JPH0597573A - Method for growing single crystal of oxide - Google Patents

Method for growing single crystal of oxide

Info

Publication number
JPH0597573A
JPH0597573A JP25623691A JP25623691A JPH0597573A JP H0597573 A JPH0597573 A JP H0597573A JP 25623691 A JP25623691 A JP 25623691A JP 25623691 A JP25623691 A JP 25623691A JP H0597573 A JPH0597573 A JP H0597573A
Authority
JP
Japan
Prior art keywords
crucible
single crystal
melt
electrode
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25623691A
Other languages
Japanese (ja)
Other versions
JP3132087B2 (en
Inventor
Hisao Kurosawa
久夫 黒沢
Kohei Ito
康平 伊藤
Masazumi Sato
正純 佐藤
Toru Abe
徹 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP03256236A priority Critical patent/JP3132087B2/en
Publication of JPH0597573A publication Critical patent/JPH0597573A/en
Application granted granted Critical
Publication of JP3132087B2 publication Critical patent/JP3132087B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To prevent the melting of a Pt (or a Pt alloy) crucible of maintaining growing melt in growing an oxide crystal such as garnet single crystal film or ferrite single crystal by liquid-phase epitaxial(LPE) method or Bridgman(Br) method. CONSTITUTION:In a method for solidifying and growing single crystal from a melt 3 prepared by heating and melting an oxide raw material packed into a metallic crucible 1, an electrode 2 made of a material different from the metallic crucible 1 is immersed in the melt 3, electric voltage obtained by subtracting an electric potential difference corresponding to thermoelectromotive force generating between the crucible 1 and the electrode 2 at the temperature of the melt 3 from potential difference between the crucible 1 and the electrode 2 immersed in the melt 3 is kept approximately zero to grow a single crystal of oxide.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、酸素中あるいは大気雰
囲気中において、金属ルツボ等の金属容器に保持された
融液から育成される酸化物単結晶の育成方法に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for growing an oxide single crystal grown from a melt held in a metal container such as a metal crucible in oxygen or air atmosphere.

【0002】[0002]

【従来の技術】酸化物単結晶の代表的な育成方法とし
て、チョクラルスキー(CZ)法、フラックス(Flux)
法、あるいはブリッジマン法等が知られているが、磁気
バブルメモリ、マイクロ波素子、磁気光学素子などの用
途に有用とされる酸化物ガ−ネット単結晶膜の育成に
は、液相エピタキシャル(LPE)法が用いられている。
上記で述べた育成方法においては、いずれの方法におい
ても原料融液を保持する容器が必要となるが、酸化物単
結晶を育成する場合の容器の材質には貴金属を用いるこ
とが一般的である。これは上記条件が高温度下でかつ酸
化雰囲気であるため、高融点でかつ耐食性に優れる材質
が要求されるためである。
2. Description of the Related Art Czochralski (CZ) method and flux (Flux) are typical methods for growing oxide single crystals.
Method, or Bridgman method, etc. are known, but for growing an oxide garnet single crystal film that is useful for applications such as magnetic bubble memory, microwave element, magneto-optical element, liquid phase epitaxial ( LPE) method is used.
In any of the growing methods described above, a container for holding the raw material melt is required in any method, but it is common to use a noble metal for the material of the container when growing an oxide single crystal. .. This is because the above conditions are at a high temperature and in an oxidizing atmosphere, so a material having a high melting point and excellent corrosion resistance is required.

【0003】[0003]

【発明が解決しようとする課題】しかし、マイクロ波素
子、ならびに磁気光学素子を用途として酸化物ガ−ネッ
ト単結晶膜をLPE法を用いて育成した場合、容器とし
て使用したPtルツボのメルトに接触した部分が、メル
ト中に溶融することが分かった。磁気光学素子の場合、
メルト中に溶融したPtが膜中に混入すると光吸収が増
大することが知られている(「日本応用磁気学会」,V
OL.10,No.2,(1986)P.161参
照)。また、Ptは膜欠陥の一因となり(「J,Mag
n,Soc,Jpn」VOL.11,SI(1987)
P.347)、欠陥部は、光学特性が劣化することが知
られている(「日本応用磁気学会」,VOL.10,N
o.2,(1986)P.147参照)。一方、Br法
を用いてフェライト単結晶を育成した場合においても容
器としたPt−Rh合金製ルツボが溶融し、このPtが
結晶中に混入したことから育成歩留りが大きく減少し
た。したがって、Ptルツボ(あるいはPt主体の合金)
の溶融は、極めて重大な問題である。
However, when an oxide garnet single crystal film is grown by the LPE method for use as a microwave element and a magneto-optical element, the melt of a Pt crucible used as a container is brought into contact with the melt. It was found that the part that was melted melted in the melt. For magneto-optical elements,
It is known that when Pt melted in the melt is mixed in the film, light absorption is increased (“Japan Applied Magnetics Society”, V
OL. 10, No. 2, (1986) P.I. 161). In addition, Pt contributes to the film defect (“J, Mag
n, Soc, Jpn "VOL. 11, SI (1987)
P. 347), it is known that the optical characteristics of the defective portion are deteriorated ("Japan Applied Magnetics Society", VOL. 10, N).
o. 2, (1986) P.I. 147). On the other hand, even when a ferrite single crystal was grown by using the Br method, the Pt—Rh alloy crucible used as the container was melted and the Pt was mixed into the crystal, so that the growth yield was greatly reduced. Therefore, Pt crucible (or alloy mainly composed of Pt)
Melting is a very serious problem.

【0004】[0004]

【課題を解決するための手段】本発明は、金属ルツボ等
の金属容器に充填した酸化物原料を加熱溶融した溶融液
から単結晶を固化成長させる酸化物単結晶の育成方法に
おいて、前記金属容器と異なる材質の電極を前記溶融液
に接触または浸漬し、前記金属容器と前記電極との間の
電位差から、前記金属容器と前記電極間に発生する熱起
電力に相当する電位差を差し引いた電圧を略ゼロに保つ
ことを特徴とする酸化物単結晶の育成方法である。
The present invention relates to a method for growing an oxide single crystal in which a single crystal is solidified and grown from a melt obtained by heating and melting an oxide raw material filled in a metal container such as a metal crucible. An electrode made of a different material is contacted with or immersed in the melt, and a voltage obtained by subtracting a potential difference corresponding to a thermoelectromotive force generated between the metal container and the electrode from a potential difference between the metal container and the electrode is obtained. This is a method for growing an oxide single crystal, which is characterized in that it is maintained at substantially zero.

【0005】本発明者等は、電極の材質を金属性ルツボ
と同一とし、電極を溶融液に浸漬し、該ルツボと電極間
の電位差を概略ゼロに保つことを先に提案(特願平?)し
たが、電極の材質が該ルツボと異なる場合は、ルツボと
電極間に熱起電力が発生しやすい。例えば、新JIS規
格によるRタイプの熱電対は、13.0%Rh−bal
Pt材と100%Pt材の組み合わせであるが、この熱
電対の約800℃における規準熱起電力は、約7.9m
vである。したがって、本熱電対の各々の材料を、電極
ならびにルツボ材とした場合、両者間に熱起電力が発生
しやすいことは容易に類推可能である。但し、熱電対と
して用いる場合は、接触抵抗を除去するため測温部は充
分に接触させるか、あるいは溶接するのが一般的であ
る。本発明における電極とルツボの位置関係は、電極及
びルツボの形状、あるいは結晶の種類等により種々変化
するが、接触することは好ましくない。したがって、本
発明における電極とルツボ間に発生する熱起電力は、熱
電対として構成した場合よりもはるかに小さい。しか
し、融液中の電位差があまり大きくない場合は、熱起電
力の影響は無視できない。ビスマス置換ガ−ネット膜育
成用の融液中の電位差を種々温度について測定した結果
を表1に示したが、約800℃における電位差は約2m
v程度である。
The present inventors previously proposed that the material of the electrode is the same as that of the metal crucible, the electrode is immersed in a molten liquid, and the potential difference between the crucible and the electrode is kept substantially zero (Japanese Patent Application No. However, if the material of the electrode is different from that of the crucible, a thermoelectromotive force is easily generated between the crucible and the electrode. For example, the R type thermocouple according to the new JIS standard is 13.0% Rh-bal.
Although this is a combination of Pt material and 100% Pt material, the standard thermoelectromotive force of this thermocouple at about 800 ° C is about 7.9 m.
v. Therefore, when each material of the present thermocouple is used as an electrode and a crucible material, it can be easily analogized that a thermoelectromotive force is easily generated between them. However, when it is used as a thermocouple, it is general that the temperature measuring part is sufficiently contacted with or welded to remove the contact resistance. The positional relationship between the electrode and the crucible in the present invention changes variously depending on the shape of the electrode and the crucible, the type of crystal, and the like, but it is not preferable to contact them. Therefore, the thermoelectromotive force generated between the electrode and the crucible in the present invention is much smaller than that in the case where the thermocouple is constructed. However, if the potential difference in the melt is not so large, the effect of thermoelectromotive force cannot be ignored. The results of measuring the potential difference in the melt for growing the bismuth-substituted garnet film at various temperatures are shown in Table 1. The potential difference at about 800 ° C. is about 2 m.
It is about v.

【表1】 前述のRタイプの熱電対の800℃における熱起電力
は、約7.9mvであるため、電位差よりも起電力の方
がはるかに大きい。なお、表1に示した電位差は、融液
中に挿入した電極を測定器の正の端子に、ルツボ側を負
の端子に各々接続して測定した。
[Table 1] Since the thermoelectromotive force at 800 ° C. of the above-mentioned R type thermocouple is about 7.9 mv, the electromotive force is much larger than the potential difference. The potential difference shown in Table 1 was measured by connecting the electrode inserted in the melt to the positive terminal of the measuring instrument and connecting the crucible side to the negative terminal.

【0006】以上の観点から、本発明は、前述の構成を
特徴としている。なお、本発明で実施した回路の一例を
図1に示す。
From the above viewpoint, the present invention is characterized by the above-mentioned configuration. An example of the circuit implemented in the present invention is shown in FIG.

【0007】[0007]

【実施例】以下、本発明を実施例に従い説明する。 (実施例1)磁気光学素子を用途とした原料成分とし
て、Bi23、Tb47、Gd23、Fe23、Pb
O、及びB23を総量で約500g秤量・混合し、約1
00ccのPtルツボに充填した。そのルツボを大気中
の育成炉内に設置し、約1100℃で均一化した後約7
90℃に降温保持した。その融液中に13%Rh−ba
lPt合金の電極を挿入してその電極とルツボ間の電位
差を測定しながら、その時の電位差から熱起電力を差し
引いた電位差が零になるように電圧を制御して、約36
hr保持した。その後、ルツボの溶融量を測定した結
果、約0.12gの減少であった。
EXAMPLES The present invention will be described below with reference to examples. (Example 1) a magneto-optical element as a raw material component and application, Bi 2 O 3, Tb 4 O 7, Gd 2 O 3, Fe 2 O 3, Pb
Approximately 500 g of O and B 2 O 3 are weighed and mixed to obtain approximately 1
A 00 cc Pt crucible was filled. After placing the crucible in a growth furnace in the atmosphere and homogenizing at about 1100 ° C, about 7
The temperature was maintained at 90 ° C. 13% Rh-ba in the melt
While inserting an electrode of 1Pt alloy and measuring the potential difference between the electrode and the crucible, the voltage is controlled so that the potential difference obtained by subtracting the thermoelectromotive force from the potential difference at that time is zero, and the potential difference is about 36.
It was held for hr. Then, as a result of measuring the melting amount of the crucible, it was found to be about 0.12 g reduction.

【0008】(実施例2)磁気光学素子を用途とした原
料成分として、Bi23、Tb47、Gd23、Fe2
3、PbO、及びB23を総量で約3200g秤量・
混合し、約700ccのPtルツボに充填した。そのル
ツボを大気中の育成炉内に設置し、約1100℃で均一
化した後約790℃に降温保持した。その融液中に13
%Rh−balPt合金の電極を挿入してその電極とル
ツボ間の電位差を測定しながら、その時の電位差から熱
起電力を差し引いた電位差が零になるように電圧を制御
して、約36hr膜育成した。膜厚約490μmの膜表
面を50〜1000倍の光学顕微鏡を用いて観察した結
果、欠陥密度が約2ケ/cm2であった。
(Example 2) Bi 2 O 3 , Tb 4 O 7 , Gd 2 O 3 and Fe 2 were used as raw material components for a magneto-optical element.
Weighs about 3,200 g of O 3 , PbO, and B 2 O 3 in total.
The mixture was mixed and filled in a Pt crucible of about 700 cc. The crucible was placed in a growth furnace in the atmosphere, homogenized at about 1100 ° C, and then maintained at a temperature of about 790 ° C. 13 in the melt
% Rh-balPt alloy electrode is inserted and the potential difference between the electrode and the crucible is measured, and the voltage is controlled so that the potential difference obtained by subtracting the thermoelectromotive force from the potential difference at that time becomes zero, and the film is grown for about 36 hr. did. As a result of observing the film surface having a film thickness of about 490 μm with an optical microscope of 50 to 1000 times, the defect density was about 2 cells / cm 2 .

【0009】(比較例1)磁気光学素子を用途とした原
料成分として、Bi23、Tb47、Gd23、Fe2
3、PbO、及びB23を総量で約500g秤量・混
合し、約100ccのPtルツボに充填した。そのルツ
ボを大気中の育成炉内に設置し、約1100℃で均一化
した後約790℃に降温し、約36hr保持した。その
後、ルツボの溶融量を測定した結果、約1.52gの減
少であった。
(Comparative Example 1) Bi 2 O 3 , Tb 4 O 7 , Gd 2 O 3 and Fe 2 were used as raw material components for a magneto-optical element.
A total amount of about 500 g of O 3 , PbO, and B 2 O 3 was weighed and mixed, and filled in a Pt crucible of about 100 cc. The crucible was placed in a growth furnace in the atmosphere, homogenized at about 1100 ° C., cooled to about 790 ° C., and held for about 36 hours. Then, as a result of measuring the melting amount of the crucible, it was found to be about 1.52 g of decrease.

【0010】(比較例2)磁気光学素子を用途とした原
料成分として、Bi23、Tb47、Gd23、Fe2
3、PbO、及びB23を総量で約3200g秤量・
混合し、約700ccのPtルツボに充填した。そのル
ツボを大気中の育成炉内に設置し、約1100℃で均一
化した後約790℃で約36hr膜育成した。膜厚約4
90μmの膜表面を50〜1000倍の光学顕微鏡を用
いて観察した結果、欠陥密度が約860ケ/cm2であ
った。
Comparative Example 2 Bi 2 O 3 , Tb 4 O 7 , Gd 2 O 3 and Fe 2 were used as raw material components for a magneto-optical element.
Weighs about 3,200 g of O 3 , PbO, and B 2 O 3 in total.
The mixture was mixed and filled in a Pt crucible of about 700 cc. The crucible was placed in a growth furnace in the atmosphere, homogenized at about 1100 ° C., and then grown at about 790 ° C. for about 36 hr. Film thickness about 4
As a result of observing the film surface of 90 μm with an optical microscope of 50 to 1000 times, the defect density was about 860 cells / cm 2 .

【0011】[0011]

【発明の効果】本発明により、Ptルツボの溶融が顕著
に抑制されるため、膜中へのPt混入が減少して光吸収
が低減する、融液中の浮遊Ptが減少してPtを核とし
た膜欠陥が低減する、またルツボ寿命が伸びる、等磁気
光学特性の向上、素子歩留りの向上、更に原価低減に大
きく寄与することから実用的価値は極めて大きい。
According to the present invention, melting of the Pt crucible is remarkably suppressed, so that the amount of Pt mixed in the film is reduced and the light absorption is reduced. The floating Pt in the melt is reduced and the Pt core is reduced. The practical value is extremely large because the film defects are reduced, the crucible life is extended, the magneto-optical characteristics are improved, the device yield is improved, and the cost is greatly reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の電圧制御に関わる回路の一実施例を示
す図である。
FIG. 1 is a diagram showing an embodiment of a circuit relating to voltage control of the present invention.

【符号の説明】[Explanation of symbols]

1 ルツボ 2 電極 3 融液 4 オペアンプ 1 crucible 2 electrode 3 melt 4 operational amplifier

───────────────────────────────────────────────────── フロントページの続き (72)発明者 阿部 徹 埼玉県熊谷市三ケ尻5200番地日立金属株式 会社磁性材料研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Toru Abe 5200 Sankejiri, Kumagaya City, Saitama Hitachi Metals Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】金属容器に充填した酸化物原料を加熱溶融
した溶融液から単結晶を固化成長させる酸化物単結晶の
育成方法において、前記金属容器と異なる材質の電極を
前記溶融液に接触または浸漬し、前記金属容器と前記電
極との間の電位差から、前記金属容器と前記電極間に発
生する熱起電力に相当する電位差を差し引いた電圧を略
ゼロに保つことを特徴とする酸化物単結晶の育成方法。
1. A method for growing an oxide single crystal in which a single crystal is solidified and grown from a melt obtained by heating and melting an oxide raw material filled in a metal container, wherein an electrode made of a material different from that of the metal container is brought into contact with the melt. Immersion, the potential difference between the metal container and the electrode, the voltage obtained by subtracting the potential difference corresponding to the thermoelectromotive force generated between the metal container and the electrode is maintained at substantially zero oxide single Crystal growth method.
【請求項2】前記金属容器が金属ルツボである請求項1
に記載の酸化物単結晶の育成方法。
2. The metal container is a metal crucible.
A method for growing an oxide single crystal as described in 1.
JP03256236A 1991-10-03 1991-10-03 Method for growing oxide single crystal Expired - Fee Related JP3132087B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03256236A JP3132087B2 (en) 1991-10-03 1991-10-03 Method for growing oxide single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03256236A JP3132087B2 (en) 1991-10-03 1991-10-03 Method for growing oxide single crystal

Publications (2)

Publication Number Publication Date
JPH0597573A true JPH0597573A (en) 1993-04-20
JP3132087B2 JP3132087B2 (en) 2001-02-05

Family

ID=17289829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03256236A Expired - Fee Related JP3132087B2 (en) 1991-10-03 1991-10-03 Method for growing oxide single crystal

Country Status (1)

Country Link
JP (1) JP3132087B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7524375B1 (en) * 2001-04-24 2009-04-28 The United States Of America As Represented By The Secretary Of The Air Force Growth of uniform crystals

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7524375B1 (en) * 2001-04-24 2009-04-28 The United States Of America As Represented By The Secretary Of The Air Force Growth of uniform crystals

Also Published As

Publication number Publication date
JP3132087B2 (en) 2001-02-05

Similar Documents

Publication Publication Date Title
GB2115310A (en) Iridium-rhenium crucible and process for growing a crystal in said crucible
JPH0597573A (en) Method for growing single crystal of oxide
US4379853A (en) Magnetic device having a monocrystalline garnet substrate bearing a magnetic layer
Elwell et al. The flux system BaO/Bi2O3/B2O3
JP3132094B2 (en) Single crystal manufacturing method and single crystal manufacturing apparatus
JPH0585886A (en) Production of oxide single crystal and apparatus for producing the same
Tolksdorf Growth and properties of garnet films for storage application
Poplawsky et al. Nickel iron ferrite crystals using arc image furnace techniques
US4400445A (en) Liquid phase epitaxial growth of garnet films
JPH04132697A (en) Production of magneto-optical element
JP3806966B2 (en) Method for producing magnetic garnet single crystal
EP0676492B1 (en) Apparatus for production of single crystal oxide films by liquid-phase epitaxy
Rooijmans Crystals for magnetic applications
JPS6241799A (en) Production of liquid-phase epitaxial garnet film
Gratz et al. Investigations of transport properties of UMn2
JP4253221B2 (en) Method for producing magnetic garnet single crystal film
Warchol et al. Growth of sizable single crystals of Y–Co Compounds
JPH0744107B2 (en) Soft magnetic thin film
Kobayashi et al. Crystal growth of Mn-Zn ferrite by the traveling solvent zone melting method
JPH068239B2 (en) Liquid phase epitaxial growth method
JPS5921593A (en) Method for growing single crystal
JP2004323300A (en) Method for manufacturing rare earth-iron garnet film by liquid phase epitaxial method
Wallash et al. Saturation magnetization in the anomalous ferromagnet,(Y, U) B4
JPH07215799A (en) Method for growing garnet crystal
JPH01230798A (en) Nickel-iron plating method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees