JPH0598339A - Production of grain oriented silicon steel material - Google Patents

Production of grain oriented silicon steel material

Info

Publication number
JPH0598339A
JPH0598339A JP3262299A JP26229991A JPH0598339A JP H0598339 A JPH0598339 A JP H0598339A JP 3262299 A JP3262299 A JP 3262299A JP 26229991 A JP26229991 A JP 26229991A JP H0598339 A JPH0598339 A JP H0598339A
Authority
JP
Japan
Prior art keywords
slag
molten steel
cao
ladle
continuous casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3262299A
Other languages
Japanese (ja)
Other versions
JPH07122090B2 (en
Inventor
Michiro Komatsubara
道郎 小松原
Takehiko Minato
武彦 港
Toshito Takamiya
俊人 高宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP3262299A priority Critical patent/JPH07122090B2/en
Publication of JPH0598339A publication Critical patent/JPH0598339A/en
Publication of JPH07122090B2 publication Critical patent/JPH07122090B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Continuous Casting (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PURPOSE:To provide a producing method for grain oriented silicon steel material which can realize continuous casting without variation in the components in the longitudinal direction of a cast slab, as favorable in the case of particularly applying to the production of the grain oriented silicon steel containing Al and Sb and having extremely high magnetic flux density by the continuous casting method. CONSTITUTION:Slag components in a ladle incorporating the molten steel containing 2.5-4.5wt% Si, 0.01-0.15wt% Al and 0.005-0.08wt% Sb is adjusted in the range of <=0.25 Al2O3/SiO2,<=0.20 Al2O3/CaO and <=10wt.% T.Fe. By this method, i.e., by supplying the molten steel after the adjustment of the slag components in the ladle into the continuous casting, the cast slab without any variation in the components in the longitudinal direction is obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、Al及びSbを含有する
磁束密度の極めて高い方向性けい素鋼の連続鋳造に供す
る方向性けい素鋼素材の溶製方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for melting a grain-oriented silicon steel material for continuous casting of grain-oriented silicon steel containing Al and Sb and having an extremely high magnetic flux density.

【0002】[0002]

【従来の技術】方向性けい素鋼板は、磁気特性として、
磁束密度が高いこと及び鉄損が低いことが要求される。
近年は製造技術の進歩により、例えば板厚:0.23mm の鋼
板では、磁束密度B8(磁化力 800A/m における値): 1.
92T のものが得られ、また鉄損特性W17/50 (50 Hz, 1.
7Tの最大磁化における値) が0.90 w/kg の如き優れた製
品の工業的規模での生産も可能となっている。
2. Description of the Related Art Grained silicon steel sheets have magnetic properties
High magnetic flux density and low iron loss are required.
Due to advances in manufacturing technology in recent years, for example, for a steel sheet with a thickness of 0.23 mm, the magnetic flux density B 8 (value at a magnetizing force of 800 A / m): 1.
92T was obtained, and the iron loss characteristics W 17/50 (50 Hz, 1.
It is also possible to produce an excellent product with a maximum magnetization of 7T) of 0.90 w / kg on an industrial scale.

【0003】かかる優れた磁気特性を有する材料は、鉄
の磁化容易軸である<001> 方位が鋼板の圧延方向に高度
に揃った結晶組織で構成されるものであり、かような集
合組織は、方向性けい素鋼板の製造工程中、最終仕上げ
焼鈍の際に、いわゆるゴス方位と称される(110) 001 方
位を有する結晶粒を優先的に巨大成長させる2次再結晶
と呼ばれる現象を通じて形成される。この(110) 001 方
位の2次再結晶粒を十分に成長させるための基本的な要
件としては、2次再結晶過程において(110) 001 方位以
外の好ましくない方位を有する結晶粒の成長を抑制する
インヒビターの存在と、(110) 001 方位の2次再結晶粒
が十分に発達するのに好適な1次再結晶組織の形成とが
不可欠であることは周知の事実である。
The material having such excellent magnetic properties is composed of a crystal structure in which the <001> orientation, which is the easy axis of iron, is highly aligned in the rolling direction of the steel sheet, and such a texture is , During the final finishing annealing during the manufacturing process of grain-oriented silicon steel sheet, it is formed through the phenomenon called secondary recrystallization in which the crystal grains having the (110) 001 orientation, which is the so-called Goss orientation, grow preferentially. To be done. The basic requirement for sufficiently growing the secondary recrystallized grains in the (110) 001 orientation is to suppress the growth of crystal grains having an unfavorable orientation other than the (110) 001 orientation in the secondary recrystallization process. It is a well-known fact that the existence of an inhibitor that inhibits the formation of a primary recrystallized structure suitable for sufficient development of secondary recrystallized grains in the (110) 001 orientation is essential.

【0004】ここにインヒビターとしては、一般に Mn
S, MnSe, AlN 等の微細析出物が利用され、さらにこれ
らに加えて特公昭51-13469号や同54-32412号公報に開示
された如き、Sb, Snなどの粒界偏析型の元素を複合添加
してインヒビターの効果を補強することが行われてい
る。
Here, Mn is generally used as an inhibitor.
Fine precipitates such as S, MnSe, and AlN are used, and in addition to these, grain boundary segregation type elements such as Sb and Sn as disclosed in JP-B-51-13469 and JP-A-54-32412 are added. Multiple additions have been used to reinforce the effect of inhibitors.

【0005】ところでこれまで一般に、MnS やMnSeを主
要インヒビターとするものは、2次再結晶粒径が小さい
ので、鉄損の低減には有利であったが、近年、レーザー
照射法やプラズマジェット法など、人工的に擬似粒界を
導入し、磁区細分化が図れるようになって以来、2次再
結晶粒径のサイズが小さいことによる優位性は低下し、
磁束密度が高いことの優位性が大きくなった。
By the way, in general, those having MnS or MnSe as a main inhibitor have been advantageous in reducing iron loss because of their small secondary recrystallized grain size. In recent years, however, laser irradiation method and plasma jet method have been used. Since it became possible to artificially introduce pseudo-grain boundaries to subdivide magnetic domains, the advantage of the small secondary recrystallized grain size decreased,
The advantage of high magnetic flux density has increased.

【0006】磁束密度の高い方向性けい素鋼板を得る方
法は古くから知られており、例えば特公昭46-23820号公
報に記載されているように、 鋼中にインヒビター成分としてAlN を含有させる、 最終冷延前の焼鈍の冷却を急冷にしてAlN を析出させ
る、 最終冷延の圧下率を80〜95%と高圧下率とする、 以上3点の結合により製造できるとされている。
A method for obtaining a grain-oriented silicon steel sheet having a high magnetic flux density has been known for a long time. For example, as described in Japanese Patent Publication No. 46-23820, AlN is contained in the steel as an inhibitor component. It is said that it can be manufactured by the above three-point bonding, in which the cooling of the annealing before the final cold rolling is rapidly cooled to precipitate AlN, and the rolling reduction of the final cold rolling is set to 80 to 95% and the high pressure rolling reduction.

【0007】上記の方法においては、製品の板厚が薄く
なると、磁束密度が急激に劣化するという欠点を内包し
ており、近年指向されているような例えば板厚:0.25mm
以下の製品でB8 ≧1.94の製品を安定して製造すること
は極めて困難であった。これに対して発明者らは、AlN
を主要インヒビターとする方向性けい素鋼板素材にSbを
添加し、かつ仕上げ焼鈍方法を改善することにより、鋼
板の最終板厚が小さい場合にも極めて高い磁束密度の材
料が得られることを見出し、先に特開平2-115319号公報
にて提案した。しかしながら、上記の方法によっても工
業的に安定して高磁束密度の材料を製造することは必ず
しも容易ではなかった。
The above method has a drawback that the magnetic flux density rapidly deteriorates when the plate thickness of the product becomes thin.
It was extremely difficult to stably produce a product of B 8 ≧ 1.94 with the following products. On the other hand, the inventors
It was found that by adding Sb to the grain-oriented silicon steel sheet material whose main inhibitor is and improving the finish annealing method, a material with an extremely high magnetic flux density can be obtained even when the final sheet thickness of the steel sheet is small, It was previously proposed in Japanese Patent Laid-Open No. 2-115319. However, it is not always easy to industrially produce a material having a high magnetic flux density by the above method.

