JPH0598438A - Formation of surface modified layer excellent in wear resistance - Google Patents

Formation of surface modified layer excellent in wear resistance

Info

Publication number
JPH0598438A
JPH0598438A JP29053191A JP29053191A JPH0598438A JP H0598438 A JPH0598438 A JP H0598438A JP 29053191 A JP29053191 A JP 29053191A JP 29053191 A JP29053191 A JP 29053191A JP H0598438 A JPH0598438 A JP H0598438A
Authority
JP
Japan
Prior art keywords
thin film
modified layer
ion implantation
metal material
wear resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29053191A
Other languages
Japanese (ja)
Other versions
JP3060657B2 (en
Inventor
Hiroshi Sato
廣士 佐藤
Yasuaki Sugizaki
康昭 杉崎
Tatsuya Yasunaga
龍哉 安永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP3290531A priority Critical patent/JP3060657B2/en
Publication of JPH0598438A publication Critical patent/JPH0598438A/en
Application granted granted Critical
Publication of JP3060657B2 publication Critical patent/JP3060657B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To provide the method for forming a surface modified layer remarkably improving the wear resistance of a metallic material by thickly forming a surface modified layer by B<+> ion implantation. CONSTITUTION:This method is the method for forming a surface modified layer excellent in wear resistance on the surface of a metallic material by executing ion implantation treatment, and a TiB2 thin film has previously been formed on the surface of the above metallic material by a sputtering method, and after that, B<+> ion implantation is executed, by which B in the TiB2 thin film is diffused and infiltrated over the surface of the metallic material by utilizing the effect of emitting B in the TiB2 thin film to the above metallic material.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、鋼やTi等の金属材料
表面にB+ イオンを注入して表面改質層を形成する方法
に関し、特にB+ イオン注入による表面改質層を従来の
イオン注入層の3倍程度厚くすることによって、表面改
質層の耐摩耗性を飛躍的に向上させる技術に関するもの
である。
The present invention relates to a method of forming a surface modification layer on the metal surface, such as steel or Ti by implanting B + ions, in particular B + ion implantation with the surface modified layer of conventional The present invention relates to a technique for dramatically improving the wear resistance of the surface modified layer by making the thickness of the ion-implanted layer about three times as thick.

【0002】[0002]

【従来の技術】金属材料等の表面へのイオン注入処理
は、室温プロセスにより表面改質層を形成できる材料表
面改質法として注目されており、特に耐摩耗性の向上を
目的として種々の研究が行なわれている。しかしこれま
で数々の研究報告がなされているが、実用製品への応用
例は非常に少ない。これはイオン注入による改質層が他
の表面改質技術と競合できる特性を持ち合わせていない
からであり、その最大の原因は改質層の浅さにある。例
えば鋼基板にエネルギー40KeVでB+ イオン注入を行
なった場合、イオン注入層の深さは 0.1μm以下程度し
かなく、このためイオン注入を行っても表面改質層の耐
摩耗性の持続性が実用材としては不十分である。
2. Description of the Related Art Ion implantation treatment on the surface of a metal material has attracted attention as a material surface modification method capable of forming a surface modification layer by a room temperature process, and various studies have been made particularly for the purpose of improving wear resistance. Is being carried out. However, although many research reports have been made so far, there are very few examples of application to practical products. This is because the modified layer formed by ion implantation does not have the property of competing with other surface modification techniques, and the biggest cause is the shallowness of the modified layer. For example, when B + ion implantation is performed on a steel substrate at an energy of 40 KeV, the depth of the ion implantation layer is only 0.1 μm or less, and therefore, even if the ion implantation is performed, the abrasion resistance of the surface modification layer is sustained. It is insufficient as a practical material.

