA/Fセンサアンプ45にてセンサセル20
の起電力Vs を検出し、この起電力Vs を一定に保つよ
うに、すなわち、検出室25内または拡散孔23,24
内を理論空燃比に対応する酸素濃度に保つようにポンプ
電流Ip をフィードバック制御する。このときのポンプ
電流Ip は、空燃比に対応して連続的に変化するので、
ポンプ電流Ip から空燃比を算出することができる。リ
ニアA/Fセンサアンプ45の制御部31は、その比較
回路10において、センサセル20の起電力Vs を理論
空燃比相当の参照電圧Vref (例えば、0.4V)と比
較し、その出力を積分アンプ12で積分して正又は負の
制御出力をポンプセル21の電極28,29間に印加
し、前述した通り、センサセル20の起電力Vsが参照
電力Vref に等しくなるようにポンプセル21にポンプ
電流Ipを流す。そして、ポンプ電流Ip の回路に電流
検出用の抵抗器15を介装し、抵抗器15の電圧降下か
ら電流検出回路13によりポンプ電流Ip を検出してい
る。更に、回路13の出力を加算回路14に入力させ、
下式により、図3に示すような空燃比(A/F)に対応
した空燃比信号Vout を得て、これを出電子制御装置4
0に供給している。 Vout =G・Ip +Vst ここに、Gは電流・電圧変換ゲイン、Vstはステップア
ップ電圧(例えば、2.5V)である。センサセル20
とリニアA/Fセンサアンプ45の制御部31間にはセ
ンサセル起電力Vs を検出する検出回路38が接続され
ており、検出信号Vs は電子制御装置40に供給され
る。また、比較回路10と積分アンプ12間には、電子
制御装置40からのポンプカット信号(ハイレベル信
号)を受けてポンプ電流Ipをカットするポンプカット
回路39が接続されている。ポンプカット回路39の入
力端子(ベース端子)39a側は、抵抗39bを介して
所定電圧電源+Vccに接続されている。電子制御装置4
0は、上述したセンサセル起電力検出回路38が検出す
る起電力Vs や、図示されていないけれども、ヒータ温
度検出回路(この回路は、ヒータ30の印加電圧および
供給電流を検出してヒータ温度および異常を監視する)
からのヒータ温度検出信号等を常時監視しており、これ
らの信号値に異常値があるとき、或いは、ヒータ30に
よりリニア空燃比センサSが十分に加熱されていないと
き、上述のポンプカット信号をポンプカット回路39に
出力するようになっている。ポンプカット信号がポンプ
カット回路39に出力されると、比較回路10の出力側
電圧レベルが0となり、この結果、空燃比信号Vout と
して、検出室25が理論空燃比に保たれていることを表
す擬似信号Vst(図3参照)を出力することになる。ま
た、何らかの理由で、ポンプカット回路39と電子制御
装置40間のポンプカット信号線が断線した場合、ポン
プカット回路39の入力端子(ベース端子)39a側は
所定電圧(例えば、5V)でプルアップされているの
で、ポンプカット回路39にはハイレベルが入力され、
信号線断線時にも、ポンプ電流Ip を0にすることがで
き、リニア空燃比センサSのブラックニングを防止する
ことができる。なお、本明細書において、上述したリニ
ア空燃比センサS、リニアA/Fセンサアンプ45、セ
ンサSとアンプ45間の配線、及びアンプ45と電子制
御装置40間の配線を含んで空燃比センシングシステム
と定義することにする。電子制御装置40は、後述する
ように空燃比センシングシステムの故障を常時監視する
と共に、エンジンEに供給する燃料量、すなわち空燃比
を制御する機能を有している。電子制御装置40は、空
燃比センシングシステムの故障監視、および空燃比制御
のためのプログラムを実行する中央演算装置(CPU)
40a、前述のプログラムやCPUでの演算結果、種々
のプログラム変数値等を記憶する記憶装置40b、各種
センサからの信号値の入力、燃料噴射弁2を駆動する開
弁駆動信号の出力等を行なう入出力回路(図示せず)等
から構成される。そして、電子制御装置40の入力側に
は、エンジンEの運転状態を検出する種々のセンサ、例
えば、吸気通路に配設され、カルマン渦の発生周期から
吸入空気量を検出するエアフローセンサ41、エンジン
回転数を検出する回転数センサ42、イグニッションキ
ースイッチ(SW)のオンオフ状態を検出するイグニッ
ションキースイッチセンサ43、エンジンEの冷却水温
を検出する水温センサ44等が接続され、電子制御装置
40にはこれらのセンサが検出するエンジン運転状態信
号が入力される。電子制御装置40が空燃比フィードバ
ック制御を実行する場合には、上述した種々のセンサか
らのエンジン運転状態に応じた目標空燃比が設定され
る。例えばエンジンEが急加速運転時、発進加速運転時
等の、比較的大きな機関出力が要求される運転状態、す
なわち、空燃比を理論空燃比にフィードバック制御すべ
き運転状態にあることが検出された場合、目標空燃比は
理論空燃比(14.7)に設定される。一方、上記以外
の運転状態にある場合、目標空燃比は、理論空燃比より
燃料リーン側の所定値(例えば、22)或いは運転状態
に応じた値に設定されることになる。そして、電子制御
装置40は、リニアA/Fセンサアンプ45から出力さ
れる空燃比信号Vout と目標空燃比とを比較し、空燃比
が目標空燃比になるようにフィードバック補正係数を演
算し、エンジン負荷とエンジン回転数とで演算される基
本燃料量に、上述のフィードバック補正係数や、冷却水
温に応じた補正係数等を乗算して燃料供給量を演算す
る。そして、演算した燃料供給量に応じた開弁駆動信号
を燃料噴射弁2に供給して所要量の燃料量をエンジンE
に噴射供給させる。一方、電子制御装置40が空燃比を
オープンループ制御する場合には、エンジン負荷(例え
ば、体積効率Ev)とエンジン回転数とで演算される基本
燃料量に、冷却水温に応じた補正係数等を乗算して燃料
供給量が演算されることになる。なお、本発明において
は、フィードバック制御或いはオープンループ制御によ
る空燃比制御方法は、特に限定されるものではなく、従
来公知の種々の方法を採用することができる。次に、本
発明による空燃比センシングシステムの故障判定方法に
ついて、図4及び図5に示すフローチャートを参照して
説明する。電子制御装置40は、先ず、ステップS10
およびS12において、リニア空燃比センサSを使用し
て空燃比がフィードバック制御されているか否かを判別
する。ステップS10では、空燃比が理論空燃比を目標
値としてフィードバック制御(ストイキオA/Fフィー
ドバック制御)されているか否かを判別し、ステップS
12では、空燃比が理論空燃比より燃料リーン側の空燃
比を目標値としてフィードバック制御(リーンA/Fフ
ィードバック制御)されているか否かを判別する。これ
らの判別のいずれもが否定(No)の場合にはステップ
S10およびS12が繰り返し実行される。すなわち、
空燃比のフィードバック制御が実行されていない場合に
は、空燃比センシングシステムの故障判別は行なわれな
い。ステップS10およびS12のいずれかの判別結果
が肯定(Yes)の場合には、ステップS14に進み、
空燃比信号Vout が所定上限判別値VHFより大であるか
否かを判別する。この上限判別値VHFは、図3に示され
にように、空燃比センシングシステムがエンジンEの通
常の運転時に検出する上限値VH (例えば、空燃比28
に相当する4.4V)より僅かに大きい値(例えば、
4.5V)に設定されている。空燃比信号Vout がこの
上限判別値VHF以下の場合、すなわちステップS14の
判別結果が否定の場合には、図5のステップS18に進
む。ステップS14において、空燃比信号Vout が上限
判別値VHFより大であることが検出されると、空燃比信
号Vout が上限判別値VHFより大である状態が所定のt
1 時間(例えば、10秒)に亘って継続したか否かを判
別する(ステップS16)。この判別により、電子制御
装置40がノイズ等により一時的に発生する異常値によ
って、直ちに空燃比センシングシステムを異常と判定し
てしまうことを防止する。空燃比信号Vout が上限判別
値VHFより大である状態が所定時間継続しなければ、ス
テップS18に進むが、継続した場合にはステップS2
4において空燃比センシングシステムが故障であると判
定し、これを記憶する。このとき、例えば、インスツル
パネル等に警告灯を点灯させて空燃比センシングシステ
ムが故障であることを運転者に警報するようにしてもよ
い。図5のステップS18においては、エンジンEが所
定の加速運転状態、或いは所定の減速運転状態であるか
否を判別する。このような判別は、例えば、図示しない
スロットル弁の開弁位置や開弁速度を検出することによ
り判別することができる。エンジンEが所定の加速運転
状態、或いは所定の減速運転状態である場合には、排気
ガスから検出される空燃比が極めて小さい値(リッチ信
号)を示す等、空燃比センシングシステムが正常作動し
ていても特異な空燃比信号を出力する場合があり、この
ような場合には故障判別が不能であるので前述したステ
ップS10に戻る。ステップS18での判別結果が否定
の場合、すなわち、所定の加速或いは減速走行中ではな
いと判別されると、ステップS20に進み、空燃比信号
Vout が所定の下限判別値VLFより小であるか否かを判
別する。この下限判別値VLFは、図3に示されによう
に、空燃比センシングシステムがエンジンEの通常の運
転時に検出する下限値VL (例えば、空燃比10に相当
する0.6V)より僅かに小さい値(例えば、0.5
V)に設定されている。空燃比信号Vout がこの下限判
別値VLF以上の場合、すなわちステップS20の判別結
果が否定の場合には、空燃比センシングシステムに異常
はなく、図4のステップS10に戻る。一方、ステップ
S20において、空燃比信号Vout が下限判別値VLF
り小であることが検出されると、空燃比信号Vout が下
限判別値VLFより小である状態が所定のt2 時間(例え
ば、10秒)に亘って継続したか否かを判別する(ステ