【0008】[0008]

【発明が解決しようとする課題】そこで発明者らは、数
多くの熱延コイルのサンプルを採取して、この原因を調
査した結果、同一溶製チャージ内においても、サンプル
によってはSi, Sbの値が大きく変動することがわかっ
た。またSeを含有する鋼におけるSeも、Si, Sbと同様大
きく変動していた。ここでSiは鉄損の値に直接作用し、
また途中工程において高温焼鈍時のγ変態率に影響を及
ぼすため、その含有量は厳密に管理する必要がある。Sb
は粒界に偏析し熱延板焼鈍や中間焼鈍の冷却における析
出カーバイドのサイズ制御を行い、またこれら焼鈍、脱
炭・1次再結晶焼鈍及び最終仕上げ焼鈍における窒化や
脱窒を抑制し、焼鈍雰囲気に対する鋼中の析出AlN の安
定性を保つのに一定量は必要で、これも厳密に管理する
ことが必要である。さらにSeは直接MnSeのインヒビター
として作用するので、添加する場合はこれも厳密に管理
する必要がある。
Therefore, as a result of investigating the cause by taking samples of many hot-rolled coils, the inventors found that the values of Si and Sb depend on the sample even in the same melt charge. Was found to fluctuate greatly. Further, Se in steel containing Se also fluctuated greatly like Si and Sb. Here, Si directly affects the value of iron loss,
In addition, since it affects the γ-transformation rate during high temperature annealing in the intermediate process, its content must be strictly controlled. Sb
Segregates at grain boundaries and controls the size of precipitated carbide during cooling of hot-rolled sheet annealing and intermediate annealing, and suppresses nitriding and denitrification in these annealing, decarburization / primary recrystallization annealing and final finish annealing, A certain amount is necessary to maintain the stability of precipitated AlN in steel against the atmosphere, and this must also be strictly controlled. Furthermore, since Se directly acts as an inhibitor of MnSe, it must be strictly controlled when it is added.

【0009】ところで連続鋳造法による方向性けい素鋼
スラブの製造は、1チャージの鋳造に1〜2時間の時間
を要するので、鋳造後の成分変動が大きいことが知られ
ている。例えば特公昭58-9125 号公報には、方向性電磁
鋼板の連続鋳造において、最終鋳片は鋳造の前半で得ら
れた鋳片に比べて、sol.Alが0.005wt %(以下単に%と
示す)、Sが0.005 %減少し、2次再結晶後の製品の磁
気特性を著しく劣化させることが記載され、さらにこの
原因は長時間の鋳造のため、溶鋼がスラグ(鋼滓)と反
応したり、スラグが少ない場合には、溶鋼と空気が直接
反応することにあると記載されている。また特公昭59-3
4207号公報には、電磁鋼板用溶鋼の鋳造に際し連続鋳造
や下注ぎ造塊法では注入始めから注入完了まで極めて長
時間を要するので、Alが0.007 %も低下することが記載
されている。この場合も、溶鋼中のAlが酸素との結合力
がスラグ中のAlよりも弱い金属酸化物と反応し、Alが酸
化物となって溶鋼中から失われることが原因である旨が
述べられている。
By the way, in the production of grain-oriented silicon steel slabs by the continuous casting method, since it takes 1 to 2 hours to cast one charge, it is known that the components vary greatly after casting. For example, JP-B-58-9125 discloses that in continuous casting of grain-oriented electrical steel, the final slab has 0.005 wt% sol.Al (hereinafter simply referred to as%) compared to the slab obtained in the first half of casting. ), S is reduced by 0.005%, and the magnetic properties of the product after secondary recrystallization are remarkably deteriorated. Furthermore, the cause is that casting of a long time causes molten steel to react with slag (slag). It is described that when the amount of slag is small, molten steel and air directly react with each other. See also
Japanese Laid-Open Patent Publication No. 4207 describes that in casting of molten steel for electromagnetic steel sheets, in continuous casting and bottom pouring ingot method, since it takes an extremely long time from the start of pouring to the completion of pouring, Al is reduced by 0.007%. Also in this case, it is stated that the cause is that Al in the molten steel reacts with a metal oxide whose bonding force with oxygen is weaker than that of Al in the slag, and Al becomes an oxide and is lost from the molten steel. ing.

【0010】こうした問題に対し特公昭58-9125 号公報
では、溶鋼を保有する取鍋内のスラグ組成のうち、CaO,
SiO2, Al2O3成分をAl2O3 /SiO2 重量比及びCaO/SiO2
量比として各々0.25〜2.0 の範囲に制御して、Al成分及
びS成分の変動を抑えること、また特公昭59-34207号公
報においては、溶鋼を保持する取鍋内のスラグ成分を
(%Al2O3)/(%CaO)を1.0 以上かつ(%Al2O3)/(%Si
O2) を1.0 以上となるように調整し、Al成分の変動を抑
えることがそれぞれ開示されている。これらの手法は通
常のAlを含有する珪素鋼の連続鋳造においては有効であ
ったが、Sbを含有する方向性けい素鋼用溶鋼の連続鋳造
においては、逆にAl含有量が増加するという問題が発生
する。
In order to address such a problem, Japanese Examined Patent Publication No. 58-9125 discloses that CaO, of the slag composition in the ladle containing molten steel,
The SiO 2 and Al 2 O 3 components are controlled to have Al 2 O 3 / SiO 2 weight ratio and CaO / SiO 2 weight ratio in the ranges of 0.25 to 2.0, respectively, to suppress the fluctuations of the Al component and the S component. In JP-A-59-34207, the slag component in the ladle holding molten steel is (% Al 2 O 3 ) / (% CaO) 1.0 or more and (% Al 2 O 3 ) / (% Si
It is disclosed that the fluctuation of Al component is suppressed by adjusting O 2 ) to be 1.0 or more. These techniques were effective in continuous casting of ordinary Al-containing silicon steel, but in the continuous casting of Sb-containing molten steel for grain-oriented silicon steel, the Al content was increased. Occurs.

【0011】図1はC:0.08%、Si:3.27%、Mn:0.07
%、N:83 ppmを含む溶鋼を取鍋に保持して1時間で連
続鋳造したときのAl及びSi量の変化と対応する製品特性
の変化とを示した例である。なお取鍋中のスラグは出鋼
時にボーキサイトを添加してAl2O3:33%、SiO2:25 %、
CaO:28%に調整し、Al2O3/SiO2= 1.32、Al2O3/CaO =1.1
8及び CaO/SiO2 =1.12とした。
FIG. 1 shows C: 0.08%, Si: 3.27%, Mn: 0.07.
This is an example showing changes in the amounts of Al and Si and corresponding changes in product characteristics when molten steel containing 83% by mass and N: 83 ppm is held in a ladle and continuously cast for 1 hour. The slag in the ladle was added with bauxite at the time of tapping, and Al 2 O 3 : 33%, SiO 2 : 25%,
CaO: adjusted to 28%, Al 2 O 3 / SiO 2 = 1.32, Al 2 O 3 / CaO = 1.1
8 and CaO / SiO 2 = 1.12.

