JPH0597439A - Refining device for diarsenic trioxide - Google Patents

Refining device for diarsenic trioxide

Info

Publication number
JPH0597439A
JPH0597439A JP26015491A JP26015491A JPH0597439A JP H0597439 A JPH0597439 A JP H0597439A JP 26015491 A JP26015491 A JP 26015491A JP 26015491 A JP26015491 A JP 26015491A JP H0597439 A JPH0597439 A JP H0597439A
Authority
JP
Japan
Prior art keywords
raw material
chamber
heating container
sublimation
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26015491A
Other languages
Japanese (ja)
Inventor
Eiichi Torikai
栄一 鳥養
Akira Iwai
明 岩井
Harutaka Yamashita
晴堂 山下
Toshiaki Yasumura
利昭 安村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MATSUGAKI YAKUHIN KOGYO KK
Original Assignee
MATSUGAKI YAKUHIN KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MATSUGAKI YAKUHIN KOGYO KK filed Critical MATSUGAKI YAKUHIN KOGYO KK
Priority to JP26015491A priority Critical patent/JPH0597439A/en
Publication of JPH0597439A publication Critical patent/JPH0597439A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PURPOSE:To enhance the efficiency of separating impurities, such as Sb, and to obtain high-purity As2O3 as well as to prevent the generation of environmental pollution with splashing of the As2O3 by providing a constant-temp. heating container of the raw material As2O3 which can be moved by specific constitution. CONSTITUTION:A reduced pressure sublimation chamber 1, a raw material supplying chamber 2 which is connected to its flank, and the constant-temp. heating container 3 which is movable between these two chambers are provided. A valve 9 for discharge is mounted in the raw material supplying chamber 2, by which the raw materials are supplied while gases are discharged from this valve. The pollution of the working environment by splashing of the raw material As2O3 powder is prevented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、三酸化二ヒ素の精製装
置に関する。
FIELD OF THE INVENTION The present invention relates to an apparatus for purifying diarsenic trioxide.

【0002】[0002]

【従来の技術及びその課題】三酸化二ヒ素(As
2 3 )は、各種の化学、電子産業等の分野において金
属ヒ素及びその合金類、ヒ素のカルコゲナイドガラス
類、或いは各種の無機又は有機ヒ素化合物の出発原料と
して重要である。
2. Description of the Related Art Diarsenic trioxide (As)
2 O 3 ) is important as a starting material for metallic arsenic and its alloys, chalcogenide glasses of arsenic, and various inorganic or organic arsenic compounds in various fields such as chemistry and electronics industry.

【0003】As2 3 は、通常、金属ヒ化物をばい焼
して得られる低品位のAs2 3 を沈降室を備えた反射
炉で再昇華して市場に供給される。しかしながら、この
様な工業規模の昇華法(乾式法)では、反射炉内での温
度分布が不均一であることからAs2 3 のみを昇華さ
せて精製することは困難であり、得られたAs2 3
には、アンチモン(Sb)等の不純物が数十ppmから
数百ppmの濃度で存在し、高純度のヒ素化合物の製造
原料としては好ましくない。さらに、乾式法では、原料
As2 3 の反射炉への供給時や得られた精製As2
3 を取り出す際に、毒性の強いAs2 3 が飛散し、作
業環境を汚染するという問題がある。
As 2 O 3 is usually supplied to the market by resublimating low-grade As 2 O 3 obtained by roasting a metal arsenide in a reflex furnace equipped with a sedimentation chamber. However, in such an industrial scale sublimation method (dry method), it was difficult to sublimate As 2 O 3 alone for purification because the temperature distribution in the reverberatory furnace was non-uniform, and it was obtained. Impurities such as antimony (Sb) are present in As 2 O 3 at a concentration of several tens ppm to several hundreds ppm, which is not preferable as a raw material for producing a high-purity arsenic compound. Furthermore, in the dry method, when the raw material As 2 O 3 is supplied to the reverberatory furnace or the purified As 2 O 3 obtained
When taking out 3 , there is a problem that highly toxic As 2 O 3 scatters and pollutes the working environment.

