JPH059773A - Preparation of high performance gamma-type manganese dioxide and battery using said manganese dioxide - Google Patents

Preparation of high performance gamma-type manganese dioxide and battery using said manganese dioxide

Info

Publication number
JPH059773A
JPH059773A JP3327089A JP32708991A JPH059773A JP H059773 A JPH059773 A JP H059773A JP 3327089 A JP3327089 A JP 3327089A JP 32708991 A JP32708991 A JP 32708991A JP H059773 A JPH059773 A JP H059773A
Authority
JP
Japan
Prior art keywords
manganese dioxide
manganese
fibers
type
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3327089A
Other languages
Japanese (ja)
Other versions
JP2663071B2 (en
Inventor
Akiya Ozawa
昭弥 小沢
Masayuki Yoshio
真幸 芳尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Carbon Co Ltd
IBA Inc
I B A Inc
Original Assignee
Nippon Carbon Co Ltd
IBA Inc
I B A Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Carbon Co Ltd, IBA Inc, I B A Inc filed Critical Nippon Carbon Co Ltd
Publication of JPH059773A publication Critical patent/JPH059773A/en
Application granted granted Critical
Publication of JP2663071B2 publication Critical patent/JP2663071B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE: To obtain a high-performance γ type manganese dioxide which allows easy pulverization, has high electrical conductivity and has an excellent discharge characteristic when used as a positive pole material of a battery.
CONSTITUTION: The short fibers of carbon fibers or graphite fibers provided with the films of manganese oxide on the surfaces are dispersed into a manganese electrolyte and the eutectoid of the short fibers with the manganese dioxide is effected by an electrolysis, by which the battery consisting of the highperformance γ type manganese dioxide contg. ≥90 wt.% MnO2 as its positive pole material is produced.
COPYRIGHT: (C)1993,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はマンガン乾電池、アルカ
リ・マンガン電池、二酸化マンガン・リチウム電池など
の電池の正極材料として好適な高性能γ型二酸化マンガ
ンの製造方法並びにこの二酸化マンガンを使用した電池
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing high-performance γ-type manganese dioxide suitable as a positive electrode material for batteries such as manganese dry batteries, alkaline manganese batteries and manganese dioxide lithium batteries, and batteries using this manganese dioxide. .

【0002】[0002]

【従来の技術】二酸化マンガンは乾電池の性能に最も大
きく影響するため天然産の低純度品に代わり、近年は電
解法による高純度のγ型二酸化マンガンが多用されてき
た。
2. Description of the Related Art Since manganese dioxide has the greatest effect on the performance of dry batteries, high purity γ-type manganese dioxide produced by electrolysis has been frequently used instead of naturally occurring low purity products.

【0003】従来の電解法では電流密度を 5〜7mA/cm2
と小さくして電解を行い、結晶性が高く、従って硬度の
大きい二酸化マンガンを得るのが一般的である。
In the conventional electrolysis method, the current density is 5 to 7 mA / cm 2
It is general to obtain manganese dioxide having a high crystallinity and therefore a high hardness by carrying out electrolysis with a small size.

【0004】しかしながら、この種の二酸化マンガンは
粉砕に長時間を要し粉砕時の不純物の混入が防止できな
い点で問題があり、電池の正極材料として使用した場
合、混入した不純物による電池の性能低下を招くことか
ら改善が望まれていた。
However, this type of manganese dioxide has a problem that it takes a long time to pulverize and it is impossible to prevent impurities from being mixed in during pulverization. When it is used as a positive electrode material for a battery, the performance of the battery deteriorates due to the mixed impurities. Therefore, improvement has been desired.

【0005】また、電池の正極材料として、より高電導
性の二酸化マンガンが望まれている。
Further, manganese dioxide having higher conductivity is desired as a positive electrode material for batteries.

【0006】[0006]

【発明が解決しようとする課題】本発明は粉砕が容易
で、高電導で、かつ電池の正極材料として使用した場
合、優れた放電特性を有する高性能γ型二酸化マンガン
を得ることを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to obtain a high-performance γ-type manganese dioxide which is easy to pulverize, has high conductivity, and has excellent discharge characteristics when used as a positive electrode material for batteries. .

【0007】[0007]

【課題を解決するための手段】本発明者等は、前記目的
を達成するためには炭素繊維または黒鉛繊維を二酸化マ
ンガン結晶内により多く強固に組み込むことが望ましい
との知見を得て鋭意研究を重ねた結果、表面にマンガン
酸化物の皮膜を設けた炭素繊維または黒鉛繊維の短繊維
をマンガン電解液中に分散し、電解により該短繊維を二
酸化マンガンと共析させることによって前記目的が達成
されることを見いだし、本発明を完成した。
DISCLOSURE OF THE INVENTION The inventors of the present invention have conducted an earnest research based on the finding that it is desirable to incorporate carbon fibers or graphite fibers more strongly in manganese dioxide crystals in order to achieve the above-mentioned object. As a result of stacking, short fibers of carbon fibers or graphite fibers provided with a film of manganese oxide on the surface are dispersed in a manganese electrolytic solution, and the above objects are achieved by co-depositing the short fibers with manganese dioxide by electrolysis. As a result, they have completed the present invention.

【0008】すなわち、本発明においては、短繊維表面
にマンガン酸化物の皮膜を設けることにより、 0.1〜5.
0 %の短繊維を共析により二酸化マンガン結晶内に強固
に組み込むことができるのである。
That is, in the present invention, by providing a manganese oxide film on the surface of the short fibers, 0.1 to 5.
It is possible to firmly incorporate 0% of the short fibers into the manganese dioxide crystals by eutectoid.

【0009】以下、本発明を詳述する。The present invention will be described in detail below.

【0010】短繊維の表面にマンガン酸化物の皮膜を設
けるには、10〜90℃のMn(NO3)2,MnSO4,Mn3(PO4)2,Mn(SO
4)3,MnPO4,Mn(SO4)2などの水溶液に短繊維を数秒〜10分
程度浸漬した後、数分〜十数分間 120〜400 ℃に加熱す
る程度でよい。これらのマンガン化合物の内、Mn(NO3)2
は分解して容易に酸化物被膜を生ずるので、より好まし
い。Mn(NO3)2を使用する場合、 0.2〜9MのMn(NO3)2水溶
液に短繊維を室温〜90℃で 1分〜10分浸漬し、120〜400
℃の温度で 5分程度加熱することが好ましい。
To form a manganese oxide film on the surface of short fibers, M n (NO 3 ) 2 , M n SO 4 , M n3 (PO 4 ) 2 , M n (SO
4 ) It is sufficient to immerse the short fibers in an aqueous solution of 3 , 3 , M n PO 4 , M n (SO 4 ) 2 or the like for a few seconds to 10 minutes, and then to heat them to 120 to 400 ° C. for a few minutes to a dozen minutes. Of these manganese compounds, M n (NO 3 ) 2
Is more preferable because it decomposes to easily form an oxide film. When Mn (NO 3 ) 2 is used, the short fibers are immersed in a 0.2 to 9 M Mn (NO 3 ) 2 aqueous solution at room temperature to 90 ° C for 1 to 10 minutes, and 120 to 400
It is preferable to heat at a temperature of ℃ for about 5 minutes.

【0011】本発明に使用する炭素繊維または黒鉛繊維
は、PAN系、ピッチ系、レーヨン系、フェノール系な
どの公知のものでよいが、 5〜1000μの繊維長の短繊維
とするのがより好ましい。繊維長が前記上限を超えると
マンガン電解液中での分散がむづかしい。短繊維を共析
させることによって、本発明により得られるγ型二酸化
マンガンは電導性の優れたものとなる。なお、繊維長が
前記下限付近のものでも有効であるが、現在は経済的に
安価なものは手に入れにくい。
The carbon fibers or graphite fibers used in the present invention may be known ones such as PAN type, pitch type, rayon type and phenol type, but it is more preferable to use short fibers having a fiber length of 5 to 1000 μm. . If the fiber length exceeds the above upper limit, the dispersion in the manganese electrolyte is difficult. By co-depositing the short fibers, the γ-type manganese dioxide obtained by the present invention has excellent conductivity. It is also effective if the fiber length is near the above lower limit, but it is difficult to obtain economically inexpensive one at present.

【0012】この炭素繊維または黒鉛繊維の短繊維のマ
ンガン電解液中への添加量は、 0.1〜10g/lが好まし
い。添加量が前記上限を超えると、マンガン電解液中で
の均一な分散がむずかしく、また前記下限未満では共析
により組み込まれる短繊維の量が少なくなる。
The amount of the short carbon fibers or graphite fibers added to the manganese electrolyte is preferably 0.1 to 10 g / l. If the amount added exceeds the upper limit, uniform dispersion in the manganese electrolyte is difficult, and if the amount is less than the lower limit, the amount of short fibers incorporated by eutectoid decreases.

【0013】本発明に使用するマンガン電解液は、MnSO
4/H2SO4,MnCl2/HCl など通常の電解液でよく、また電解
温度は85〜98℃,電流密度は 0.3〜2.0 A/dm2 でよい
が、電解液の組成、短繊維の添加量等により調節するこ
とが望ましい。
The manganese electrolyte used in the present invention is M n SO 4.
Ordinary electrolyte such as 4 / H 2 SO 4 , M n Cl 2 / HCl may be used. The electrolysis temperature may be 85 to 98 ° C and the current density may be 0.3 to 2.0 A / dm 2. It is desirable to adjust the amount depending on the amount of fiber added.

【0014】[0014]

【作用】本発明はマンガン酸化物の皮膜を表面に設けた
炭素繊維または黒鉛繊維の短繊維を使用するため、マン
ガン塩水溶液の電解液中での電解に際し、まず短繊維の
表面にβ型MnO2が存在し、親水性を有し濡れ性が改善さ
れているので、十分な量の短繊維がEMD(γ型MnO2) 中に
共析するとともにEMD ( γ型MnO2) の結晶内に容易に組
み込まれる。
Since the present invention uses short fibers of carbon fibers or graphite fibers provided with a manganese oxide film on the surface, when electrolyzing in an electrolyte solution of a manganese salt aqueous solution, the β-type M is first formed on the surface of the short fibers. n O 2 is present, since the wettability has hydrophilicity is improved, short fibers EMD (gamma-type M n O 2) in an amount sufficient EMD (gamma-type as well as co-deposited in M n O It is easily incorporated into the crystal of 2 ).

【0015】従って、本発明の方法により得たγ型二酸
化マンガンは MnO2含有率90%以上の高い純度を有して
いるが、結晶内に 0.1〜5.0 %の炭素または黒鉛を繊維
状で組み込んでいるため、比較的容易に粉砕できる。ま
た、繊維状炭素、または繊維状黒鉛の存在のため、電導
性も良好である。
Therefore, the γ-type manganese dioxide obtained by the method of the present invention has a high purity with an M n O 2 content of 90% or more, but 0.1 to 5.0% of carbon or graphite is contained in the crystal in a fibrous form. Since it is built in, it can be crushed relatively easily. Further, due to the presence of fibrous carbon or fibrous graphite, the electric conductivity is also good.

【0016】一方、このγ型二酸化マンガンを電池に使
用した場合、以下の実施例に示すように優れた性能を有
する電池を得ることができる。また、本発明により高電
導性のγ型二酸化マンガンが得られるので電導材(黒鉛
粉、アセチレンブラックなど)の配合を従来より減じた
正極材料を使用した電池の製造が可能となる。
On the other hand, when this γ-type manganese dioxide is used in a battery, a battery having excellent performance can be obtained as shown in the following examples. Further, according to the present invention, highly conductive γ-type manganese dioxide can be obtained, so that it becomes possible to manufacture a battery using a positive electrode material in which the blending ratio of a conductive material (graphite powder, acetylene black, etc.) is reduced from the conventional one.

【0017】[0017]

【実施例】実施例1 繊維直径13μ、繊維長さ 130μのピッチ系炭素繊維(黒
鉛質)を室温の5M−Mn(NO3)2溶液に 5分間浸漬後、 200
℃で熱分解してβ型MnO2の皮膜を付与した。
Example 1 Pitch-based carbon fibers (graphite) having a fiber diameter of 13 μ and a fiber length of 130 μ were immersed in a 5M- Mn (NO 3 ) 2 solution at room temperature for 5 minutes, and then 200
By thermal decomposition has been applied a coating of β-type M n O 2 in ° C..

【0018】ついで、これを1M-MnSO4/0.4M-H2SO4 電解
液に2.5 g/l割合で添加し、図1に示す装置を用いてγ
型二酸化マンガンを合成した。
Then, this was added to 1M-M n SO 4 /0.4MH 2 SO 4 electrolyte solution at a rate of 2.5 g / l, and γ was added by using the apparatus shown in FIG.
Type manganese dioxide was synthesized.

【0019】この電解装置は、直流電源1、炭素製カソ
ード板2,2’、Ti製アノード板3、ガス吹込管4、Hg
/Hg2SO4 照合電極への導線5、放出ガス還流用コンデン
サー6、マグネットスターラー7、および電解槽本体8
から構成されている。短繊維が添加された電解液9は電
解され、アノードに炭素繊維が共析したγ型二酸化マン
ガンが生成する。
[0019] The electrolysis apparatus includes a DC power supply 1, a carbon steel cathode plates 2, 2 ', T i made anode plate 3, a gas blowing tube 4, Hg
/ Hg 2 SO 4 Conductive wire 5 to the reference electrode, emitted gas recirculation condenser 6, magnet stirrer 7, and electrolytic cell body 8
It consists of The electrolytic solution 9 to which the short fibers have been added is electrolyzed, and γ-type manganese dioxide having carbon fibers co-deposited on the anode is produced.

【0020】本実施例においては、電解液9を90℃以上
に保持し、電流密度1.0 A/dm2 で通電して電解し、本発
明のγ型二酸化マンガンを得た。その特性を表1に示
す。
In this example, the electrolytic solution 9 was maintained at 90 ° C. or higher and electrolysis was carried out by applying a current density of 1.0 A / dm 2 to obtain electrolysis to obtain γ-type manganese dioxide of the present invention. The characteristics are shown in Table 1.

【0021】ついで、得られたγ型二酸化マンガンの電
池性能テストを図2に示す装置によって行った。図2に
おける装置はプラチナリング製アノード10、圧力伝達
器11、多孔性デスク12、フィルターペーパー13、
カソード用プラチナ製プレート14、Hg/HgO/9M-KOH 照
合電極への導線15をセル外殻16,16’内に設けた
構造となっている。
Then, a battery performance test of the obtained γ-type manganese dioxide was conducted by the apparatus shown in FIG. The apparatus shown in FIG. 2 includes a platinum ring anode 10, a pressure transmitter 11, a porous desk 12, a filter paper 13,
The structure is such that the platinum plate 14 for the cathode and the lead wire 15 to the Hg / HgO / 9M-KOH reference electrode are provided in the cell outer shells 16 and 16 '.

【0022】本実施例で得られたγ型二酸化マンガン0.
1gとコークス粉1g、黒鉛粉2gとを混合してカソード用プ
ラチナ製プレート上に配して700kg/cm2 の圧力で加圧
し、カソード材17とした。ついで、9M-KOHを電解質と
し、0.5mA の連続放電を行った。
Γ-type manganese dioxide obtained in this example
1 g of coke powder, 1 g of coke powder, and 2 g of graphite powder were mixed and placed on a platinum plate for cathode and pressed at a pressure of 700 kg / cm 2 to obtain a cathode material 17. Then, using 9M-KOH as an electrolyte, a continuous discharge of 0.5 mA was performed.

【0023】その結果を表1に示す。The results are shown in Table 1.

【0024】実施例2〜4,比較例1 繊維直径 7μで表1に示す繊維長さを有するPAN系炭
素繊維(炭素質)を実施例1と同一の方法でMnO2を付与
し、ついで実施例1と同一の方法により電解二酸化マン
ガンの製造および電池性能テストを行った。その結果を
表1に示す。
Examples 2 to 4 and Comparative Example 1 PAN-based carbon fibers (carbonaceous) having a fiber diameter of 7 μm and a fiber length shown in Table 1 were added with M n O 2 in the same manner as in Example 1, Then, in the same manner as in Example 1, production of electrolytic manganese dioxide and battery performance test were performed. The results are shown in Table 1.

【0025】実施例5〜6 実施例1で使用したのと同様の短繊維に表1に示す処理
により、種々のマンガン酸化物の皮膜を付与し、ついで
実施例1と同様の方法により電解二酸化マンガンの製造
および電池性能テストを行った。その結果を表1に示
す。
Examples 5 to 6 The same short fibers as used in Example 1 were coated with various manganese oxide films by the treatment shown in Table 1 and then electrolytically oxidized in the same manner as in Example 1. Manganese production and battery performance tests were performed. The results are shown in Table 1.

【0026】比較例2 市販の電解法によるγ型二酸化マンガンを実施例1と同
様の方法により電池性能テストを行った。その結果を表
1に示す。
Comparative Example 2 γ-type manganese dioxide obtained by a commercially available electrolytic method was subjected to a battery performance test in the same manner as in Example 1. The results are shown in Table 1.

【0027】比較例3 実施例1と同様の短繊維をマンガン酸化物皮膜付与の処
理をすることなく、図1に示す装置を用い、実施例1と
同様の方法により電解二酸化マンガンの製造および電池
性能テストを行った。その結果を表1に示す。
Comparative Example 3 The same procedure as in Example 1 was used to produce electrolytic manganese dioxide and batteries using the apparatus shown in FIG. A performance test was conducted. The results are shown in Table 1.

【0028】比較例4 短繊維のかわりにアセチレンブラックを使用した以外は
実施例1と同様の方法で電解二酸化マンガンの製造およ
び電池性能テストを行った。その結果を表1に示す。
Comparative Example 4 An electrolytic manganese dioxide was prepared and a battery performance test was conducted in the same manner as in Example 1 except that acetylene black was used instead of the short fibers. The results are shown in Table 1.

【0029】[0029]

【表1】 [Table 1]

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明のγ型二酸化マンガンを得るための電
解装置の一例を示す説明図である。
FIG. 1 is an explanatory view showing an example of an electrolysis device for obtaining γ-type manganese dioxide of the present invention.

【図2】 本発明のγ型二酸化マンガンを使用した電池
性能テストに使用する装置の一例を示す説明図である。
FIG. 2 is an explanatory diagram showing an example of an apparatus used for a battery performance test using the γ-type manganese dioxide of the present invention.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 表面にマンガン酸化物の皮膜を設けた炭
素繊維または黒鉛繊維の短繊維をマンガン電解液中に分
散し、電解により該短繊維を二酸化マンガンと共析させ
てなるMnO2含有率90重量%以上の高性能γ型二酸化マン
ガンの製造方法。
1. M n O 2 obtained by dispersing short fibers such as carbon fibers or graphite fibers having a manganese oxide coating on the surface in a manganese electrolytic solution, and causing the short fibers to co-deposit with manganese dioxide by electrolysis. A method for producing high-performance γ-type manganese dioxide having a content of 90% by weight or more.
【請求項2】 表面にマンガン酸化物の皮膜を設けた炭
素繊維または黒鉛繊維の短繊維をマンガン電解液中に分
散し、電解により該短繊維を二酸化マンガンと共析させ
て得たMnO2含有率90%以上のγ型二酸化マンガンを正極
材料とした電池。
Wherein the staple fibers of the carbon fibers or graphite fibers having a coating of manganese oxide on the surface dispersed in a manganese electrolyte, M n O of the said short fibers obtained by co-precipitating the manganese dioxide by electrolysis 2 Batteries using γ-type manganese dioxide with a content of 90% or more as the positive electrode material.
JP3327089A 1990-11-16 1991-11-15 Method for producing high-performance γ-type manganese dioxide and battery using the manganese dioxide Expired - Fee Related JP2663071B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2-308940 1990-11-16
JP30894090 1990-11-16

Publications (2)

Publication Number Publication Date
JPH059773A true JPH059773A (en) 1993-01-19
JP2663071B2 JP2663071B2 (en) 1997-10-15

Family

ID=17987098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3327089A Expired - Fee Related JP2663071B2 (en) 1990-11-16 1991-11-15 Method for producing high-performance γ-type manganese dioxide and battery using the manganese dioxide

Country Status (1)

Country Link
JP (1) JP2663071B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5938798A (en) * 1993-09-30 1999-08-17 Mitsui Mining & Smelting Co., Ltd. Cathodic active material composition for dry cells, method for preparing the same, and alkaline battery
JP2007207699A (en) * 2006-02-06 2007-08-16 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
WO2019117199A1 (en) * 2017-12-14 2019-06-20 国立研究開発法人理化学研究所 Manganese oxide for water decomposition catalysts, manganese oxide-carbon mixture, manganese oxide composite electrode material, and respective methods for producing these materials
WO2021177137A1 (en) * 2020-03-02 2021-09-10 住友電気工業株式会社 Electrode, redox flow battery, and method for manufacturing electrode

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5938798A (en) * 1993-09-30 1999-08-17 Mitsui Mining & Smelting Co., Ltd. Cathodic active material composition for dry cells, method for preparing the same, and alkaline battery
JP2007207699A (en) * 2006-02-06 2007-08-16 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
WO2019117199A1 (en) * 2017-12-14 2019-06-20 国立研究開発法人理化学研究所 Manganese oxide for water decomposition catalysts, manganese oxide-carbon mixture, manganese oxide composite electrode material, and respective methods for producing these materials
WO2021177137A1 (en) * 2020-03-02 2021-09-10 住友電気工業株式会社 Electrode, redox flow battery, and method for manufacturing electrode

Also Published As

Publication number Publication date
JP2663071B2 (en) 1997-10-15

Similar Documents

Publication Publication Date Title
CN1495944A (en) Negative electrode active material and its making method. negative electrode and nonaqueous electrolyte battery
CA2051441A1 (en) Conductive components containing conductive metal oxide
CN1685542A (en) Positive active material for lithium secondary battery and its manufacturing method
CN107579219A (en) For graphene/zinc oxide negative material of secondary zinc base battery and its preparation
JPH0369145B2 (en)
CN1174418A (en) Non-sintered nickel electrode for alkaline storage battery, alkaline storage battery including the same, and method for production of non-sintered nickel electrode for alkalind storage battery
JPS62290060A (en) Voltage delay free lithium/carbon fluoride battery
CN108432001A (en) Manufacturing method, positive active material, anode and the lithium rechargeable battery of positive active material
CN109244368A (en) A kind of application of nitrogen-doped graphene in negative electrode of lithium ion battery preparation
JP2009135067A (en) Electrolytic manganese dioxide, and production method and application therefor
RU2233794C1 (en) Method of production of cellular graphite and cellular graphite produced by this method
JP2008053222A (en) Nickel hydroxide powder, nickel oxyhydroxide powder, manufacturing method of these and alkaline dry battery
EP1385222B1 (en) Fluorinated carbon for metal/fluorinated carbon batteries
JPH059773A (en) Preparation of high performance gamma-type manganese dioxide and battery using said manganese dioxide
CN107275577B (en) A kind of flexible electrode material and its preparation method and application
KR20190017097A (en) A low-temperature synthesis method of cathode material for metal-air battery and a metal-air battery fabricated thereby
JP2017179583A (en) Electrolytic manganese dioxide, manufacturing method therefor and applications thereof
JPH02213487A (en) Manufacture of electrolytic manganese dioxide
JP2000264636A (en) Lithium manganese spinel oxide particle powder and its production
WO2018180208A1 (en) Electrolytic manganese dioxide, method for manufacturing same, and application for same
JP2008066100A (en) Alkaline battery
JP2015189608A (en) Manganese dioxide for production of lithium manganate, and production method thereof
JPH0719608B2 (en) Method for manufacturing material for gas diffusion electrode
CN111342027A (en) Hydroxyl modified amorphous SiOx shell layer coated nano-silicon negative electrode material, preparation method and preparation method of negative electrode piece
CA2435401C (en) Improved fluorinated carbon for metal/fluorinated carbon batteries

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970520

LAPS Cancellation because of no payment of annual fees