【0012】図1から、鋳込時期の経過とともにAl含有
率は上昇する一方、Si含有率は低下することがわかる。
特に鋳込みの中段から後段にかけての製品はAl含有量が
高過ぎて2次再結晶不良を起こすところに問題がある。
これは明らかにスラグ中のAl 2O3 によって溶鋼中のSiが
酸化され、還元されたAlが溶鋼中に溶け込むためであ
る。Sbを含有する溶鋼で何故このような現象が生じるの
かは不明であるが、溶鋼中のSi含有量がAl含有量に比較
して二桁も高いこと、そしてSbによって酸化物の活量が
変化したことが関係していると考えられる。なおスラグ
中のAl2O3 の含有量を低下し、重量比Al2O3/SiO2を0.25
かつAl2O3/CaO を0.20以下とすれば、Al含有量は増加す
るため2次再結晶不良を回避できるが、鋳造の経過にし
たがってSiやSb量が低下し、またSeを含有する溶鋼では
Se量の低下も併せて発生する前述した問題が再発するこ
とになる。
From FIG. 1, the Al content is increased with the passage of casting time.
It can be seen that the Si content decreases while the ratio increases.
In particular, the products from the middle stage to the latter stage of casting have an Al content
There is a problem in that it is too high and causes secondary recrystallization failure.
This is clearly the Al in the slag 2O3The Si in the molten steel
This is because the oxidized and reduced Al melts into the molten steel.
It Why does this phenomenon occur in molten steel containing Sb?
It is unknown whether the Si content in the molten steel is compared with the Al content.
And the activity of the oxide is increased by Sb.
It is thought that the change is related. Slag
Al inside2O3The content of Al decreases2O3/ SiO2To 0.25
And Al2O3If the CaO content is 0.20 or less, the Al content will increase.
Therefore, the secondary recrystallization failure can be avoided, but in the process of casting
Therefore, the amount of Si and Sb decreases, and with molten steel containing Se,
If the Se amount also decreases, the above-mentioned problems may occur again.
Becomes

【0013】この発明は、Al及びSbを含有する磁束密度
の極めて高い方向性けい素鋼を連続鋳造法で製造する場
合に特に有利に適合する素材、すなわち鋳片長手方向の
成分変動のない連続鋳造を実現し得る方向性けい素鋼素
材の溶製方法について提案することを目的とする。
The present invention is particularly suitable for producing a grain-oriented silicon steel containing Al and Sb and having an extremely high magnetic flux density by a continuous casting method, that is, a continuous material having no component fluctuation in the longitudinal direction of the slab. The purpose of the present invention is to propose a smelting method for directional silicon steel material that can realize casting.

【0014】[0014]

【課題を解決するための手段】発明者らは、AlとSbを併
せて含有する方向性けい素鋼用溶鋼を連続鋳造する際の
Al, Si, SbやSeの含有量の変動を抑制する技術を鋭意検
討した結果、溶鋼を収容した取鍋内のスラグ組成をAl2O
3, SiO2, CaOについて、重量比にてAl2O3/SiO2を0.25以
下およびAl2O3/CaO を0.20以下とすることに併せて、T.
Feを10%以下とすることによりAl, Si, Sb. Seといった
スラブ成分の変動を抑制できるとの新規知見を得た。
Means for Solving the Problems The inventors of the present invention have succeeded in continuous casting of molten steel for grain-oriented silicon steel containing Al and Sb in combination.
As a result of diligent study on the technology for suppressing the fluctuation of the contents of Al, Si, Sb and Se, the slag composition in the ladle containing molten steel was determined to be Al 2 O 3.
With respect to 3 , 3 , SiO 2 and CaO, the weight ratios of Al 2 O 3 / SiO 2 to 0.25 or less and Al 2 O 3 / CaO to 0.20 or less, T.
We obtained a new finding that the fluctuation of slab components such as Al, Si, Sb. Se can be suppressed by setting Fe to 10% or less.

【0015】すなわちこの発明は、Si:2.5 〜 4.5%、
Al:0.01〜0.15%及びSb:0.005 〜0.08%を含有する溶
鋼を連続鋳造に供するに当たり、該溶鋼を収容した取鍋
内におけるスラグ成分を、 Al2O3/SiO2 ≦ 0.25 Al2O3/CaO ≦ 0.20 でかつ T. Fe≦ 10 % の範囲に調整することを特徴とする方向性けい素鋼素材
の溶製方法である。ここに T. Feは、FeO やFe2O3 等に
含まれるFeの総量(全Fe分量) を示す。
That is, the present invention is Si: 2.5-4.5%,
Al: 0.01 to 0.15% and Sb: 0.005 to 0.08% when subjecting the molten steel to continuous casting, the slag component in the ladle containing the molten steel was Al 2 O 3 / SiO 2 ≤ 0.25 Al 2 O 3 / CaO ≤ 0.20 and T. Fe ≤ 10% in the range. It is a method for melting grain-oriented silicon steel material. Here, T. Fe indicates the total amount of Fe contained in FeO, Fe 2 O 3, etc. (total Fe content).

【0016】また実施に当たり、スラグ厚みを50mmから
150mm に規制すること及びスラグにNa2O又はMgO を0.5
〜10%の範囲で添加することが有利に適合する。
[0016] In carrying out the operation, the slag thickness is changed from 50 mm.
Control to 150 mm and 0.5% Na 2 O or MgO in the slag.
Additions in the range of -10% are advantageously suitable.

【0017】以下、この発明を由来にするに至った実験
結果に基づきこの発明を具体的に説明する。発明者らは
溶鋼成分の低下量を定量的に評価するため、150 トンの
溶鋼を溶製した後、連続鋳造機にて一定速度での1時間
にわたる注入で鋳込みを行い、該鋳造における注入終了
時のスラブの成分含有量Cfと注入開始時のスラブの成分
含有量Ciとの差 (Cf−Ci) を成分の変化量として調査し
た。すなわち溶鋼は、C:0.069 〜0.082 %、 Si : 3.
23〜3.39%、Mn:0.062 〜0.075 %、 Se : 0.017 〜0.
021 %、Al:0.018 〜0.027 %、 Sb : 0.022 〜0.027
%及びN:68〜89 ppmの範囲にある種々の組成のものを
用い、各溶鋼を収容した取鍋内のスラグ組成を変えて鋳
込んだ際のAl, Si, Sb及びSeの上記変化量を調査した。
その調査結果を、各成分毎に図2〜5に示す。
The present invention will be described in detail below based on the experimental results that led to the origin of the present invention. In order to quantitatively evaluate the amount of decrease in molten steel composition, the inventors have made 150 tons of molten steel, cast it with a continuous casting machine at a constant rate for 1 hour, and finish the casting. The difference (Cf-Ci) between the component content Cf of the slab at that time and the component content Ci of the slab at the start of injection was investigated as the amount of change in the component. That is, molten steel is C: 0.069 to 0.082%, Si: 3.
23 to 3.39%, Mn: 0.062 to 0.075%, Se: 0.017 to 0.
021%, Al: 0.018 to 0.027%, Sb: 0.022 to 0.027
% And N: Amount of change of Al, Si, Sb and Se when various compositions in the range of 68 to 89 ppm are used and the slag composition in the ladle containing each molten steel is changed and cast. investigated.
The survey results are shown in FIGS. 2 to 5 for each component.

【0018】まず図2に示すように、Al2O3/SiO2を0.25
以下かつAl2O3/CaO を0.20以下とすることにより、Alの
増加は抑制できることがわかる。しかしながら図3に示
すSiは、Al2O3/SiO2≦0.25かつAl2O3/CaO ≦0.20とする
と、その変動量(変化量の絶対値)は低減するものの、
依然として0.02〜0.05%の低下が認められるし、図4や
図5に示すように、SbやSeにおいては逆に変動量(変化
量の絶対値)が増大する傾向がある。
First, as shown in FIG. 2, 0.25 Al 2 O 3 / SiO 2 was added.
It is understood that the increase of Al can be suppressed by setting the ratio below and the ratio of Al 2 O 3 / CaO to 0.20 or less. However, in the case of Si shown in FIG. 3, when Al 2 O 3 / SiO 2 ≦ 0.25 and Al 2 O 3 / CaO ≦ 0.20, the fluctuation amount (absolute value of the change amount) is reduced,
A decrease of 0.02 to 0.05% is still recognized, and as shown in FIGS. 4 and 5, in Sb and Se, on the contrary, the variation (absolute value of variation) tends to increase.

【0019】発明者らは上記のSi, Sb及びSeの変動の原
因を追求した結果、スラグ中のT.FeとSi, Sb及びSeの変
化量とに強い相関を見出した。すなわち図6〜8に、上
記の図2〜5に結果を示した実験データのうち、Al2O3/
SiO2≦0.25、Al2O3/CaO ≦0.20のものについてT.FeとS
i, Sb及びSeの変化量との関係を示すように、T.Fe量の
低下とともにSi, Sb及びSeの変化量も小さくなってい
る。
As a result of pursuing the causes of the above fluctuations of Si, Sb and Se, the inventors have found a strong correlation between T.Fe in the slag and the amounts of changes of Si, Sb and Se. That is, in FIGS. 6 to 8, among the experimental data whose results are shown in FIGS. 2 to 5 above, Al 2 O 3 /
For SiO 2 ≤ 0.25 and Al 2 O 3 / CaO ≤ 0.20 T.Fe and S
As shown in the relationship with the amount of change in i, Sb, and Se, the amount of change in Si, Sb, and Se also decreases as the T.Fe amount decreases.

【0020】スラグ中のT.FeはFeO, Fe2O3などであり、
通常1%から30%程度含まれている。これは主に転炉で
の脱炭吹錬によって鉄が酸化されることにより生成する
ものである。ここでのスラグ成分は転炉での副原料とし
てCaO が用いられているため、T.FeとCaO の比率が極め
て高い。T.Feの比率を低下させるためには、転炉での吹
錬を下吹き法などで行う方法の他、出鋼時に取鍋に溶鋼
を注入する際に混入するスラグの量を抑える手法が有効
である。何故ならば、これ以降はSiやAlを溶鋼に添加す
るので、このときに生成するSiO2やAl2O3 のスラグへの
混入や、添加するCaO の混入によってスラグ中のT.Feが
低下するからである。T.Feが高い場合スラグ中Siの低下
が進行するのは、スラグ中のFeO やFe2O3 による溶鋼Si
の酸化が原因であろうが、SbやSeの低下を進行させる原
因は不明である。おそらくスラグの流動性が関係し、Sb
やSeがスラグ中に取込まれるものと考えられる。
T.Fe in the slag is FeO, Fe 2 O 3, etc.,
It is usually contained in the range of 1% to 30%. This is generated mainly by the oxidation of iron by decarburization blowing in a converter. Since CaO is used as an auxiliary raw material in the converter for the slag component, the ratio of T.Fe and CaO is extremely high. In order to reduce the ratio of T.Fe, in addition to the method of blowing in the converter by the down-blowing method, there is a method of suppressing the amount of slag mixed when pouring molten steel into the ladle at the time of tapping. It is valid. Because Si and Al are added to the molten steel after this, the T.Fe in the slag decreases due to the mixing of SiO 2 and Al 2 O 3 generated at this time into the slag, and the mixing of CaO added. Because it does. When T.Fe is high, the decrease of Si in slag progresses because molten steel Si due to FeO and Fe 2 O 3 in slag
The cause of the progress of the decrease of Sb and Se is unknown. Probably related to slag liquidity, Sb
And Se are considered to be captured in the slag.

【0021】次に上記した実験と同一の成分組成からな
る溶鋼を同様に連続鋳造で鋳造した。この時のスラブ組
成はAl2O3/SiO2: 0.10〜0.20、Al2O3/CaO : 0.10〜0.20
とし、T.Fe: 5〜10%とした。そして一部は出鋼時にソ
ーダ灰をまたはMgO を添加することによってスラグ中に
Na2OやMgO を含有させ、他の一部は溶鋼を覆うスラグの
厚みを変化させ、それぞれ連続鋳造し成分の変化量を測
定した。この測定結果を図9〜11に示す。
Next, molten steel having the same composition as in the above experiment was similarly cast by continuous casting. The slab composition at this time is Al 2 O 3 / SiO 2 : 0.10 to 0.20, Al 2 O 3 / CaO: 0.10 to 0.20.
And T.Fe: 5-10%. And part of it was added to the slag by adding soda ash or MgO during tapping.
Na 2 O and MgO were added, and the thickness of the slag that covered the molten steel was changed for some other parts, and continuous casting was performed for each, and the amount of change in the composition was measured. The measurement results are shown in FIGS.

【0022】図9よりスラグ厚み50mmから150mm の範囲
で、Si, Sb, Seの変化量が極めて少なくなることがわか
る。スラグ厚みが薄いと、スラグ中の鉄酸化物の量が減
少するのでこの悪影響は低減するが、50mmよりも少なく
なると逆に溶鋼が大気と接触する確率が増し、T.Feの増
加につながるものと考えられる。
From FIG. 9, it can be seen that the change amount of Si, Sb, Se becomes extremely small in the range of 50 to 150 mm of slag thickness. If the slag thickness is thin, the amount of iron oxide in the slag will decrease, so this adverse effect will be reduced, but if it is less than 50 mm, the probability that molten steel will come into contact with the atmosphere will increase, leading to an increase in T.Fe. it is conceivable that.

【0023】また図10はスラグ中のNa2Oの影響を調べた
もので、Ma2Oの含有量が増加するに従ってSi,Sb, Seの
変動量が低減している。さらに図11はスラグ中のMgO の
影響を調べたもので、Na2Oと同様に、その含有量が増加
するに従ってSi, Sb, Seの変動量が低減している。なお
Na2O又はMgO の含有量の増加によってSi, Sb, Seの変動
量が低減する理由は、Na2OやMgO の増加がスラグの流動
性を低下するため、溶鋼とスラグ間の生成物のスラグ内
への取り込みが抑制されるためと考えられる。但し10%
以上の含有はスラグの流動性を極端に低下させ、鋳造終
了後の取鍋からの排滓作業を困難にするため、好ましく
ない。
Further, FIG. 10 shows the effect of Na 2 O in the slag, and the variation of Si, Sb and Se decreases as the content of Ma 2 O increases. Furthermore, Fig. 11 shows the effect of MgO in the slag, and as with Na 2 O, the variation of Si, Sb, Se decreases as the content increases. Note that
The reason why the variation of Si, Sb, Se is reduced by the increase of the content of Na 2 O or MgO is that the increase of Na 2 O and MgO decreases the fluidity of the slag. This is probably because the uptake into the slag is suppressed. However, 10%
The above contents are not preferable because they drastically reduce the fluidity of the slag and make it difficult to remove the sludge from the ladle after the casting.

【0024】[0024]

【作用】この発明における方向性けい素鋼素材は、Si、
Al及びSbを含有する組成になる。まずSiは、あまりに少
ないと電気抵抗が小さくなって良好な鉄損特性が得られ
ず、一方多過ぎると冷間圧延が困難になるので、2.5 〜
4.5 %の範囲とする。この他にCは、熱延組織改善に必
要であるが、多過ぎると脱炭が困難となるので、0.035
〜0.090 %程度の範囲で含有することが好ましい。
[Function] The grain-oriented silicon steel material in the present invention is made of Si,
The composition contains Al and Sb. First, if Si is too small, the electric resistance becomes small and good iron loss characteristics cannot be obtained, while if it is too large, cold rolling becomes difficult.
The range is 4.5%. In addition to this, C is necessary for improving the hot rolling structure, but if it is too much, decarburization becomes difficult, so 0.035
It is preferably contained in the range of about 0.090%.

【0025】またAlはインヒビター形成成分として不可
欠で、すなわちインヒビターについては、高磁束密度を
得るためにはAlN がとりわけ有利であるので、この発明
でも主要インヒビターとしてAlN を用いるものとする
が、多過ぎるとかえって微細析出が困難となるためAl:
0.01〜0.15%の範囲とし、一方Nは0.0030〜0.020 %の
範囲が好適である。ここに主要インヒビターとは、これ
が欠けると2次再結晶の発現が不能になるものを云う。
Also, Al is essential as an inhibitor-forming component, that is, for the inhibitor, AlN is particularly advantageous for obtaining a high magnetic flux density. Therefore, in the present invention, AlN is used as the main inhibitor, but too many. On the contrary, since fine precipitation becomes difficult, Al:
It is preferably in the range of 0.01 to 0.15%, while N is preferably in the range of 0.0030 to 0.020%. The term "major inhibitor" as used herein means that, when it is lacking, secondary recrystallization cannot be expressed.

【0026】なおインヒビター形成成分として、S、Se
を補助的に含有させても良い。すなわちS又はSeはMnS
又はMnSeとして析出しインヒビターとして有効で、この
うちMnSeは特に最終仕上げ板厚が薄くなっても抑制効果
が強いので、好ましい。かようなMnS 、MnSeを微細析出
させるのに好適なSやSeの範囲は単独および併用いずれ
の場合も0.01〜0.40%程度である。なおMnは、上記した
とおりインヒビター成分となるが、多過ぎると溶体化が
困難であるので0.05〜0.15%の範囲が好適である。
As the inhibitor-forming component, S, Se
May be supplementarily contained. That is, S or Se is MnS
Alternatively, it precipitates as MnSe and is effective as an inhibitor. Among them, MnSe is preferable because it has a strong suppressing effect even when the final finished plate thickness becomes thin. The range of S and Se suitable for finely precipitating such MnS and MnSe is about 0.01 to 0.40% in both cases of single and combined use. It should be noted that Mn becomes an inhibitor component as described above, but if it is too much, solution treatment is difficult, so the range of 0.05 to 0.15% is preferable.

【0027】この発明ではさらに、Sbを鋼中に含有させ
ることが必須であり、0.005 〜0.08%程度のSbを含有さ
せることにより、鋼板板厚の薄い場合にも極めて高い磁
束密度の製品が得られる。これは、Sbの鋼板表面や結晶
粒界への偏析効果が有効に作用して、鋼板板厚の小さい
場合にも、インヒビター抑制効果が維持されるからであ
る。
Further, in the present invention, it is indispensable to contain Sb in the steel, and by containing 0.005 to 0.08% of Sb, a product having an extremely high magnetic flux density can be obtained even when the steel plate is thin. Be done. This is because the segregation effect of Sb on the steel plate surface and grain boundaries effectively acts, and the inhibitor suppressing effect is maintained even when the steel plate thickness is small.

【0028】以上の他さらに、磁性の向上のために、C
u, Cr, Bi,Sn, B,Ge等のインヒビター補強元素も適宜
添加することができ、その範囲も公知の範囲でよい。ま
た熱間脆化に起因した表面欠陥防止及び熱延仕上圧延で
の再結晶の抑制のためには、0.005〜0.020 %の範囲のM
o添加が好ましい。
In addition to the above, in order to improve magnetism, C
Inhibitor-reinforcing elements such as u, Cr, Bi, Sn, B and Ge can be added as appropriate, and the range thereof may be a known range. In order to prevent surface defects caused by hot embrittlement and suppress recrystallization in hot rolling and finish rolling, M in the range of 0.005 to 0.020% is used.
o Addition is preferred.

【0029】かかる組成の鋼は公知の製法で溶製し、そ
の後連続鋳造に供するため取鍋に収容するが、ここで取
鍋内のスラグ組成のうち、Al2O3,SiO2及びCaO を重量比
で Al2O3/SiO2 ≦ 0.25 Al2O3/CaO ≦ 0.20 に規制し、さらに T. Feを T. Fe≦10% とすることがこの発明の骨子で、これにより鋳込みスラ
グの長さ方向における成分変動を抑制することが可能と
なる。
Steel having such a composition is melted by a known manufacturing method and then stored in a ladle for use in continuous casting. Here, among the slag compositions in the ladle, Al 2 O 3 , SiO 2 and CaO are contained. The weight ratio of Al 2 O 3 / SiO 2 ≤ 0.25 Al 2 O 3 / CaO ≤ 0.20 is regulated, and it is the essence of the present invention that T. Fe is T. Fe ≤ 10%. It is possible to suppress the component fluctuation in the length direction.

【0030】Al2O3/SiO2が 0.25 を超えるか又はAl2O3/
CaO が0.20を超えると、Alの変動が大きくなり、T.Feが
1.0 %を超えるとSi, SbやSeの変動量が大きくなる。Al
2O3 はAlを含有させるため溶鋼に投入されたAlが酸化さ
れ生成するため、特に出鋼時にボーキサイトなどアルミ
ニウムの酸化物を添加する等の処理は全く不要であるば
かりか、逆にAl2O3 含有量を高めるので好ましくない。
スラグ中のAl2O3 の含有量が高い場合は、CaO やSiO2
添加して、上記比を低下させる必要がある。
Al 2 O 3 / SiO 2 exceeds 0.25 or Al 2 O 3 /
When CaO exceeds 0.20, the fluctuation of Al becomes large and T.Fe becomes
If it exceeds 1.0%, the fluctuation amount of Si, Sb and Se becomes large. Al
Since 2 O 3 contains Al and is generated by the oxidation of Al introduced into molten steel, it is not necessary to treat aluminum oxide such as bauxite at the time of tapping at all, and conversely Al 2 It is not preferable because it increases the O 3 content.
When the content of Al 2 O 3 in the slag is high, it is necessary to add CaO or SiO 2 to reduce the above ratio.

【0031】またT.Feを低減するには、転炉吹錬での副
原料である石灰の添加量を増加したり下吹き吹錬を行う
か、或いは出鋼時に取鍋に混入するスラグの量を制限
し、同時に焼石灰を添加することにより調節できる。
In order to reduce T.Fe, the amount of lime, which is an auxiliary material in converter blowing, should be increased or lower blowing should be performed, or the slag mixed in the ladle during tapping should be removed. It can be controlled by limiting the amount and at the same time adding calcined lime.

【0032】さらにこの発明では、取鍋内のスラグの厚
さを50mmから150mm に制限すること又はスラグ中にNa2O
又はMgO を0.5 〜10%の範囲で含有させることにより、
鋳込みスラブの長さ方向の成分の変動量をより有効に抑
制することが可能である。すなわちスラグの厚みが50mm
より薄いと溶鋼の大気酸化が促進される一方、150mmよ
り厚いとスラブのSi, Sb, Seの成分変動を助長し、また
Na2O又はMgO 量が0.5%未満では成分変動を抑制する効
果に乏しい一方、10%を超えるとスラグの流動性が劣化
し作業性が極端に低下するので望ましくない。なおスラ
グの厚さ調節は、出鋼時の後半で、溶鋼とともに取鍋に
混入するスラグの量を調節するか、特に取鍋内のスラグ
の厚みが薄い場合にはCaO を添加することによっても行
われる。またスラグにNa2O成分を含有させる方法は出鋼
時にソーダ灰を添加することで、また同様にMgO 成分
は、MgO やドロマイトなどの添加によって、それぞれ実
現できる。
Further, in the present invention, the thickness of the slag in the ladle is limited to 50 mm to 150 mm, or Na 2 O is contained in the slag.
Or, by containing MgO in the range of 0.5 to 10%,
It is possible to more effectively suppress the variation amount of the component in the length direction of the cast slab. That is, the slag thickness is 50 mm
A thinner layer promotes atmospheric oxidation of molten steel, while a thicker layer than 150 mm promotes fluctuations in the Si, Sb, and Se composition of the slab.
When the content of Na 2 O or MgO is less than 0.5%, the effect of suppressing the component fluctuation is poor, while when it exceeds 10%, the fluidity of the slag is deteriorated and the workability is extremely deteriorated, which is not desirable. The slag thickness can be adjusted by adjusting the amount of slag mixed in the ladle with molten steel in the latter half of tapping, or by adding CaO especially when the slag in the ladle is thin. Done. The method of adding Na 2 O component to the slag can be realized by adding soda ash during tapping, and similarly, the MgO component can be realized by adding MgO, dolomite, or the like.