【0003】[0003]

【発明が解決しようとする課題】イオン注入処理は金属
材料表面に強制的に元素を添加する技術であるが、その
添加量には限界がある。イオン注入処理を長時間行なっ
て金属材料内の添加元素の組成が飽和に達すると、注入
Bが基板内に拡散していき注入層の厚さは 0.6μm程度
にまでは達する。しかしながら更に注入を続けても、金
属材料内に入りきれない過剰のイオンが金属材料表面に
逆戻りし、注入イオン元素のみの堆積層を表面に形成し
てしまい、金属材料内に形成されたイオン注入層の厚さ
は 0.6μm程度以上にはならない。また表面に堆積した
B薄膜は密着性が悪く、この膜による耐摩耗性改善はほ
とんど望めない。
Ion implantation is a technique for forcibly adding an element to the surface of a metal material, but the amount added is limited. When the composition of the additive element in the metal material reaches saturation after performing the ion implantation process for a long time, the implantation B diffuses into the substrate and the thickness of the implantation layer reaches about 0.6 μm. However, even if the implantation is continued further, excess ions that cannot be contained in the metal material will return to the surface of the metal material, forming a deposited layer of only the implanted ion elements on the surface, resulting in ion implantation formed in the metal material. The layer thickness does not exceed about 0.6 μm. Also, the B thin film deposited on the surface has poor adhesion, and improvement of wear resistance by this film can hardly be expected.

【0004】本発明は上記事情に着目してなされたもの
であって、B+イオン注入による表面改質層を厚く形成
することによって、金属材料の耐摩耗性を飛躍的に向上
させる表面改質層の形成方法を提供しようとするもので
ある。
The present invention has been made in view of the above circumstances, and by forming a thick surface modification layer by B + ion implantation, surface modification which dramatically improves the wear resistance of a metal material. It is intended to provide a method for forming a layer.

【0005】[0005]

【課題を解決するための手段】上記目的を達成した本発
明とは、イオン注入処理を施すことによって金属材料表
面に耐摩耗性の優れた表面改質層を形成する方法であっ
て、前記金属材料表面にスパッタ法によりTiB2 薄膜
を予め形成しておき、その後B+ イオン注入を行うこと
によって、前記TiB2 薄膜における前記金属材料への
B放出効果を利用してTiB2 薄膜中のBを金属材料表
面へ拡散浸透させる様にした点に要旨を有するものであ
る。
Means for Solving the Problems The present invention, which has achieved the above object, is a method for forming a surface-modified layer having excellent wear resistance on a surface of a metal material by performing an ion implantation treatment. A TiB 2 thin film is previously formed on the surface of the material by a sputtering method, and then B + ion implantation is performed to utilize the B release effect of the TiB 2 thin film on the metal material to remove the B in the TiB 2 thin film. It has a gist in that it is diffused and permeated into the surface of the metal material.

【0006】[0006]

【作用】上述した様に、鋼やTi等の金属材料表面にB
+ イオン注入を行なうと、金属材料内部のB組成が飽和
し、過剰の注入B+ イオンが金属材料表面に逆流し、金
属材料外に堆積してしまう。そのため金属材料表面のイ
オン注入層は0.6 μm以上の厚さにすることができな
い。
Function As described above, B is applied to the surface of a metal material such as steel or Ti.
When + ion implantation is performed, the B composition inside the metal material is saturated, and excess implanted B + ions flow back to the surface of the metal material and are deposited outside the metal material. Therefore, the thickness of the ion-implanted layer on the surface of the metal material cannot be 0.6 μm or more.