ップS22)。この判別により、電子制御装置40がノ
イズ等により瞬間的に発生する異常値により、直ちに空
燃比センシングシステムを異常と判定してしまうことを
防止する。空燃比信号Vout が下限判別値VLFより小で
ある状態が所定時間に亘って継続しなければ、空燃比セ
ンシングシステムに異常はなく、この場合にも図4のス
テップS10に戻る。ステップS22において、空燃比
信号Vout が下限判別値VLFより小である状態が所定時
間に亘って継続したことが判別された場合には、前述の
ステップS24に進み、空燃比(A/F)センシングシ
ステムが故障であると判定し、これを記憶することにな
る。空燃比センシングシステムの故障が判定されると、
電子制御装置40は空燃比のフィードバック制御を停止
して前述したオープンループ空燃比(A/F)制御を実
行する。この場合、故障した空燃比センシングシステム
からの空燃比情報を利用しないので、空燃比制御が不能
になる事態が未然に防止され、空燃比は適正に保持され
ることになる。そして、イグニッションキースイッチ
(SW)43がオフであるか否かを判別し(ステップS
28)、判別結果が否定、すなわちエンジンEが運転中
である限り、前記ステップS26が繰り返し実行され、
オープンループA/F制御が継続される。一方、イグニ
ッションキースイッチ(SW)をオフにしてエンジンE
を停止させると、前記記憶装置40bに記憶されていた
空燃比(A/F)センシングシステムの故障判定を解除
して(ステップS30)、当該プログラムの実行を終了
する。従って、エンジンEを再始動した場合、空燃比セ
ンシングシステムの故障判別は初めから実行し直される
ことになる。
An embodiment of the present invention will be described below with reference to the accompanying drawings. FIG. 1 shows a schematic configuration of an air-fuel ratio control device to which a failure determination method for an air-fuel ratio sensing system of the present invention is applied. The engine E is, for example, a 4-cylinder gasoline engine, and is designed so that the air-fuel mixture supplied to the cylinders can burn not only at the theoretical air-fuel ratio but also at a lean air-fuel ratio of about 22. There is. A fuel injection valve 2 is provided at each intake port of each cylinder of the engine E. The fuel injection valve 2 is electrically connected to the output side of an electronic control unit 40, which will be described later, and opens by a valve opening drive signal from the electronic control unit 40 to inject a required amount of fuel into the engine E. Supply. On the other hand, in the middle of the exhaust passage 3, a linear air-fuel ratio sensor S that detects the oxygen concentration in the exhaust gas is provided, and the linear A / F sensor amplifier 45 is provided.
It is connected to the electronic control unit 40 via. FIG. 2 shows the linear air-fuel ratio sensor S and the linear A / F sensor amplifier 4.
5 shows an internal configuration of No. 5. The linear air-fuel ratio sensor S has a sensor cell 2 whose base is a stabilized zirconia element.
0 and the pump cell 21 are connected via an insulating layer 22. Diffusion port 2 through which exhaust gas passes in both cells
3, 24 are formed, and diffusion holes 23, 2 are formed in the insulating layer 22.
A detection chamber 25 for accommodating the exhaust gas from 4 is formed, and these constitute a diffusion rate controlling body. A reference chamber 25a is formed in the insulating layer 22 and is configured to guide the reference gas atmosphere to the reference chamber 25a. Further, platinum electrodes 26 to 29 are provided in both cells as a catalyst,
These electrodes have a large number of micropores. Reference numeral 3 in the figure
Reference numeral 0 denotes an electric heater, and the electric heater 30 is current-controlled by a heater driving circuit 32 to heat the entire cell to a predetermined temperature and operate each cell in an activated state. The sensor cell 20 has a property of generating an electromotive force when there is a difference in oxygen concentration between the electrodes 26 and 27 according to the same principle as that of the conventional oxygen sensor, and the pump cell 21 conversely forces the pump current Ip between the electrodes 28 and 29. It has the property of pumping oxygen from the negative electrode side to the positive electrode side when flowing. Therefore, the linear A / F sensor amplifier 45 is used for the sensor cell 20.
Of the electromotive force Vs of the detection chamber 25 is detected and the electromotive force Vs is kept constant, that is, in the detection chamber 25 or the diffusion holes 23, 24.
The pump current Ip is feedback-controlled so that the inside is maintained at the oxygen concentration corresponding to the theoretical air-fuel ratio. Since the pump current Ip at this time continuously changes according to the air-fuel ratio,
The air-fuel ratio can be calculated from the pump current Ip. In the comparison circuit 10, the control unit 31 of the linear A / F sensor amplifier 45 compares the electromotive force Vs of the sensor cell 20 with a reference voltage Vref (for example, 0.4V) corresponding to the stoichiometric air-fuel ratio, and outputs the output from the integration amplifier. The positive or negative control output integrated by 12 is applied between the electrodes 28 and 29 of the pump cell 21, and as described above, the pump current Ip is applied to the pump cell 21 so that the electromotive force Vs of the sensor cell 20 becomes equal to the reference power Vref. Shed. A resistor 15 for current detection is provided in the circuit of the pump current Ip, and the pump current Ip is detected by the current detection circuit 13 from the voltage drop of the resistor 15. Further, the output of the circuit 13 is input to the adding circuit 14,
An air-fuel ratio signal Vout corresponding to the air-fuel ratio (A / F) as shown in FIG.
0 is being supplied. Vout = G · Ip + Vst Here, G is a current / voltage conversion gain, and Vst is a step-up voltage (for example, 2.5V). Sensor cell 20
A detection circuit 38 for detecting the sensor cell electromotive force Vs is connected between the control unit 31 of the linear A / F sensor amplifier 45 and the detection signal Vs is supplied to the electronic control unit 40. A pump cut circuit 39 that receives a pump cut signal (high level signal) from the electronic control unit 40 and cuts the pump current Ip is connected between the comparison circuit 10 and the integration amplifier 12. The input terminal (base terminal) 39a side of the pump cut circuit 39 is connected to a predetermined voltage power source + Vcc via a resistor 39b. Electronic control unit 4
0 is an electromotive force Vs detected by the sensor cell electromotive force detection circuit 38 described above, and although not shown, a heater temperature detection circuit (this circuit detects applied voltage and supply current of the heater 30 to detect heater temperature and abnormality). To monitor)
When the linear air-fuel ratio sensor S is not sufficiently heated by the heater 30, the above-mentioned pump cut signal is detected. The output signal is output to the pump cut circuit 39. When the pump cut signal is output to the pump cut circuit 39, the output side voltage level of the comparison circuit 10 becomes 0, and as a result, the detection chamber 25 is kept at the stoichiometric air-fuel ratio as the air-fuel ratio signal Vout. The pseudo signal Vst (see FIG. 3) will be output. If the pump cut signal line between the pump cut circuit 39 and the electronic control unit 40 is broken for some reason, the input terminal (base terminal) 39a side of the pump cut circuit 39 is pulled up by a predetermined voltage (for example, 5V). Therefore, a high level is input to the pump cut circuit 39,
Even when the signal line is broken, the pump current Ip can be set to 0 and blackening of the linear air-fuel ratio sensor S can be prevented. In the present specification, the air-fuel ratio sensing system including the linear air-fuel ratio sensor S, the linear A / F sensor amplifier 45, the wiring between the sensor S and the amplifier 45, and the wiring between the amplifier 45 and the electronic control unit 40 described above. Will be defined. The electronic control unit 40 has a function of constantly monitoring a failure of the air-fuel ratio sensing system as described later and controlling the amount of fuel supplied to the engine E, that is, the air-fuel ratio. The electronic control unit 40 is a central processing unit (CPU) that executes programs for failure monitoring of the air-fuel ratio sensing system and air-fuel ratio control.
40a, a storage device 40b for storing the above-mentioned programs and calculation results by the CPU, various program variable values, etc., inputting signal values from various sensors, outputting a valve opening drive signal for driving the fuel injection valve 2, etc. It is composed of an input / output circuit (not shown) and the like. On the input side of the electronic control unit 40, various sensors that detect the operating state of the engine E, for example, an air flow sensor 41 that is arranged in the intake passage and detects the intake air amount from the generation cycle of Karman vortices, the engine A rotation speed sensor 42 for detecting a rotation speed, an ignition key switch sensor 43 for detecting an on / off state of an ignition key switch (SW), a water temperature sensor 44 for detecting a cooling water temperature of the engine E, etc. are connected to the electronic control unit 40. Engine operating state signals detected by these sensors are input. When the electronic control unit 40 executes the air-fuel ratio feedback control, the target air-fuel ratio corresponding to the engine operating state from the various sensors described above is set. For example, it has been detected that the engine E is in an operating state in which a relatively large engine output is required, that is, in an operating state in which the air-fuel ratio should be feedback-controlled to the stoichiometric air-fuel ratio, such as during rapid acceleration operation and start acceleration operation. In this case, the target air-fuel ratio is set to the theoretical air-fuel ratio (14.7). On the other hand, in the operating states other than the above, the target air-fuel ratio is set to a predetermined value (for example, 22) on the fuel lean side of the theoretical air-fuel ratio or a value according to the operating state. Then, the electronic control unit 40 compares the air-fuel ratio signal Vout output from the linear A / F sensor amplifier 45 with the target air-fuel ratio and calculates a feedback correction coefficient so that the air-fuel ratio becomes the target air-fuel ratio, The fuel supply amount is calculated by multiplying the basic fuel amount calculated by the load and the engine speed by the above feedback correction coefficient, the correction coefficient according to the cooling water temperature, and the like. Then, a valve opening drive signal corresponding to the calculated fuel supply amount is supplied to the fuel injection valve 2 to provide a required amount of fuel to the engine E.
To be injected and supplied. On the other hand, when the electronic control unit 40 performs the open-loop control of the air-fuel ratio, the basic fuel amount calculated by the engine load (for example, volumetric efficiency Ev) and the engine speed is provided with a correction coefficient or the like according to the cooling water temperature. The fuel supply amount is calculated by multiplication. In the present invention, the air-fuel ratio control method by feedback control or open loop control is not particularly limited, and various conventionally known methods can be adopted. Next, the failure determination method of the air-fuel ratio sensing system according to the present invention will be described with reference to the flowcharts shown in FIGS. The electronic control unit 40 firstly performs step S10.
In S12 and S12, the linear air-fuel ratio sensor S is used to determine whether the air-fuel ratio is feedback-controlled. In step S10, it is determined whether or not the air-fuel ratio is feedback-controlled (Stoichio A / F feedback control) with the stoichiometric air-fuel ratio as a target value.
At 12, it is determined whether the air-fuel ratio is under feedback control (lean A / F feedback control) with the air-fuel ratio on the fuel lean side of the stoichiometric air-fuel ratio as the target value. If any of these determinations is negative (No), steps S10 and S12 are repeatedly executed. That is,
When the air-fuel ratio feedback control is not executed, the failure determination of the air-fuel ratio sensing system is not performed. If the determination result of either step S10 or S12 is affirmative (Yes), the process proceeds to step S14,
It is determined whether or not the air-fuel ratio signal Vout is larger than the predetermined upper limit determination value VHF . As shown in FIG. 3, the upper limit determination value V HF is an upper limit value V H detected by the air-fuel ratio sensing system during normal operation of the engine E (for example, the air-fuel ratio 28
Value slightly larger than 4.4V corresponding to
4.5V). If the air-fuel ratio signal Vout is less than or equal to the upper limit determination value VHF , that is, if the determination result of step S14 is negative, the process proceeds to step S18 of FIG. In step S14, if it the air-fuel ratio signal Vout is greater than the upper limit determination value V HF is detected, the state the air-fuel ratio signal Vout is greater than the upper limit determination value V HF is in a predetermined t
It is determined whether or not the operation has continued for 1 hour (for example, 10 seconds) (step S16). This determination prevents the electronic control unit 40 from immediately determining that the air-fuel ratio sensing system is abnormal due to an abnormal value that temporarily occurs due to noise or the like. If the state in which the air-fuel ratio signal Vout is larger than the upper limit determination value V HF does not continue for a predetermined time, the process proceeds to step S18, but if it continues, step S2.
In step 4, it is determined that the air-fuel ratio sensing system is out of order, and this is stored. At this time, for example, a warning light may be lit on the instrument panel or the like to warn the driver that the air-fuel ratio sensing system is out of order. In step S18 of FIG. 5, it is determined whether the engine E is in a predetermined acceleration operation state or a predetermined deceleration operation state. Such a determination can be made, for example, by detecting the valve opening position and valve opening speed of a throttle valve (not shown). When the engine E is in a predetermined acceleration operation state or a predetermined deceleration operation state, the air-fuel ratio sensing system is operating normally such that the air-fuel ratio detected from the exhaust gas shows a very small value (rich signal). In some cases, however, a peculiar air-fuel ratio signal may be output. In such a case, the failure determination cannot be made, so the process returns to step S10 described above. If the determination result in step S18 is negative, that is, if it is determined that the vehicle is not traveling in the predetermined acceleration or deceleration, the process proceeds to step S20, and the air-fuel ratio signal Vout is smaller than the predetermined lower limit determination value V LF . Determine whether or not. As shown in FIG. 3, the lower limit determination value V LF is smaller than the lower limit VL (for example, 0.6 V corresponding to the air-fuel ratio 10) detected by the air-fuel ratio sensing system during normal operation of the engine E. A small value (for example, 0.5
V) is set. If the air-fuel ratio signal Vout is greater than or equal to this lower limit determination value VLF , that is, if the determination result of step S20 is negative, there is no abnormality in the air-fuel ratio sensing system, and the process returns to step S10 of FIG. On the other hand, in step S20, the air-fuel ratio when the signal Vout is detected to be smaller than the lower limit determination value V LF, the air-fuel ratio signal Vout is lower determination value V LF from a small state a predetermined time t2 (e.g., It is determined whether it has continued for 10 seconds (step S22). This determination prevents the electronic control unit 40 from immediately determining that the air-fuel ratio sensing system is abnormal due to an abnormal value that instantaneously occurs due to noise or the like. If the state in which the air-fuel ratio signal Vout is smaller than the lower limit determination value V LF does not continue for a predetermined time, there is no abnormality in the air-fuel ratio sensing system, and in this case also, the process returns to step S10 in FIG. When it is determined in step S22 that the air-fuel ratio signal Vout is smaller than the lower limit determination value V LF for a predetermined time, the process proceeds to step S24 described above, and the air-fuel ratio (A / F) It is determined that the sensing system is out of order, and this is stored. When a failure of the air-fuel ratio sensing system is determined,
The electronic control unit 40 stops the feedback control of the air-fuel ratio and executes the open loop air-fuel ratio (A / F) control described above. In this case, since the air-fuel ratio information from the malfunctioning air-fuel ratio sensing system is not used, the situation in which the air-fuel ratio control cannot be prevented is prevented and the air-fuel ratio is properly maintained. Then, it is determined whether or not the ignition key switch (SW) 43 is off (step S
28), the determination result is negative, that is, as long as the engine E is operating, step S26 is repeatedly executed,
The open loop A / F control is continued. On the other hand, turn off the ignition key switch (SW) and set the engine E
Is stopped, the failure determination of the air-fuel ratio (A / F) sensing system stored in the storage device 40b is canceled (step S30), and the execution of the program ends. Therefore, when the engine E is restarted, the failure determination of the air-fuel ratio sensing system is restarted from the beginning.

【発明の効果】以上の説明で明らかなように、本発明の
装置によれば、空燃比を目標空燃比にフィードバック制
御する際に、空燃比センシングシステムからの出力信号
値が所定上限判別値より大の状態が第1の所定時間に亘
って継続するか、内燃エンジンが所定の加速又は減速運
転状態になく、且つ、空燃比センシングシステムからの
出力信号値が所定下限判別値より小の状態が第2の所定
時間に亘って継続したとき、空燃比センシングシステム
が故障であると判定するようにしたので、空燃比センシ
ングシステムの故障を確実に検出することができ、空燃
比センシングシステムの異常時においても、空燃比をオ
ープンループ制御を直ちに実行するようにすれば、排気
ガス特性の悪化、ドランバビリティの低下、アイドル回
転の不安定化等の弊害を防止し、或いは最小限に抑える
ことができる。
As is apparent from the above description, according to the device of the present invention, when the air-fuel ratio is feedback-controlled to the target air-fuel ratio, the output signal value from the air-fuel ratio sensing system is higher than the predetermined upper limit judgment value. The large state continues for the first predetermined time, or the internal combustion engine is not in the predetermined acceleration or deceleration operation state, and the output signal value from the air-fuel ratio sensing system is smaller than the predetermined lower limit determination value. When the air-fuel ratio sensing system is determined to be out of order when it continues for the second predetermined time, it is possible to reliably detect the failure of the air-fuel ratio sensing system, and to detect an abnormality in the air-fuel ratio sensing system. Also, if the air-fuel ratio is immediately subjected to open loop control, exhaust gas characteristics will deteriorate, drability will decrease, idle rotation will become unstable, etc. To prevent harm, or can be kept to a minimum.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の空燃比センシングシステムの故障判定
方法が適用される空燃比制御装置の概略構成を示すブロ
ック図である。
FIG. 1 is a block diagram showing a schematic configuration of an air-fuel ratio control device to which a failure determination method for an air-fuel ratio sensing system of the present invention is applied.

【図2】図1に示すリニア空燃比センサSおよびリニア
A/Fセンサアンプ45の内部構成をしめす回路図であ
る。
2 is a circuit diagram showing the internal configuration of a linear air-fuel ratio sensor S and a linear A / F sensor amplifier 45 shown in FIG.

【図3】図1に示すリニアA/Fセンサアンプ45から
出力される空燃比信号Vout と空燃比との関係を示すグ
ラフである。
FIG. 3 is a graph showing the relationship between the air-fuel ratio signal Vout output from the linear A / F sensor amplifier 45 shown in FIG. 1 and the air-fuel ratio.

【図4】図1に示す電子制御装置40が実行する空燃比
センシングシステムの故障判別の手順を示すフローチャ
ートの一部である。
FIG. 4 is a part of a flowchart showing a procedure of a failure determination of the air-fuel ratio sensing system executed by the electronic control unit 40 shown in FIG.

【図5】図4の空燃比センシングシステムの故障判別の
手順に続く残部のフローチャートである。
5 is a flowchart of the remaining part following the procedure of the failure determination of the air-fuel ratio sensing system of FIG.

【符号の説明】[Explanation of symbols]

E 内燃エンジン S リニア空燃比センサ 2 燃料噴射弁 10 比較回路 12 積分回路 13 電流検出回路 14 加算回路 20 センサセル 21 ポンプセル 30 ヒータ 31 制御回路 38 センサセル起電力検出回路 39 ポンプカット回路 40 電子制御装置 45 リニアA/Fセンサアンプ E Internal combustion engine S Linear air-fuel ratio sensor 2 Fuel injection valve 10 Comparison circuit 12 Integration circuit 13 Current detection circuit 14 Addition circuit 20 Sensor cell 21 Pump cell 30 Heater 31 Control circuit 38 Sensor cell electromotive force detection circuit 39 Pump cut circuit 40 Electronic control device 45 Linear A / F sensor amplifier

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 排気ガス中の酸素濃度を検出して内燃エ
ンジンに供給される混合気の空燃比に対応した信号値を
出力し、この出力信号値に応じて空燃比を理論空燃比近
傍の第1の目標空燃比および第1の目標空燃比より燃料
希薄側の第2の目標空燃比の何れか一方にフィードバッ
ク制御を行なう、空燃比センシングシステムの故障判別
方法において、空燃比を前記第1および第2の目標空燃
比の何れか一方にフィードバック制御する際に、空燃比
センシングシステムからの出力信号値が所定上限判別値
より大の状態が第1の所定時間に亘って継続するか、前
記内燃エンジンが所定の加速又は減速運転状態になく、
且つ、空燃比センシングシステムからの出力信号値が所
定下限判別値より小の状態が第2の所定時間に亘って継
続したとき、空燃比センシングシステムが故障であると
判定することを特徴とする、空燃比センシングシステム
の故障判定方法。
1. A signal value corresponding to the air-fuel ratio of an air-fuel mixture supplied to an internal combustion engine is output by detecting the oxygen concentration in the exhaust gas, and the air-fuel ratio is set in the vicinity of the theoretical air-fuel ratio in accordance with the output signal value. In the failure determination method of the air-fuel ratio sensing system, which performs feedback control to either one of the first target air-fuel ratio and the second target air-fuel ratio on the fuel lean side of the first target air-fuel ratio, the air-fuel ratio is set to the first When performing feedback control to either one of the second target air-fuel ratio and the second target air-fuel ratio, a state in which the output signal value from the air-fuel ratio sensing system is larger than a predetermined upper limit determination value continues for a first predetermined time, or The internal combustion engine is not in the prescribed acceleration or deceleration operation state,
And, when the state where the output signal value from the air-fuel ratio sensing system is smaller than the predetermined lower limit determination value continues for the second predetermined time, it is determined that the air-fuel ratio sensing system is in failure. Failure determination method for air-fuel ratio sensing system.
JP26367291A 1991-10-11 1991-10-11 Method for judging failure of air fuel ratio sensing system Pending JPH0599043A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26367291A JPH0599043A (en) 1991-10-11 1991-10-11 Method for judging failure of air fuel ratio sensing system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26367291A JPH0599043A (en) 1991-10-11 1991-10-11 Method for judging failure of air fuel ratio sensing system

Publications (1)

Publication Number Publication Date
JPH0599043A true JPH0599043A (en) 1993-04-20

Family

ID=17392744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26367291A Pending JPH0599043A (en) 1991-10-11 1991-10-11 Method for judging failure of air fuel ratio sensing system

Country Status (1)

Country Link
JP (1) JPH0599043A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08254459A (en) * 1995-03-15 1996-10-01 Omron Corp Abnormal vibration sensing device
US5901691A (en) * 1996-08-09 1999-05-11 Toyota Jidosha Kabushiki Kaisha Device for determining deterioration of air-fuel ratio sensor
JP2016205300A (en) * 2015-04-27 2016-12-08 三菱自動車工業株式会社 Control device of engine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62247143A (en) * 1986-04-18 1987-10-28 Nissan Motor Co Ltd Air-fuel ratio controller for internal combustion engine
JPH0328582A (en) * 1989-05-24 1991-02-06 Tokyo Gas Co Ltd Flow rate control valve mechanism

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62247143A (en) * 1986-04-18 1987-10-28 Nissan Motor Co Ltd Air-fuel ratio controller for internal combustion engine
JPH0328582A (en) * 1989-05-24 1991-02-06 Tokyo Gas Co Ltd Flow rate control valve mechanism

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08254459A (en) * 1995-03-15 1996-10-01 Omron Corp Abnormal vibration sensing device
US5901691A (en) * 1996-08-09 1999-05-11 Toyota Jidosha Kabushiki Kaisha Device for determining deterioration of air-fuel ratio sensor
JP2016205300A (en) * 2015-04-27 2016-12-08 三菱自動車工業株式会社 Control device of engine

Similar Documents

Publication Publication Date Title
US10634643B2 (en) Gas sensor control device
JP3855877B2 (en) Deterioration detection device for air-fuel ratio detection device
US6371096B1 (en) Diagnosis system for wide-range air-fuel ratio sensor
JPH10212999A (en) Learning device of oxygen content sensor for controlling internal combustion engine and its learning method
KR960016085B1 (en) Air-fuel ratio controller of internal combustion engine
JP3500976B2 (en) Abnormality diagnosis device for gas concentration sensor
JP4228488B2 (en) Gas concentration sensor heater control device
JPH0599043A (en) Method for judging failure of air fuel ratio sensing system
JP2696626B2 (en) Failure determination device for air-fuel ratio sensing system
KR940010728B1 (en) Air-fuel ratio detecting apparatus
JP2005042676A (en) Failure detecting device for oxygen concentration sensor
JP2006126218A (en) Deterioration detector for air-fuel ratio detection device
US11401877B2 (en) Control system of air-fuel ratio sensor
JP4281747B2 (en) Deterioration detection device for air-fuel ratio detection device
KR100432030B1 (en) air-fuel ratio control method for a Liquefied Petroleum Injection of a vehicle
JPH10159640A (en) Diagnostic device for abnormality of air-fuel ratio sensor
JP2816531B2 (en) Control device for heater for oxygen concentration sensor
JPH0617692A (en) Failure judgment device for engine fuel system
JPH0469567A (en) Fault decision device for air fuel ratio sensor
KR100427327B1 (en) Method of checking start of air and fuel ratio feedback control
KR100427269B1 (en) Method of deciding trouble for system controlling air and fuel ratio feedback
JP2527083B2 (en) Air-fuel ratio control device
JPH065053B2 (en) Failure diagnosis device for air-fuel ratio control system
JPH0932608A (en) Air-fuel ratio controller for internal combustion engine
JPH01170738A (en) Air-fuel ratio controller

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19970805