【0033】かかる工程を経て得られたスラブは、Alと
Sbとを含有する方向性けい素鋼板の公知の製法を適用
し、必要に応じて再圧したスラブを高温で加熱し、熱間
圧延の供する。そして熱延後の鋼帯は1回の冷間圧延、
あるいは中間焼鈍を挟む2回の冷間圧延によって最終板
厚とする。最終冷延前の焼鈍は、 AlNの溶体化のために
は 850〜1200℃の高温とすることが好ましく、また焼鈍
後、AlN の析出のため 500℃までの急冷処理を施すこと
が好ましい。ここでの冷却は、例えば特公昭46-23820号
公報の実施例に示されるように、湯中に浸漬して低温ま
で急冷しても良いが、Sbを含有する鋼においては、少な
くとも 500℃までを急冷し、 500℃から 200℃の温度領
域内において徐冷する処理または歪を付加して徐冷する
処理を施す方法が有利である。
The slab obtained through these steps is
A known manufacturing method of a grain-oriented silicon steel sheet containing Sb is applied, and the slab that is recompressed is heated at a high temperature if necessary and hot-rolled. And the steel strip after hot rolling is cold-rolled once,
Alternatively, the final plate thickness is obtained by cold rolling twice with intermediate annealing. The annealing before the final cold rolling is preferably performed at a high temperature of 850 to 1200 ° C for solutionizing AlN, and after annealing, it is preferable to perform a rapid cooling treatment to 500 ° C for precipitation of AlN. The cooling here may be performed by immersing in hot water and rapidly cooling to a low temperature as shown in, for example, JP-B-46-23820, but in the steel containing Sb, at least 500 ° C. It is advantageous to rapidly cool the solution and gradually cool it in a temperature range of 500 to 200 ° C or to add strain to gradually cool it.

【0034】次に最終冷延の圧下率については、公知の
ように高磁束密度を得るためには高圧下率とすることが
好ましく、従って1回法の圧下率および2回法における
最終冷延の圧下率はいずれも、80〜95%の範囲とする。
というのは圧下率が80%より少ないと高磁束密度が得ら
れず、一方95%を超えると2次再結晶が困難となるから
である。
Regarding the final cold rolling reduction rate, it is preferable to use a high pressure reduction rate in order to obtain a high magnetic flux density as known in the art. Therefore, the single reduction rolling rate and the final cold rolling reduction in the double rolling method are performed. The reduction rate of each is 80 to 95%.
This is because if the rolling reduction is less than 80%, a high magnetic flux density cannot be obtained, while if it exceeds 95%, secondary recrystallization becomes difficult.

【0035】なお最終冷間圧延の途中で時効処理を行う
ことは、製品の鉄損を低減する上で有利である。特にSb
を含有するこの発明の成分系では、短時間のそれも1回
の時効処理によって磁束密度の格段の向上が認められる
点に優れた特徴がある。最終圧延後の鋼板は脱脂処理を
施した後、脱炭・1次再結晶焼鈍に供される。次いでMg
Oを主成分とする焼鈍分離剤を塗布してから、コイル状
に巻かれて最終仕上げ焼鈍に供され、その後必要に応じ
て絶縁コーティングを施されるが、時にレーザーやプラ
ズマを利用した処理、その他の手法によって磁区細分化
処理を施すことも可能である。
Note that performing the aging treatment during the final cold rolling is advantageous in reducing the iron loss of the product. Especially Sb
The component system of the present invention containing is excellent in that the magnetic flux density is remarkably improved by a single aging treatment even for a short time. The steel sheet after the final rolling is subjected to degreasing treatment, and then subjected to decarburization and primary recrystallization annealing. Then Mg
After applying an annealing separator containing O as a main component, it is wound into a coil and subjected to final annealing, and then an insulating coating is applied if necessary, but sometimes using a laser or plasma, It is also possible to perform the magnetic domain subdivision processing by other methods.

【0036】[0036]

【実施例】【Example】

実施例1 上・下吹き転炉で溶製したけい素鋼板用溶鋼に、3.5kg/
t の割合で出鋼中の取鍋にCaO を添加し、同時にFeSi合
金も添加した。次いで真空脱ガス(RH)炉でC,Si, Mn,
Al, Se, Mo, Sb, Nの調整を行った後、取鍋内スラグの
成分調整を行いながら連続鋳造機で一定の速度で鋳造し
た。ここでRH直後の溶鋼の組成は、C:0.075 %、Si:
3.32%、Mn:0.070 %、Al: 0.027 %、Se:0.018%、M
o:0.011%、Sb:0.025%、N:89 ppmであり、またスラ
グ組成は T.Fe 3%、Al2O3 7%、SiO2 30 %、CaO 48
%であり、スラグの厚みは80mmであった。溶鋼は70分間
かけて取鍋より連鋳タンディシュへ注入し、10分毎の各
鋳込時間に対応するスラブ試料を採取し分析した。この
分析結果を表1に示す。
Example 1 For molten steel for a silicon steel plate melted in an upper / lower blowing converter, 3.5 kg /
At the rate of t, CaO was added to the ladle during tapping, and FeSi alloy was also added at the same time. Then, in a vacuum degassing (RH) furnace, C, Si, Mn,
After adjusting Al, Se, Mo, Sb, and N, casting was performed at a constant speed by a continuous casting machine while adjusting the components of the slag in the ladle. The composition of molten steel immediately after RH is C: 0.075%, Si:
3.32%, Mn: 0.070%, Al: 0.027%, Se: 0.018%, M
o: 0.011%, Sb: 0.025%, N: 89 ppm, and the slag composition is T.Fe 3%, Al 2 O 3 7%, SiO 2 30%, CaO 48
%, And the thickness of the slag was 80 mm. Molten steel was poured into the continuous casting tundish from the ladle over 70 minutes, and slab samples corresponding to each casting time were collected and analyzed every 10 minutes. The results of this analysis are shown in Table 1.

【0037】また比較として、上吹き転炉で溶製したけ
い素鋼板用の出鋼中にFeSi合金及びボーキサイトを添加
し、同じくRH炉で C, Si, Al, Se, Mo, Sb, N の調整を
行い、連続鋳造機で一定の速度で鋳造した。ここでRH直
後の溶鋼の組成は、C:0.078 %、Si:3.30 %、Mn:0.0
68%、Al:0.026%、Se:0.019%、Mo:0.012%、Sb:0.026
%、N:92 ppmであり、またスラグ組成は T.Fe 13%、Al
2O3 11%、SiO2 28 %、CaO 32%であり、スラグの厚み
は160mm であった。溶鋼は70分かけて取鍋より連鋳タン
ディシュへ注入し、10分毎の各鋳込時間に対応するスラ
ブ試料を採取し分析した。この分析結果を比較例として
表1に併せて示す。
As a comparison, FeSi alloy and bauxite were added to the steel output for the silicon steel sheet melted in the top-blown converter, and C, Si, Al, Se, Mo, Sb, N were also added in the RH furnace. Adjustments were made and casting was carried out at a constant speed on a continuous casting machine. The composition of molten steel immediately after RH is C: 0.078%, Si: 3.30%, Mn: 0.0
68%, Al: 0.026%, Se: 0.019%, Mo: 0.012%, Sb: 0.026
%, N: 92 ppm, and the slag composition is T.Fe 13%, Al
2 O 3 11%, SiO 2 28%, CaO 32%, and the slag had a thickness of 160 mm. Molten steel was poured into the continuous casting tundish from the ladle over 70 minutes, and slab samples corresponding to each casting time were collected and analyzed every 10 minutes. The results of this analysis are also shown in Table 1 as a comparative example.