【0007】これに対し本発明では、金属材料表面にス
パッタ法によってTiB2 薄膜を予め形成しておき、そ
の後B+ イオン注入を行なう様にしている。このTiB
2 薄膜は、その後イオン注入されてきたB+ イオンを一
時的に蓄えることができるが、TiB2 薄膜は高温にお
いて異種金属等が接触していると、Bを放出してTiB
に変化し、接触金属を硼化していく性質がある。こうし
た性質によって、TiB2 薄膜は金属材料中へのBの拡
散源として働くことになる。このような状況のもとでB
+ イオン注入を連続して行なうと、Bを金属材料内へ放
出した後のTiB薄膜にB+ イオンが注入されて再びT
iB2 薄膜が形成され、このTiB2 薄膜は再び金属材
料中へBを放出し始める。このようなプロセスを繰り返
すことによって、金属材料内部に効率良くBが拡散浸透
していく。この様にして本発明の方法によれば、イオン
注入層の厚さを通常の厚さの3倍以上にあたる2〜3μ
m程度まで形成できる。またTiB2 膜と金属材料との
拡散係数の差により、金属材料内部に供給された注入B
+ イオン原子はTiB2 薄膜にブロックされて逆戻りす
ることができない。尚金属材料表面に形成するTiB2
薄膜の厚さは200〜500nm程度が適切であり、薄す
ぎても厚過ぎてもBの金属材料への放出は起こらない。
On the other hand, in the present invention, a TiB 2 thin film is previously formed on the surface of the metal material by the sputtering method, and then B + ion implantation is performed. This TiB
The 2 thin film can temporarily store the B + ions that have been ion-implanted thereafter, but the TiB 2 thin film releases B when different metals or the like come into contact with each other at high temperature.
And has the property of borating the contact metal. Due to these properties, the TiB 2 thin film acts as a diffusion source of B in the metallic material. Under such circumstances B
When + ion implantation is continuously performed, B + ions are implanted into the TiB thin film after B is released into the metal material and T + is again implanted.
An iB 2 thin film is formed, and this TiB 2 thin film starts to release B into the metal material again. By repeating such a process, B efficiently diffuses and penetrates into the metal material. Thus, according to the method of the present invention, the thickness of the ion-implanted layer is 2 to 3 μ, which is three times or more the normal thickness.
It can be formed up to about m. Also, due to the difference in diffusion coefficient between the TiB 2 film and the metal material, the implantation B supplied inside the metal material
The + ion atoms are blocked by the TiB 2 thin film and cannot return. TiB 2 formed on the surface of the metal material
It is suitable that the thickness of the thin film is about 200 to 500 nm, and if the film is too thin or too thick, B will not be released to the metal material.

【0008】以下本発明を実施例によって更に詳細に説
明するが、下記実施例は本発明を限定する性質のもので
はなく、前・後期の主旨に徴して設計変更することはい
ずれも本発明の技術的範囲に含まれるものである。
The present invention will be described in more detail with reference to the following examples. The following examples are not intended to limit the scope of the present invention, and any change in the design of the present invention can be made in view of the purpose of the former or later stages. It is included in the technical scope.

【0009】[0009]

【実施例】炭素鋼(SS400)を鏡面研磨したものを
基板とし、以下の2つの条件で表面処理を行なった。 (1) 表面処理1[従来技術] B+ イオン注入処理 エネルギー:40KeV イオンビーム電流密度:0.8A/m2 注入量:5×1022ions/m2 (2) 表面処理2[本発明技術] TiB2 ターゲットを用いたArスパッタによって、基
板表面にTiB2薄膜を形成した後、B+ イオン注入処
理 B+ イオン注入条件は上記表面処理1と同様 TiB2 薄膜厚さ:200nm
[Examples] Mirror-polished carbon steel (SS400) was used as a substrate, and surface treatment was performed under the following two conditions. (1) Surface treatment 1 [prior art] B + ion implantation treatment Energy: 40 KeV Ion beam current density: 0.8 A / m 2 Implantation amount: 5 × 10 22 ions / m 2 (2) Surface treatment 2 [technology of the present invention] After a TiB 2 thin film is formed on the substrate surface by Ar sputtering using a TiB 2 target, B + ion implantation treatment is performed. B + ion implantation conditions are the same as in the above surface treatment 1. TiB 2 thin film thickness: 200 nm

【0010】上記した2つの表面処理を施した試験片に
ついてAES分析を行い、深さ方向の組成分布を調べる
と共に、マイクロビッカース硬度計により改質層表面の
硬度を負荷荷重10kgf で測定した。図2は表面処理1
を施した試験片のAESプロファイルである。B原子注
入層は試験片の基板中に0.6μm程度の厚さまでしか形
成されていない。この改質層により試験片の表面硬度は
120Hvから190Hvへと若干上昇した。しかしながら
B層単層の密着性が悪く結合状態が悪いので耐摩耗性改
質層としては十分な特性を有するものではない。
AES analysis was performed on the test pieces subjected to the above two surface treatments to examine the composition distribution in the depth direction, and the hardness of the surface of the modified layer was measured by a micro Vickers hardness meter under a load of 10 kgf. Figure 2 shows surface treatment 1
It is an AES profile of the test piece which gave. The B atom injection layer is formed only up to a thickness of about 0.6 μm in the substrate of the test piece. Due to this modified layer, the surface hardness of the test piece slightly increased from 120 Hv to 190 Hv. However, since the single-layer B layer has poor adhesion and poor bonding state, it does not have sufficient properties as a wear-resistant modified layer.