【0004】これに対して、乾式法に代わる各種の湿式
法が提案されている。例えば、高温水からの再結晶法、
塩酸またはアルカリ水溶液からの再結晶法、三塩化ヒ素
に変えて蒸留した後加水分解する方法などが知られてい
る。しかしながら、これらの湿式法では、毒性のヒ素化
合物を含む廃水処理が問題であり、このために多額の投
資が必要となっている。
On the other hand, various wet methods have been proposed to replace the dry method. For example, recrystallization from hot water,
Known methods include a recrystallization method from hydrochloric acid or an alkaline aqueous solution, a method in which arsenic trichloride is replaced by distillation, and then hydrolysis is performed. However, in these wet methods, treatment of wastewater containing a toxic arsenic compound is a problem, and thus a large amount of investment is required.

【0005】このため、As2 3 の精製法として、S
bなどの不純物を効果的に除去し得る方法であって、廃
水、飛散粉塵などの問題のない方法が望まれている。
Therefore, as a method for purifying As 2 O 3 , S
There is a demand for a method capable of effectively removing impurities such as b) without causing problems such as waste water and scattered dust.

【0006】本発明の目的は、Sb等の不純物の分離効
率が高く、高純度のAs2 3 を供給することができ、
As2 3の飛散による環境汚染の生じることのないA
2 3 の精製装置を提供することにある。
The object of the present invention is to provide high-purity As 2 O 3 having a high efficiency of separating impurities such as Sb,
A that does not cause environmental pollution due to the scattering of As 2 O 3
It is to provide a purifying device for s 2 O 3 .

【0007】[0007]

【課題を解決するための手段】本発明の上記目的は、減
圧昇華室、その側面に接続した原料供給室及び両室間を
移動可能な定温加熱容器を有することを特徴とする三酸
化二ヒ素の精製装置により達成される。
The above object of the present invention is characterized by having a decompression sublimation chamber, a raw material supply chamber connected to the side surface thereof, and a constant temperature heating container movable between the two chambers. It is achieved by the refining device of.

【0008】本発明の装置では、As2 3 の精製のた
めの減圧昇華室と原料供給室とを分離することによっ
て、原料を供給する際に、原料のAs2 3 が精製され
たAs2 3 に混入することが防止される。また、原料
のAs2 3 を定温保持可能な加熱容器中で加熱するた
め、均一な定温加熱が可能となって精度よくAs2 3
のみを昇華させることができ、Sb等の不純物の混入を
防止して、高純度のAs2 3 を得ることができる。
In the apparatus of the present invention, by separating the vacuum sublimation chamber for the purification of As 2 O 3 and the raw material supply chamber, the raw material As 2 O 3 is purified from As. Mixing with 2 O 3 is prevented. In addition, since the raw material As 2 O 3 is heated in a heating container capable of maintaining a constant temperature, uniform constant temperature heating is possible, and As 2 O 3 can be accurately performed.
Only As can be sublimated, contamination of impurities such as Sb can be prevented, and high-purity As 2 O 3 can be obtained.

【0009】また、原料供給室に排気用のバルブを取り
付けた場合には、排気用バルブから排気しつつ原料を供
給することによって、原料のAs2 3 粉末の飛散によ
る作業環境の汚染を防止することができる。
Further, when an exhaust valve is attached to the raw material supply chamber, the raw material is supplied while being exhausted from the exhaust valve to prevent contamination of the work environment due to scattering of As 2 O 3 powder of the raw material. can do.

【0010】[0010]

【実施例】次に本発明の実施例を添付図面に基づいて説
明する。
Embodiments of the present invention will now be described with reference to the accompanying drawings.

【0011】図1は、本発明のAs2 3 精製装置の好
ましい実施態様の一例を示すものである。
FIG. 1 shows an example of a preferred embodiment of the As 2 O 3 purifying apparatus of the present invention.

【0012】減圧昇華室1は、As2 3 を減圧昇華さ
せて精製する部分であり、ステンレススチール材等で作
製される。減圧昇華室1の上部には、減圧ラインに接続
するためのバルブ4、下部には沈析した精製As2 3
の取り出し口5がある。本発明装置では、取り出し口5
に包装バッグを取り付けた後、バルブを開いて製品を袋
詰めすることによって、製品の飛散を防止することがで
きる。また、この製品の取り出し操作を計量器と連動さ
せても良い。
The reduced pressure sublimation chamber 1 is a portion for sublimating As 2 O 3 under reduced pressure for purification, and is made of a stainless steel material or the like. At the top of the vacuum sublimation chamber 1, there is a valve 4 for connecting to the vacuum line, and at the bottom is the precipitated purified As 2 O 3
There is an outlet 5. In the device of the present invention, the take-out port 5
After the packaging bag is attached to the product, the valve can be opened to bag the product, thereby preventing the product from scattering. In addition, the operation of taking out this product may be linked with the weighing machine.