【0038】[0038]

【表1】 [Table 1]

【0039】実施例2 上・下吹き転炉で溶製したけい素鋼板用溶鋼に、4.2kg/
t の割合で出鋼中の取鍋に20%のソーダ灰を含むCaO を
添加し、同時にFeSi合金も添加した。次いで真空脱ガス
(RH)炉でC,Si, Mn, Al, Se, Mo, Sb, Nの調整を行っ
た後、取鍋内スラグの成分調整を行いながら連続鋳造機
で一定の速度で鋳造した。ここでRH直後の溶鋼の組成
は、C:0.069 %、Si:3.25%、Mn:0.075 %、Al: 0.
025 %、Mo:0.012%、Sb:0.025%、N:72 ppmであり、
またスラグ組成は T.Fe 6%、Al2O 3 4%、SiO2 32
%、CaO 41%、Na2O 2%であり、スラグの厚みは170m
m であった。溶鋼は60分間かけて取鍋より連鋳タンディ
シュへ注入し、10分毎の各鋳込時間に対応するスラブ試
料を採取し分析した。この分析結果を表2に示す。
EXAMPLE 2 4.2 kg /
CaO containing 20% soda ash was added to the ladle during tapping at a rate of t.
FeSi alloy was also added at the same time. Then vacuum degassing
(RH) furnace adjusts C, Si, Mn, Al, Se, Mo, Sb, N
After that, the continuous casting machine while adjusting the composition of the slag in the ladle
Was cast at a constant speed. Here, the composition of molten steel immediately after RH
Is C: 0.069%, Si: 3.25%, Mn: 0.075%, Al: 0.
025%, Mo: 0.012%, Sb: 0.025%, N: 72 ppm,
The slag composition is T.Fe 6%, Al2O 34%, SiO2 32
%, CaO 41%, Na2O 2%, slag thickness is 170m
It was m. Molten steel is cast continuously from the ladle for 60 minutes.
Slab test that injects every 10 minutes for each casting time.
The material was collected and analyzed. The results of this analysis are shown in Table 2.

【0040】[0040]

【表2】 [Table 2]

【0041】実施例3 上・下吹き転炉で溶製したけい素鋼板用溶鋼に、4.5kg/
t の割合で出鋼中の取鍋に10%のMgO を含むCaO を添加
し、同時にFeSi合金も添加した。このとき溶鋼へのスラ
グの混入を避けるため、出鋼量も制限した。次いで真空
脱ガス(RH)炉でC,Si, Mn, Al, Se, Mo, Sb, Nの調整
を行った後、取鍋内スラグの成分調整を行いながら連続
鋳造機で一定の速度で鋳造した。ここでRH直後の溶鋼の
組成は、C:0.068 %、Si:3.25%、Mn:0.065 %、A
l: 0.023 %、Se:0.020%、Sb:0.027%、N:82 ppmで
あり、またスラグ組成は T.Fe 1.5 %、Al2O 3 3%、
SiO235 %、CaO 48%、MgO 5%であり、スラグの厚み
は120mm であった。溶鋼は60分間かけて取鍋より連鋳タ
ンディシュへ注入し、10分毎の各鋳込時間に対応するス
ラブ試料を採取し分析した。この分析結果を表3に示
す。
Example 3 4.5 kg / mol of molten steel for a silicon steel plate melted in an upper / lower blowing converter
CaO containing 10% of MgO was added to the ladle during tapping at a ratio of t, and at the same time FeSi alloy was also added. At this time, the amount of tapped steel was also limited in order to avoid mixing of slag into the molten steel. Next, after adjusting C, Si, Mn, Al, Se, Mo, Sb, N in a vacuum degassing (RH) furnace, casting at a constant speed with a continuous casting machine while adjusting the composition of the slag in the ladle. did. The composition of molten steel immediately after RH is C: 0.068%, Si: 3.25%, Mn: 0.065%, A
l: 0.023%, Se: 0.020%, Sb: 0.027%, N: 82 ppm, and the slag composition is T.Fe 1.5%, Al 2 O 3 3%,
SiO 2 was 35%, CaO was 48%, MgO was 5%, and the thickness of the slag was 120 mm. Molten steel was poured into the continuous casting tundish from the ladle over 60 minutes, and slab samples corresponding to each casting time were collected and analyzed every 10 minutes. The results of this analysis are shown in Table 3.

【0042】また比較として、上吹き転炉で溶製したけ
い素鋼板用の出鋼中に2.5kg/t のCaO とともにFeSi合金
を添加し、同じくRH炉で C, Si, Al, Se, Mo, Sb, N の
調整を行い、連続鋳造機で一定の速度で鋳造した。ここ
でRH直後の溶鋼の組成は、C:0.070 %、Si:3.27 %、
Mn:0.065%、Al:0.024%、Se:0.019%、Sb:0.026%、N:
80 ppmであり、またスラグ組成は T.Fe 13%、Al2O3 11
%、SiO2 28 %、CaO32%であり、スラグの厚みは150mm
であった。溶鋼は60分かけて取鍋より連鋳タンディシ
ュへ注入し、10分毎の各鋳込時間に対応するスラブ試料
を採取し分析した。この分析結果を比較例として表3に
併せて示す。
Further, as a comparison, FeSi alloy was added together with 2.5 kg / t of CaO in the steel output for the silicon steel sheet melted in the top-blown converter, and C, Si, Al, Se and Mo were also added in the RH furnace. , Sb, N were adjusted, and casting was performed at a constant speed with a continuous casting machine. The composition of molten steel immediately after RH is C: 0.070%, Si: 3.27%,
Mn: 0.065%, Al: 0.024%, Se: 0.019%, Sb: 0.026%, N:
80 ppm, and the slag composition is T.Fe 13%, Al 2 O 3 11
%, SiO 2 28%, CaO 32%, slag thickness is 150 mm
Met. Molten steel was poured into the continuous casting tundish from the ladle over 60 minutes, and slab samples corresponding to each casting time every 10 minutes were collected and analyzed. The results of this analysis are also shown in Table 3 as a comparative example.

【0043】[0043]

【表3】 [Table 3]

【0044】[0044]

【発明の効果】この発明に従って取鍋内のスラグ組成を
調整して得た溶鋼を連続鋳造に供することによって、長
さ方向における成分変動のない鋳込みスラブを提供で
き、従って成分変動にともなう製品の磁気特性の劣化を
防止することが可能である。
INDUSTRIAL APPLICABILITY By subjecting the molten steel obtained by adjusting the slag composition in the ladle according to the present invention to continuous casting, it is possible to provide a cast slab without fluctuations in the composition in the length direction, and thus to obtain a product with fluctuations in composition. It is possible to prevent deterioration of magnetic characteristics.

【図面の簡単な説明】[Brief description of drawings]

【図1】Al及びSi量の変化と対応する製品特性の変化と
の関係を示したグラフである。
FIG. 1 is a graph showing the relationship between changes in Al and Si amounts and corresponding changes in product characteristics.

【図2】Al2O3/SiO2 及び Al2O3/CaOとAl量の変化との
関係を示すグラフである。
FIG. 2 is a graph showing the relationship between Al 2 O 3 / SiO 2 and Al 2 O 3 / CaO and changes in the amount of Al.

【図3】Al2O3/SiO2 及び Al2O3/CaOとSi量の変化との
関係を示すグラフである。
FIG. 3 is a graph showing the relationship between Al 2 O 3 / SiO 2 and Al 2 O 3 / CaO and changes in the amount of Si.

【図4】Al2O3/SiO2 及び Al2O3/CaOとSb量の変化との
関係を示すグラフである。
FIG. 4 is a graph showing the relationship between Al 2 O 3 / SiO 2 and Al 2 O 3 / CaO and changes in the amount of Sb.

【図5】Al2O3/SiO2 及び Al2O3/CaOとSe量の変化との
関係を示すグラフである。
FIG. 5 is a graph showing the relationship between Al 2 O 3 / SiO 2 and Al 2 O 3 / CaO and changes in the amount of Se.

【図6】T. FeとSi量の変化との関係を示すグラフであ
る。
FIG. 6 is a graph showing the relationship between T. Fe and changes in Si content.

【図7】T. FeとSb量の変化との関係を示すグラフであ
る。
FIG. 7 is a graph showing the relationship between T. Fe and changes in the amount of Sb.

【図8】T. FeとSe量の変化との関係を示すグラフであ
る。
FIG. 8 is a graph showing the relationship between T. Fe and changes in Se content.

【図9】スラグ厚みとSi,Sb及びSe量の変化との関係を
示すグラフである。
FIG. 9 is a graph showing the relationship between slag thickness and changes in Si, Sb, and Se amounts.

【図10】Na2O含有量とSi,Sb及びSe量の変化との関係
を示すグラフである。
FIG. 10 is a graph showing the relationship between the Na 2 O content and changes in the amounts of Si, Sb, and Se.

【図11】MgO 含有量とSi,Sb及びSe量の変化との関係
を示すグラフである。
FIG. 11 is a graph showing the relationship between MgO content and changes in Si, Sb, and Se contents.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 Si:2.5 〜 4.5 wt %、Al:0.01〜0.15
wt %及びSb:0.005 〜0.08 wt %を含有する溶鋼を連
続鋳造に供するに当たり、該溶鋼を収容した取鍋内にお
けるスラグ成分を、 Al2O3/SiO2 ≦ 0.25 Al2O3/CaO ≦ 0.20 でかつ T. Fe≦ 10 wt% の範囲に調整することを特徴とする方向性けい素鋼素材
の溶製方法。
1. Si: 2.5-4.5 wt%, Al: 0.01-0.15
When the molten steel containing wt% and Sb: 0.005 to 0.08 wt% is subjected to continuous casting, the slag component in the ladle containing the molten steel is Al 2 O 3 / SiO 2 ≤ 0.25 Al 2 O 3 / CaO ≤ A melting method for a grain-oriented silicon steel material, characterized in that the content is adjusted to 0.20 and T. Fe ≤ 10 wt%.
【請求項2】 スラグの厚さを50〜 150mmとした請求項
1記載の方法。
2. The method according to claim 1, wherein the slag has a thickness of 50 to 150 mm.
【請求項3】 スラグにNa2O又はMgO を 0.5〜10wt%の
範囲で添加する請求項1記載の方法。
3. The method according to claim 1, wherein Na 2 O or MgO is added to the slag in the range of 0.5 to 10 wt%.
JP3262299A 1991-10-09 1991-10-09 Method of melting directional silicon steel material Expired - Fee Related JPH07122090B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3262299A JPH07122090B2 (en) 1991-10-09 1991-10-09 Method of melting directional silicon steel material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3262299A JPH07122090B2 (en) 1991-10-09 1991-10-09 Method of melting directional silicon steel material

Publications (2)

Publication Number Publication Date
JPH0598339A true JPH0598339A (en) 1993-04-20
JPH07122090B2 JPH07122090B2 (en) 1995-12-25

Family

ID=17373858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3262299A Expired - Fee Related JPH07122090B2 (en) 1991-10-09 1991-10-09 Method of melting directional silicon steel material

Country Status (1)

Country Link
JP (1) JPH07122090B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100815768B1 (en) * 2001-09-14 2008-03-20 주식회사 포스코 Method for controlling refine slag of Grain-Oriented electrical Steel
CN102642003A (en) * 2012-04-05 2012-08-22 河北钢铁股份有限公司邯郸分公司 Operating method for adding double-layer covering agent dedicated for non-oriented electrical steel and exchanging slags
CN103121090A (en) * 2013-03-12 2013-05-29 西峡龙成冶金材料有限公司 High-manganese medium-carbon peritectic steel continuous casting crystallizer casting powder and preparation method thereof
JP2016199785A (en) * 2015-04-09 2016-12-01 新日鐵住金株式会社 METHOD FOR REFORMING SLAG USING FeSi ALLOY PARTICLE
CN106890961A (en) * 2017-01-05 2017-06-27 北京首钢股份有限公司 A kind of low titanium bilayer coverture and its application method for silicon steel
CN108723313A (en) * 2018-06-29 2018-11-02 洛阳普拉斯自动化科技装备有限公司 The covering slag of high grade cold rolling silicon steel
CN112733285A (en) * 2020-12-23 2021-04-30 山东寿光巨能特钢有限公司 Method for determining continuous casting drawing speed of large-section manganese-containing alloy steel

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100815768B1 (en) * 2001-09-14 2008-03-20 주식회사 포스코 Method for controlling refine slag of Grain-Oriented electrical Steel
CN102642003A (en) * 2012-04-05 2012-08-22 河北钢铁股份有限公司邯郸分公司 Operating method for adding double-layer covering agent dedicated for non-oriented electrical steel and exchanging slags
CN103121090A (en) * 2013-03-12 2013-05-29 西峡龙成冶金材料有限公司 High-manganese medium-carbon peritectic steel continuous casting crystallizer casting powder and preparation method thereof
JP2016199785A (en) * 2015-04-09 2016-12-01 新日鐵住金株式会社 METHOD FOR REFORMING SLAG USING FeSi ALLOY PARTICLE
CN106890961A (en) * 2017-01-05 2017-06-27 北京首钢股份有限公司 A kind of low titanium bilayer coverture and its application method for silicon steel
CN106890961B (en) * 2017-01-05 2019-10-11 北京首钢股份有限公司 A kind of low titanium bilayer coverture and its application method for silicon steel
CN108723313A (en) * 2018-06-29 2018-11-02 洛阳普拉斯自动化科技装备有限公司 The covering slag of high grade cold rolling silicon steel
CN112733285A (en) * 2020-12-23 2021-04-30 山东寿光巨能特钢有限公司 Method for determining continuous casting drawing speed of large-section manganese-containing alloy steel
CN112733285B (en) * 2020-12-23 2022-10-11 山东寿光巨能特钢有限公司 Method for determining continuous casting drawing speed of large-section manganese-containing alloy steel

Also Published As

Publication number Publication date
JPH07122090B2 (en) 1995-12-25

Similar Documents

Publication Publication Date Title
US5779819A (en) Grain oriented electrical steel having high volume resistivity
KR101351149B1 (en) Method for producing grain-oriented electromagnetic steel plate
JPS6245285B2 (en)
KR930001330B1 (en) Process for production of grain oriented electrical steel sheet having high flux density
JPH0774388B2 (en) Method for manufacturing unidirectional silicon steel sheet with high magnetic flux density
CN108754338B (en) Production process of high-magnetic-induction low-iron-loss oriented silicon steel
JPH02259020A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JPH0686631B2 (en) Method for manufacturing unidirectional electrical steel sheet with high magnetic flux density
JP2022514794A (en) Directional electrical steel sheet and its manufacturing method
JP2002212639A (en) Method for producing grain oriented silicon steel sheet having excellent magnetic property
JPH0598339A (en) Production of grain oriented silicon steel material
JP2000282142A (en) Manufacture of grain oriented silicon steel sheet
JPH059666A (en) Grain oriented electrical steel sheet and its manufacture
JP2000119824A (en) Grain oriented silicon steel sheet low in core loss
JPH08269552A (en) Production of grain oriented silicon steel sheet having ultrahigh magnetic flux density
JPH05295447A (en) Annealing method for finishing grain oriented electrical steel sheet in short time
JP2001192787A (en) Grain oriented silicon steel sheet excellent in magnetic property, and its manufacturing method
JP7047818B2 (en) Refining method of molten steel
JPH07122088B2 (en) Method for manufacturing slabs for grain-oriented silicon steel
JP4473357B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties
WO2008078947A1 (en) Method of manufacturing grain-oriented electrical steel sheets
JP2000199014A (en) Production of grain oriented silicon steel sheet
JP2653948B2 (en) Preparation of Standard Grain Oriented Silicon Steel without Hot Strip Annealing
JPH07258738A (en) Production of grain-oriented magnetic steel sheet having high magnetic flux density
JPH10212555A (en) Nonoriented silicon steel sheet excellent in magnetic property and its production

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071225

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081225

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081225

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091225

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091225

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101225

Year of fee payment: 15

LAPS Cancellation because of no payment of annual fees