【0011】図1は本発明に係る表面処理2を施した試
験片のAESプロファイルである。表面処理1の場合と
異なり、基板内部にB原子が深く浸透しており、基板表
面に予め形成したTiB2 薄膜が基板内へB原子を放出
したことをしめしている。この改質層により該試験片の
表面硬度は120Hvから1300Hvと著しく向上し、耐
摩耗性改質層としても十分な特性を得ることができた。
これは基板中に硬度が1500Hvと高いFe2 B層が形
成されたためと考えられる。
FIG. 1 is an AES profile of a test piece subjected to the surface treatment 2 according to the present invention. Unlike the case of the surface treatment 1, the B atoms penetrate deeply into the substrate, which indicates that the TiB 2 thin film previously formed on the substrate surface has released the B atoms into the substrate. With this modified layer, the surface hardness of the test piece was remarkably improved from 120 Hv to 1300 Hv, and sufficient properties could be obtained as a wear resistant modified layer.
It is considered that this is because the Fe 2 B layer having a hardness as high as 1500 Hv was formed in the substrate.

【0012】次に、上記した2つの表面処理を施した試
験片について、アルミナ球圧子により荷重300gf で往復
摺動を行なったときの摩擦係数の変化を調査した。その
結果を図3に示す。尚図3には比較の為に、前記基板を
用いて往復摺動試験を行なったときの結果についても示
した。表面処理1を施した試験片では、往復摺動回数25
回程度で摩耗によって摩擦係数が0.30を超えてしまうの
がわかる。これに対して表面処理2を施した試験片で
は、90回以上往復摺動しても摩擦係数は0.25前後であ
り、鋼(基板)の耐摩耗寿命は20倍以上改善されてい
た。
Next, with respect to the above-mentioned two surface-treated test pieces, a change in friction coefficient was investigated when the specimen was reciprocally slid with an alumina ball indenter at a load of 300 gf. The result is shown in FIG. For comparison, FIG. 3 also shows the results when a reciprocal sliding test was conducted using the substrate. The number of reciprocating slides was 25 for the test piece that had been subjected to surface treatment 1.
It can be seen that the friction coefficient exceeds 0.30 due to wear after about one turn. On the other hand, in the test piece subjected to the surface treatment 2, the coefficient of friction was around 0.25 even after reciprocating 90 times or more, and the wear resistance life of the steel (substrate) was improved 20 times or more.

【0013】[0013]

【発明の効果】本発明は以上の様に構成されており、金
属材料の耐摩耗性を飛躍的に向上させる表面改質層が形
成できた。
EFFECTS OF THE INVENTION The present invention is constituted as described above, and a surface-modified layer capable of dramatically improving the wear resistance of a metal material can be formed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る表面処理を施した試験片のAES
プロファイルを示すグラフである。
FIG. 1 AES of a test piece subjected to a surface treatment according to the present invention
It is a graph which shows a profile.

【図2】従来の表面処理を施した試験片のAESプロフ
ァイルを示すグラフである。
FIG. 2 is a graph showing an AES profile of a test piece that has been subjected to a conventional surface treatment.

【図3】往復摺動試験における往復摺動回数と摩擦係数
の関係を示すグラフである。
FIG. 3 is a graph showing the relationship between the number of times of reciprocal sliding and the coefficient of friction in a reciprocal sliding test.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 イオン注入処理を施すことによって金属
材料表面に耐摩耗性の優れた表面改質層を形成する方法
であって、前記金属材料表面にスパッタ法によりTiB
2 薄膜を予め形成しておき、その後B+ イオン注入を行
うこよによって、前記TiB2 薄膜における前記金属材
料へのB放出効果を利用してTiB2薄膜中のBを金属
材料表面へ拡散浸透させる様にしたことを特徴とする耐
摩耗性の優れた表面改質層の形成方法。
1. A method for forming a surface-modified layer having excellent wear resistance on a surface of a metal material by performing an ion implantation process, wherein TiB is formed on the surface of the metal material by a sputtering method.
Formed in advance 2 thin film, by the subsequent B + ion implantation performed a child stranded, diffuse infiltrate B of the TiB 2 thin film by utilizing a B release effect of the metal material in the TiB 2 thin film to the metal surface A method for forming a surface-modified layer having excellent wear resistance, which is characterized by the above.
JP3290531A 1991-10-08 1991-10-08 Method of forming surface-modified layer with excellent wear resistance Expired - Fee Related JP3060657B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3290531A JP3060657B2 (en) 1991-10-08 1991-10-08 Method of forming surface-modified layer with excellent wear resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3290531A JP3060657B2 (en) 1991-10-08 1991-10-08 Method of forming surface-modified layer with excellent wear resistance

Publications (2)

Publication Number Publication Date
JPH0598438A true JPH0598438A (en) 1993-04-20
JP3060657B2 JP3060657B2 (en) 2000-07-10

Family

ID=17757236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3290531A Expired - Fee Related JP3060657B2 (en) 1991-10-08 1991-10-08 Method of forming surface-modified layer with excellent wear resistance

Country Status (1)

Country Link
JP (1) JP3060657B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021011603A (en) * 2019-07-04 2021-02-04 学校法人 関西大学 Machine component

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021011603A (en) * 2019-07-04 2021-02-04 学校法人 関西大学 Machine component

Also Published As

Publication number Publication date
JP3060657B2 (en) 2000-07-10

Similar Documents

Publication Publication Date Title
Hartley Friction and wear of ion-implanted metals—a review
Monteiro Thin film synthesis by energetic condensation
Avelar-Batista et al. Plasma nitriding of Ti6Al4V alloy and AISI M2 steel substrates using DC glow discharges under a triode configuration
Youssef et al. Improvement of wear and hardness of steel by nitrogen implantation
Manova et al. Wear behaviour of martensitic stainless steel after PIII surface treatment
Bull et al. Improving the mechanical properties of steels using low energy, high temperature nitrogen ion implantation
JPH0598438A (en) Formation of surface modified layer excellent in wear resistance
JPH0533130A (en) Formation of surface modified layer
US20140319432A1 (en) Wear-Resistant Nanocrystalline Hard Noble Metal Coating
JPH0598439A (en) Formation of surface modified layer excellent in wear resistance
Grant et al. Ion beam techniques for material modification
Jagielski et al. Effects of high dose nitrogen implantation into aluminum
Stetsko The nanocomposite diffusion coating of details prepared of boriding
Kehler et al. Tribological behavior of high-density polyethylene in dry sliding contact with ion-implanted CoCrMo
Bolster et al. Tribological behaviour of TiN Films deposited by high energy ion-beam-assisted deposition
Ghoranneviss et al. N* ion implantation effects on microliardness properties of stainless steel 52100
Wei et al. Microstructure and tribological properties of Cu–Zn/TiN multilayers fabricated by dual magnetron sputtering
JP2797717B2 (en) Wear-resistant Ti or Ti-based alloy member with excellent lubricity
CN111893431B (en) 20Cr2Ni4A carburizing steel with high contact fatigue resistance and preparation method thereof
Kowalski A review of compositional changes of multicomponent materials (especially biomaterials) induced by ion sputtering
Jagielski et al. Friction properties of ion implanted Al2O3 ceramic
JPH0827564A (en) Method of surface hardening treatment and surface hardened member
Kheyrandish et al. Dynamic Recoil Mixing for the Production of Silicon Nitride Films
Pulugurtha Chromium nitride and chromium aluminum nitride epitaxial films for growth of alpha-alumina by AC reactive magnetron sputtering
JPH0280557A (en) Manufacture of metallic mold made of superplastic zn-al alloy

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000328

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees