JPH059884B2 - - Google Patents

Info

Publication number
JPH059884B2
JPH059884B2 JP58091955A JP9195583A JPH059884B2 JP H059884 B2 JPH059884 B2 JP H059884B2 JP 58091955 A JP58091955 A JP 58091955A JP 9195583 A JP9195583 A JP 9195583A JP H059884 B2 JPH059884 B2 JP H059884B2
Authority
JP
Japan
Prior art keywords
layer
insulating layer
polyolefin
vinyl monomer
aromatic vinyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58091955A
Other languages
Japanese (ja)
Other versions
JPS59217907A (en
Inventor
Setsu Hanai
Fumio Aida
Takeo Shiono
Shigeki Sano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SWCC Corp
Original Assignee
Showa Electric Wire and Cable Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Electric Wire and Cable Co filed Critical Showa Electric Wire and Cable Co
Priority to JP58091955A priority Critical patent/JPS59217907A/en
Publication of JPS59217907A publication Critical patent/JPS59217907A/en
Publication of JPH059884B2 publication Critical patent/JPH059884B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Insulated Conductors (AREA)
  • Processes Specially Adapted For Manufacturing Cables (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Organic Insulating Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[発明の技術分野] 本発明は、半導電層と架橋ポリオレフイン絶縁
体層との界面に一定の濃度勾配を有する電子トラ
ツプ層を形成された架橋ポリオレフイン絶縁ケー
ブルの製造方法に関する。 [発明の技術的背景とその問題点] 従来より、架橋ポリオレフイン絶縁ケーブルの
高圧化の要求に伴ない、絶縁耐力を向上させる方
法として、電圧安定効果を有する物質を絶縁体層
中に分散させ、陰極からの注入電子をトラツプし
て耐電圧を向上させる方法が知られている。 しかしながらこの方法ではA.C耐圧の向上には
有効であるが、インパルス耐圧については必ずし
もその効果が明らかではなく、また電圧安定効果
を有する物質がブリードしたり、不純物として作
用するという難点があつた。 [発明の目的] このような難点を解消する方法として、電圧安
定効果を有する物質として絶縁体層のポリオレフ
インと反応するものを選定し、これを絶縁体形成
材料のポリオレフイン中に配合して絶縁体層形成
後グラフト化により固定し、構造的により安定な
状態にすることが考えられる。 本発明者らはこのような観点から鋭意研究を進
めた結果、半導電層を形成する半導電性組成物中
に、予めポリオレフインと反応性を有しかつ電圧
安定効果を有する芳香族ビニルモノマーを配合し
ておき、このモノマーを、押出、架橋工程におい
て半導電層から絶縁体層へ拡散移行させて絶縁体
層のポリオレフインとグラフト化させることによ
り、A.C耐電圧とともにインパルス耐電圧も向上
し、かつ化学的、物理的に安定した特性を有する
架橋ポリオレフイン絶縁ケーブルが得られること
を見出した。 本発明はこのような知見に基づいてなされたも
ので、A.C耐圧、インパルス耐圧の向上した、化
学的、物理的に安定な架橋ポリオレフイン絶縁ケ
ーブルの製造方法を提供することを目的とする。 [発明の概要] すなわち本発明の架橋ポリオレフインケーブル
の製造方法は、導体上に内部半導電層、架橋ポリ
オレフイン絶縁体層、外部半導電層を順次形成し
てなる架橋ポリオレフイン絶縁ケーブルを製造す
るにあたり、前記内部半導電層および/または外
部半導電層を、予め芳香族ビニルモノマーを含有
する半導電性組成物により押出被覆し、かつ押
出、架橋工程における加熱により前記芳香族ビニ
ルモノマーを絶縁体層へ拡散させ、絶縁体層のポ
リオレフインとグラフト化させることを特徴とし
ている。 図面は、本発明の一実施例により得られた架橋
ポリオレフインケーブルを示す断面図である。 図において符号1は導体であり、この導体1上
には、内部半導電層2、架橋ポリオレフイン絶縁
体層3、外部半導電層4が順に形成されている。
しかしてこの架橋ポリオレフインケーブルの内部
半導電層2と架橋ポリオレフイン絶縁体層3との
界面および/または架橋ポリオレフイン絶縁体層
3と外部半導電層4との界面に電子トラツプ層5
が形成されている。この電子トラツプ層5は、後
述する実施例で述べるように、予め内部半導電層
2および/または外部半導電層4に配合した芳香
族ビニルモノマーが押出、架橋過程中に絶縁体層
に濃度勾配をもつて拡散、移行し、絶縁体層のポ
リオレフインとグラフト化反応することにより形
成されたものである。 本発明において使用する芳香族ビニルモノマー
は、電圧安定効果と電界緩和効果とを有してお
り、架橋剤の存在下で高温で加熱することにより
ポリオレフインとグラフト化反応する。 このような芳香族ビニルモノマーとしては、例
えばスチレン、メチルスチレン、ビニルピリジ
ン、ビニルナフタレン等があげられる。なお芳香
環が多いほど電子トラツプ機能が大きい。またそ
の配合量は半導電層を形成する半導電性組成物
100重量部に対して0.3〜8重量部が適しており、
0.3重量部未満では電圧安定効果がさほど期待で
きず、8重量部を越えると絶縁体層の架橋阻害を
引き起こすのでいずれも好ましくない。 またこの芳香族ビニルモノマーは、内部半導電
層と外部半導電層のいずれに添加してもよいが、
より好ましくは両方もしくは少なくとも内部半導
電層に添加するようにする。 本発明において用いる半導電層形成用の半導電
性組成物としては、エチレン・酢酸ビニル共重合
体(EVAと略称する)、エチレン・エチルアクリ
レート共重合体、低密度ポリエチレン等のエチレ
ン系重合体に導電性カーボンブラツクおよび必要
に応じて架橋剤、酸化防止剤を添加混合したもの
を使用する。 また本発明に使用する絶縁体形成用のポリオレ
フイン組成物としては、密度0.930〜0.950、メル
トインデツクス0.1〜2の比較的高密度、低メル
トインデツクスのポリエチレンをベースにしたも
のであることが好ましい。 [発明の実施例] 次に本発明の実施例について説明する。 実施例 1〜4 250mm2の導体上に、内部半導電層形成用の半導
電性組成物としてEVA100重量部、導電性カーボ
ン60重量部、架橋剤1重量部、酸化防止剤0.3重
量部および次表に示す芳香族ビニルモノマー2重
量部からなる組成物、絶縁体形成用の組成物とし
て架橋剤を配合した架橋可能なポリエチレン組成
物、外部半導電層形成用の半導電性組成物として
EVA100重量部、導電性カーボン60重量部、架橋
剤1重量部、酸化防止剤0.3重量部および実施例
2についてのみさらにスチレン2重量部を配合し
てなる組成物を、それぞれ厚さが1mm、2mm、1
mmとなるように順に押出被覆して常法により加熱
架橋し、さらにその上に銅テープ遮蔽層およびシ
ースを順に設けて66KVの架橋ポリオレフイン絶
縁ケーブルを製造した。 またこれとは別に半導電層形成用の半導電組成
物として芳香族ビニルモノマーを全く配合しない
か、また芳香族ビニルモノマーの代えて従来より
知られる電圧安定剤を配合した組成物を用いた以
外は実施例と同様にして比較例1〜5の架橋ポリ
オレフイン絶縁ケーブルを製造した。 得られた架橋ポリオレフイン絶縁ケーブルの
A.C耐電圧およびインパルス耐電圧は同表に示す
通りであつた。
[Technical Field of the Invention] The present invention relates to a method for manufacturing a crosslinked polyolefin insulated cable in which an electron trap layer having a constant concentration gradient is formed at the interface between a semiconducting layer and a crosslinked polyolefin insulating layer. [Technical background of the invention and its problems] Conventionally, with the demand for higher voltage of cross-linked polyolefin insulated cables, as a method to improve the dielectric strength, a substance having a voltage stabilizing effect is dispersed in an insulating layer. A method of trapping electrons injected from the cathode to improve withstand voltage is known. However, although this method is effective in improving AC breakdown voltage, its effect on impulse breakdown voltage is not necessarily clear, and it also has the disadvantage that substances that have a voltage stabilizing effect bleed or act as impurities. [Purpose of the Invention] As a method to overcome these difficulties, a substance that reacts with the polyolefin of the insulator layer is selected as a substance having a voltage stabilizing effect, and this is blended into the polyolefin of the insulator forming material to form the insulator. It is conceivable to fix the layer by grafting after forming the layer to create a more structurally stable state. As a result of intensive research from this perspective, the present inventors discovered that an aromatic vinyl monomer that is reactive with polyolefin and has a voltage stabilizing effect is added to the semiconductive composition that forms the semiconductive layer. This monomer is diffused and transferred from the semiconductive layer to the insulating layer during the extrusion and crosslinking process, and grafted with the polyolefin in the insulating layer, thereby improving both the AC withstand voltage and the impulse withstand voltage. It has been found that a crosslinked polyolefin insulated cable having chemically and physically stable properties can be obtained. The present invention was made based on such knowledge, and an object of the present invention is to provide a method for manufacturing a chemically and physically stable crosslinked polyolefin insulated cable with improved AC withstand voltage and impulse withstand voltage. [Summary of the Invention] That is, the method for manufacturing a crosslinked polyolefin cable of the present invention includes the steps of manufacturing a crosslinked polyolefin insulated cable in which an internal semiconducting layer, a crosslinked polyolefin insulating layer, and an external semiconducting layer are sequentially formed on a conductor. The inner semiconductive layer and/or the outer semiconductive layer are extrusion coated in advance with a semiconductive composition containing an aromatic vinyl monomer, and the aromatic vinyl monomer is converted into an insulating layer by heating in the extrusion and crosslinking steps. It is characterized by being diffused and grafted with the polyolefin of the insulating layer. The drawing is a sectional view showing a crosslinked polyolefin cable obtained according to an embodiment of the present invention. In the figure, reference numeral 1 denotes a conductor, and on this conductor 1, an inner semiconducting layer 2, a crosslinked polyolefin insulating layer 3, and an outer semiconducting layer 4 are formed in this order.
Therefore, an electron trap layer 5 is formed at the interface between the inner semiconducting layer 2 and the crosslinked polyolefin insulating layer 3 and/or the interface between the crosslinked polyolefin insulating layer 3 and the outer semiconducting layer 4 of the crosslinked polyolefin cable.
is formed. This electron trap layer 5 is formed by extruding an aromatic vinyl monomer blended into the inner semiconducting layer 2 and/or the outer semiconducting layer 4 in advance and forming a concentration gradient in the insulating layer during the crosslinking process, as will be described in Examples below. It is formed by diffusing and migrating with the insulating layer and grafting reaction with the polyolefin of the insulating layer. The aromatic vinyl monomer used in the present invention has a voltage stabilizing effect and an electric field relaxing effect, and undergoes a grafting reaction with polyolefin when heated at high temperature in the presence of a crosslinking agent. Examples of such aromatic vinyl monomers include styrene, methylstyrene, vinylpyridine, and vinylnaphthalene. Note that the more aromatic rings there are, the greater the electron trap function. In addition, the blending amount is the semiconductive composition that forms the semiconductive layer.
0.3 to 8 parts by weight per 100 parts by weight is suitable.
If it is less than 0.3 parts by weight, the voltage stabilizing effect cannot be expected to be so great, and if it exceeds 8 parts by weight, crosslinking of the insulating layer will be inhibited, so both are not preferred. In addition, this aromatic vinyl monomer may be added to either the inner semiconducting layer or the outer semiconducting layer, but
More preferably, it is added to both or at least the internal semiconducting layer. The semiconductive composition for forming a semiconductive layer used in the present invention includes ethylene-based polymers such as ethylene/vinyl acetate copolymer (abbreviated as EVA), ethylene/ethyl acrylate copolymer, and low-density polyethylene. A mixture of conductive carbon black and, if necessary, a crosslinking agent and an antioxidant is used. The polyolefin composition for forming an insulator used in the present invention is preferably one based on relatively high density polyethylene with a density of 0.930 to 0.950 and a melt index of 0.1 to 2, and a low melt index. . [Embodiments of the Invention] Next, embodiments of the present invention will be described. Examples 1 to 4 On a 250 mm 2 conductor, 100 parts by weight of EVA, 60 parts by weight of conductive carbon, 1 part by weight of a crosslinking agent, 0.3 parts by weight of an antioxidant and the following were added as a semiconductive composition for forming an internal semiconductive layer. A composition consisting of 2 parts by weight of the aromatic vinyl monomer shown in the table, a crosslinkable polyethylene composition containing a crosslinking agent as a composition for forming an insulator, and a semiconducting composition for forming an outer semiconducting layer.
A composition containing 100 parts by weight of EVA, 60 parts by weight of conductive carbon, 1 part by weight of a crosslinking agent, 0.3 parts by weight of an antioxidant, and 2 parts by weight of styrene for Example 2 was prepared with a thickness of 1 mm and 2 mm, respectively. ,1
A 66 KV crosslinked polyolefin insulated cable was manufactured by sequentially extruding and crosslinking the cables to a diameter of 1.5 mm and heating and crosslinking them by a conventional method, and then sequentially providing a copper tape shielding layer and a sheath thereon. In addition, in addition to this, as a semiconductive composition for forming a semiconductive layer, a composition containing no aromatic vinyl monomer at all, or a composition containing a conventionally known voltage stabilizer instead of the aromatic vinyl monomer is used. Crosslinked polyolefin insulated cables of Comparative Examples 1 to 5 were produced in the same manner as in the Examples. of the obtained cross-linked polyolefin insulated cable
The AC withstand voltage and impulse withstand voltage were as shown in the same table.

【表】 上表からも明らかなように本発明により得られ
た架橋ポリエチレンケーブルでは、A.C耐電圧、
インパルス耐電圧ともに向上している。 [発明の効果] 以上説明したように本発明により得られた架橋
ポリオレフイン絶縁ケーブルには電子トラツプ層
が形成されているので電子なだれによる破壊に対
して効果が大きく、A.C耐圧、インパルス耐圧が
向上している。また電圧安定効果を有する物質が
ベースのポリオレフインにグラフト化しているの
で、絶縁体外にブリードしたりすることがなく、
物理的、化学的にも安定している。
[Table] As is clear from the above table, the cross-linked polyethylene cable obtained by the present invention has AC withstand voltage,
Both impulse withstand voltage has been improved. [Effects of the Invention] As explained above, since the crosslinked polyolefin insulated cable obtained by the present invention has an electron trap layer formed thereon, it is highly effective against destruction by electron avalanches, and has improved AC withstand voltage and impulse withstand voltage. ing. In addition, since a material that has a voltage stabilizing effect is grafted onto the base polyolefin, it will not bleed outside the insulator.
Physically and chemically stable.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明により得られた架橋ポリオレフイ
ンケーブルの一実施例を示す断面図である。 1……導体、2……内部半導電層、3……架橋
ポリオレフイン絶縁体層、4……外部半導電層、
5……電子トラツプ層。
The drawing is a sectional view showing an example of a crosslinked polyolefin cable obtained according to the present invention. DESCRIPTION OF SYMBOLS 1... Conductor, 2... Inner semiconducting layer, 3... Crosslinked polyolefin insulator layer, 4... Outer semiconducting layer,
5...Electron trap layer.

Claims (1)

【特許請求の範囲】[Claims] 1 導体上に内部半導電層、架橋ポリオレフイン
絶縁体層、外部半導電層を順次形成してなる架橋
ポリオレフイン絶縁ケーブルを製造するにあた
り、前記内部半導電層および/または外部半導電
層を、予め芳香族ビニルモノマーを含有する半導
電性組成物により押出被覆し、かつ押出、架橋工
程における加熱により前記芳香族ビニルモノマー
を絶縁体層へ拡散させ、絶縁体層のポリオレフイ
ンとグラフト化させることを特徴とする架橋ポリ
オレフイン絶縁ケーブルの製造方法。
1. When manufacturing a cross-linked polyolefin insulated cable in which an inner semi-conducting layer, a cross-linked polyolefin insulating layer, and an outer semi-conducting layer are sequentially formed on a conductor, the inner semi-conducting layer and/or the outer semi-conducting layer are scented in advance. The aromatic vinyl monomer is coated by extrusion with a semiconductive composition containing a group vinyl monomer, and the aromatic vinyl monomer is diffused into the insulating layer by heating in the extrusion and crosslinking steps, and grafted with the polyolefin of the insulating layer. A method for manufacturing a cross-linked polyolefin insulated cable.
JP58091955A 1983-05-25 1983-05-25 Method of producing crosslinked polyolefin insulated cable Granted JPS59217907A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58091955A JPS59217907A (en) 1983-05-25 1983-05-25 Method of producing crosslinked polyolefin insulated cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58091955A JPS59217907A (en) 1983-05-25 1983-05-25 Method of producing crosslinked polyolefin insulated cable

Publications (2)

Publication Number Publication Date
JPS59217907A JPS59217907A (en) 1984-12-08
JPH059884B2 true JPH059884B2 (en) 1993-02-08

Family

ID=14040994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58091955A Granted JPS59217907A (en) 1983-05-25 1983-05-25 Method of producing crosslinked polyolefin insulated cable

Country Status (1)

Country Link
JP (1) JPS59217907A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5673804A (en) * 1979-11-20 1981-06-18 Dainichi Nippon Cables Ltd Semiconductor composition
JPS56116745A (en) * 1980-02-21 1981-09-12 Mitsubishi Petrochem Co Ltd Semiconductive resin composition

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5470082U (en) * 1977-10-28 1979-05-18

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5673804A (en) * 1979-11-20 1981-06-18 Dainichi Nippon Cables Ltd Semiconductor composition
JPS56116745A (en) * 1980-02-21 1981-09-12 Mitsubishi Petrochem Co Ltd Semiconductive resin composition

Also Published As

Publication number Publication date
JPS59217907A (en) 1984-12-08

Similar Documents

Publication Publication Date Title
US4384944A (en) Carbon filled irradiation cross-linked polymeric insulation for electric cable
US4317001A (en) Irradiation cross-linked polymeric insulated electric cable
US3096210A (en) Insulated conductors and method of making same
JPH10106358A (en) Composition with water tree resistance for insulation
US4693937A (en) Flame retardant wire with high insulation resistance
JPH04106B2 (en)
JPH059884B2 (en)
US5460886A (en) DC high-voltage wire
JPH103823A (en) Direct current power cable insulated by cross-linked polyethylene
AU568802B2 (en) Flame retardant wire with high insulation resistance
GB2043078A (en) Irradiation cross-linked polymeric insulation for electric cable
JPH0620530A (en) Water tree resistant cable
JPS61235444A (en) Semiconductive resin composition
JP3030063B2 (en) Method for producing crosslinked polyolefin insulated cable
JPH048570Y2 (en)
JPS6271115A (en) Manufacturing crosslinked polyolefin-insulated power cable
JPH08241624A (en) Semiconductor resin composition for power cable
JPH0689608A (en) Electric insulator composition and wire/cable
JPH09139120A (en) Direct current power cable
JPH01144509A (en) Electric wire/cable
JPS6086140A (en) Electrically insulating composition
JPH0157447B2 (en)
JPH03122921A (en) Manufacture of bridged polyethylene insulated cable
JPH0132602B2 (en)
JPH0261908A (en) Electric wire and cable