【0013】減圧昇華室1の側面には、原料供給室2が
接続される。原料供給室2には上部にAs2 3 供給用
の開閉蓋6と反応終了時に常圧に戻すための空気送入用
バルブ7を取り付ける。空気送入用バルブ7はこの位置
に限定されず、任意の位置で良く、減圧昇華室1に設置
してもよい。また、原料供給室2の下部には、必要に応
じて、昇華残渣を集めるための排出溜容器8を設ける。
排出溜容器8の上部には、排気用のバルブ9を取り付け
てもよく、原料供給時に排気用のバルブ9を開いて供給
室を負圧にすることによって、As2 3 粉末の飛散を
防止できる。排気用のバルブ9の取り付け位置はこの部
分に限定されず、原料供給室2の任意の部分とすること
がきる。
A raw material supply chamber 2 is connected to the side surface of the reduced pressure sublimation chamber 1. An open / close lid 6 for supplying As 2 O 3 and an air inlet valve 7 for returning to normal pressure at the end of the reaction are attached to the upper part of the raw material supply chamber 2. The air feeding valve 7 is not limited to this position, and may be located at any position, and may be installed in the decompression sublimation chamber 1. In addition, a discharge container 8 for collecting sublimation residues is provided in the lower part of the raw material supply chamber 2 if necessary.
An exhaust valve 9 may be attached to the upper part of the discharge reservoir container 8, and when the raw material is supplied, the exhaust valve 9 is opened to make the supply chamber a negative pressure to prevent the scattering of As 2 O 3 powder. it can. The mounting position of the exhaust valve 9 is not limited to this portion, and may be an arbitrary portion of the raw material supply chamber 2.

【0014】加熱容器3は、ステンレススチール材等で
作製され、減圧昇華室1と原料供給室2の間を移動でき
るように構成される。加熱容器3には、ヒーター及び温
度センサーを設置して、定温加熱を可能とする。例え
ば、加熱容器を二重壁の材料で構成し、その内部にヒー
ター及び温度センサーを設置すればよい。加熱容器3は
ステンレスパイプ10に固定され、このパイプ10を通
してヒーター及び温度センサーのリード線を導き、温調
電源11に接続される。パイプ10は減圧昇華室1と原
料供給室2を分ける移動隔壁12に固定され、他端はリ
ーク止め用シール13を付けた蓋14により保持され
る。移動隔壁12は、減圧昇華室1と原料供給室2の境
に付けたストッパー15と、蓋14との間を移動し、減
圧昇華室1及び原料供給室2において加熱容器3を位置
決めする働きもする。移動隔壁12は、原料供給室の底
を滑らかに移動させるために接触部16を、ポリテトラ
フルオロエチレン(PTFE)等の材料を用いて構成す
ることが好ましい。また、加熱容器3は、昇華残渣を取
り除くために、排出溜容器8の上部で回転可能とする。
The heating container 3 is made of a stainless steel material or the like and is constructed so as to be movable between the reduced pressure sublimation chamber 1 and the raw material supply chamber 2. A heater and a temperature sensor are installed in the heating container 3 to enable constant temperature heating. For example, the heating container may be made of a double-walled material, and the heater and the temperature sensor may be installed inside the heating container. The heating container 3 is fixed to a stainless pipe 10, and leads of a heater and a temperature sensor are led through the pipe 10 and connected to a temperature control power supply 11. The pipe 10 is fixed to a moving partition 12 which divides the decompression sublimation chamber 1 and the raw material supply chamber 2, and the other end is held by a lid 14 provided with a leak prevention seal 13. The moving partition 12 also moves between a stopper 15 provided at the boundary between the decompression sublimation chamber 1 and the raw material supply chamber 2 and a lid 14 to position the heating container 3 in the decompression sublimation chamber 1 and the raw material supply chamber 2. To do. In the moving partition 12, the contact portion 16 is preferably made of a material such as polytetrafluoroethylene (PTFE) in order to smoothly move the bottom of the raw material supply chamber. Further, the heating container 3 can be rotated above the discharge reservoir 8 in order to remove the sublimation residue.

【0015】装置の各接続部は、ガスケット又はOリン
グを用いて緊密に締め付け、26.6×10Pa(20
mmHg)程度以下、好ましくは13.3×10〜1.
33×10Pa程度の減圧操作に耐えるようにする。
Each connecting part of the device is tightly tightened by using a gasket or an O-ring, and 26.6 × 10 Pa (20
mmHg) or less, preferably 13.3 × 10 to 1.
It should withstand a decompression operation of about 33 × 10 Pa.

【0016】本発明装置を用いてAs2 3 を精製する
方法を以下に示す。
A method for purifying As 2 O 3 using the apparatus of the present invention will be described below.

【0017】まず、原料供給室2において、原料供給用
の開閉蓋6を開けて原料の工業用As2 3 17を加熱
容器3に入れる。原料供給の際には、好ましくは排気用
バルブ9から排気して原料供給室2を負圧にする。次い
で、各接続部を締め付け、バルブ4を開いて26.6×
10Pa(20mmHg)程度以下、好ましくは13.
3×10〜1.33×10Pa程度の減圧状態とし、加
熱容器3を減圧昇華室1に移動させる。その後、加熱容
器3を200〜350℃程度、好ましくは250〜28
0℃程度の間の一定温度に保ってAs2 3 昇華させ
る。350℃以上の温度では、As2 3 が溶融して容
器を腐食し、昇華の速度、As2 3 の純度等が低下す
るので好ましくない。
First, in the raw material supply chamber 2, the open / close lid 6 for supplying the raw material is opened to put the industrial As 2 O 3 17 of the raw material into the heating container 3. At the time of supplying the raw material, preferably, the exhaust valve 9 is evacuated to bring the raw material supply chamber 2 to a negative pressure. Then tighten each connection and open valve 4 to 26.6 ×
About 10 Pa (20 mmHg) or less, preferably 13.
The heating container 3 is moved to the reduced pressure sublimation chamber 1 in a reduced pressure state of about 3 × 10 to 1.33 × 10 Pa. Then, the heating container 3 is heated to about 200 to 350 ° C., preferably 250 to 28 ° C.
As 2 O 3 is sublimated while maintaining a constant temperature between 0 ° C. At a temperature of 350 ° C. or higher, As 2 O 3 melts and corrodes the container, and the sublimation rate, the purity of As 2 O 3 and the like decrease, which is not preferable.

【0018】昇華を終えた時点で加熱を止め、バルブ7
を開いて徐々に空気を入れて大気圧に戻す。次いで、加
熱容器3を原料供給室2に戻し、開閉蓋6から次の原料
を加え、再び昇華を行う。昇華残分の多いときには加熱
容器3内の残分をかき集め、容器を180度回転させ
て、排出溜容器8に集めて取り出す。或いは、この操作
が煩雑であれば、加熱容器3の中に別の原料受皿を入れ
るようなカートリッジ式にしてもよい。通常、原料補給
を数回繰り返して昇華し、昇華物が単位重量に達した
後、減圧昇華室1の底部から精製As2 3 18を取り
出す。
When the sublimation is completed, the heating is stopped and the valve 7
Open and gradually add air to return to atmospheric pressure. Next, the heating container 3 is returned to the raw material supply chamber 2, the next raw material is added from the opening / closing lid 6, and sublimation is performed again. When there is a large amount of sublimation residue, the residue in the heating container 3 is scraped off, the container is rotated 180 degrees, and collected in the discharge storage container 8 and taken out. Alternatively, if this operation is complicated, a cartridge type in which another raw material tray is put in the heating container 3 may be used. Usually, sublimation is repeated several times by supplying raw materials, and after the sublimate reaches a unit weight, the purified As 2 O 3 18 is taken out from the bottom of the vacuum sublimation chamber 1.

【0019】減圧条件及び加熱温度が最適範囲とされた
場合には、500〜50ppm程度のSbを含む工業用
As2 3 を原料として、Sb含量1〜20ppm程度
の高純度As2 3 を得ることができる。
When the depressurization conditions and the heating temperature are in the optimum ranges, high-purity As 2 O 3 having an Sb content of about 1 to 20 ppm is used as a raw material from industrial As 2 O 3 containing about 500 to 50 ppm of Sb. Obtainable.

【0020】操作例 本発明装置を用いた操作例を次に示す。The following operation example using an operation example the invention device.

【0021】原料としては、下記表1に示す試料No.
1〜3の三種類の工業用As2 3 を用いた。
As the raw material, the sample No. shown in Table 1 below was used.
Three types of industrial As 2 O 3 of 1 to 3 were used.

【0022】 表1 試料 強熱残分 塩化物 鉄(Fe) 硫化物 重金属 Se Sb 含量No % % % (S)% % ppm ppm % 1 0.1 0.01 0.02 0.02 0.15 10 500 98.8 2 0.05 0.002 0.004 0.01 0.10 5 220 99.5 3 0.08 0.01 0.02 0.02 0.10 3 100 99.0 原料供給室2に加熱容器3(内容量6.8リットル)を
移動させて、原料投入用の開閉蓋6を開き、排気用バル
ブ9から排気しつつ原料8kgを加熱容器3に入れた
後、各接続部を締め付け、バルブ4を通して、真空ポン
プで6.6×10Pa(5mmHg)に減圧した。
Table 1 Sample Ignition residue Chloride Iron (Fe) Sulfide Heavy metal Se Sb Content No %%% (S) %% ppm ppm ppm% 1 0.1 0.01 0.02 0.02 0.15 10 500 98.8 2 0.05 0.002 0.004 0.01 0.10 5 220 99.5 3 0.08 0.01 0.02 0.02 0.10 3 100 99.0 Move the heating container 3 (content 6.8 liters) to the raw material supply chamber 2, open the open / close lid 6 for feeding the raw material, and exhaust from the exhaust valve 9. After putting 8 kg of the raw material into the heating container 3, each connection part was tightened, and the pressure was reduced to 6.6 × 10 Pa (5 mmHg) with a vacuum pump through the valve 4.

【0023】移動隔壁12をストッパー15の位置まで
押し込んで加熱容器3を減圧昇華室1(内容量約230
リットル)に移動させ、電源を作動させて280℃に加
熱し、この間圧力を6.6×10Pa以下に保ち、約8
時間放置した。バルブ7を開いて徐々に大気圧まで戻
し、加熱容器3を原料供給室側に戻して、再び原料投入
用の開閉蓋6から原料As2 3 を8kg加え、同様の
操作を繰り返した。
The moving partition 12 is pushed to the position of the stopper 15 to move the heating container 3 to the decompression sublimation chamber 1 (internal volume about 230).
Liter) and activate the power supply to heat it to 280 ° C., while maintaining the pressure at 6.6 × 10 Pa or less,
Left for hours. The valve 7 was opened to gradually return to atmospheric pressure, the heating container 3 was returned to the raw material supply chamber side, 8 kg of raw material As 2 O 3 was again added from the open / close lid 6 for feeding raw material, and the same operation was repeated.

【0024】4回の操作の後、開閉蓋6を開けて容器3
の残渣をかき集め、容器3を回転させて、排出溜容器8
に残渣を集めて廃棄した。その後、上記操作を繰り返し
て、昇華を行った。
After four operations, the opening / closing lid 6 is opened to open the container 3
Scrape off the residue of, and rotate the container 3,
The residue was collected and discarded. Then, the above operation was repeated to perform sublimation.

【0025】昇華したAs2 3 は、減圧昇華室1の壁
にはほとんど付着せずに減圧昇華室1の底部に沈降して
くるので、取り出し口5のキャップを外して、製品袋を
取り出し口5に取り付け、コックを開いて精製As2
3 を収集することによって、飛散することなく、精製A
2 3 が得られた。
The sublimated As 2 O 3 hardly adheres to the wall of the decompression sublimation chamber 1 and settles at the bottom of the decompression sublimation chamber 1. Therefore, remove the cap of the take-out port 5 and take out the product bag. Attach to mouth 5, open the cock and purify As 2 O
By collecting 3 , purified A without scattering
s 2 O 3 was obtained.

【0026】4回の処理による精製As2 3 の収量
は、原料により多少の変動はあるが、約30kg、収率
は約94%であった。除去の困難なSbの含量は下記表
2に示す通りである。なお、その他の不純物はJIS特
級に相当する含有量であった。比較として、従来の常圧
法昇華装置を用いた結果も併記する。
The yield of purified As 2 O 3 by the four treatments was about 30 kg, and the yield was about 94%, although it varied somewhat depending on the raw material. The content of Sb which is difficult to remove is as shown in Table 2 below. The other impurities had a content corresponding to JIS special grade. For comparison, the results using a conventional atmospheric sublimation device are also shown.

【0027】 表2 試料 原料As2 3 精製As2 3 精製As2 3 No Sb(ppm) Sb(ppm) Sb(ppm) (本発明法) (従来法) 1 500 20 120 2 220 20 100 3 100 10 50 以上の結果から、本発明の精製装置によれば、従来の常
圧法昇華装置を用いた場合と比べて、高純度のAs2
3 が得られることが判る。
Table 2 Sample Raw material As 2 O 3 purified As 2 O 3 purified As 2 O 3 No Sb (ppm) Sb (ppm) Sb (ppm) (invention method) (conventional method) 1 500 20 120 2 220 20 From the results of 100 3 100 10 50 or more, according to the purification apparatus of the present invention, As 2 O having a high purity can be obtained, as compared with the case of using the conventional atmospheric sublimation apparatus.
It turns out that 3 is obtained.

【0028】[0028]

【発明の効果】本発明の精製装置によれば、As2 3
の精製のための減圧昇華室と原料供給室とを分離するこ
とによって、原料を供給する際に、精製されたAs2
3 に原料のAs2 3 が混入することが防止される。ま
た減圧昇華を定温保持可能な加熱容器中で行うために厳
密な温度設定が可能となり、As2 3とSb2 3
分離効率が向上する。このため高純度のAs2 3 を得
ることができ、また反射炉を用いる場合と比べて省エネ
ルギー化の利点がある。また、原料の仕込み、精製品の
取り出しの際の粉塵の飛散を防止できるために環境汚染
防止の点でも極めて価値の高いものである。
According to the refining apparatus of the present invention, As 2 O 3
By separating the vacuum sublimation chamber and the raw material supply chamber for the purification, the raw material in providing the purified As 2 O
3 raw material As 2 O 3 is prevented from being mixed into. Further, since the sublimation under reduced pressure is carried out in a heating vessel capable of maintaining a constant temperature, it is possible to set a strict temperature, and the separation efficiency of As 2 O 3 and Sb 2 O 3 is improved. Therefore, high-purity As 2 O 3 can be obtained, and there is an advantage of energy saving as compared with the case of using a reverberatory furnace. Further, since it is possible to prevent the scattering of dust when the raw materials are charged and the purified product is taken out, it is extremely valuable in terms of preventing environmental pollution.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の精製装置の一例を示す断面図である。FIG. 1 is a sectional view showing an example of a refining device of the present invention.

【符号の説明】 1 減圧昇華室 2 原料供給室 3 加熱容器 4 減圧用バルブ 5 製品取り出し口 6 原料供給用の開閉蓋 7 空気送入用バルブ 8 排出溜容器 9 排気用のバルブ 10 パイプ 11 温調電源 12 移動隔壁 13 リーク止め用シール 14 蓋 15 ストッパー 16 移動隔壁の接触部 17 原料As2 3 18 精製As2 [Explanation of reference numerals] 1 decompression sublimation chamber 2 raw material supply chamber 3 heating container 4 decompression valve 5 product outlet 6 open / close lid for raw material supply 7 air inlet valve 8 discharge reservoir 9 exhaust valve 10 pipe 11 temperature Power source 12 Moving partition wall 13 Seal for leak prevention 14 Lid 15 Stopper 16 Contact part of moving partition wall 17 Raw material As 2 O 3 18 Purified As 2 O 3

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山下 晴堂 香川県小豆郡内海町苗羽甲946−6 (72)発明者 安村 利昭 大阪府大阪市東淀川区東淡路1丁目5番2 −1115 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Harudou Yamashita 946-6 Naeba Ko, Utsumi-cho, Shozu-gun, Kagawa Prefecture (72) Toshiaki Yasumura 1-52-1115 Higashi-Awaji, Higashiyodogawa-ku, Osaka-shi, Osaka

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】減圧昇華室、その側面に接続した原料供給
室及び両室間を移動可能な定温加熱容器を有することを
特徴とする三酸化二ヒ素の精製装置。
1. An apparatus for purifying diarsenic trioxide, comprising a decompression sublimation chamber, a raw material supply chamber connected to the side surface of the chamber, and a constant temperature heating container movable between the chambers.
【請求項2】原料供給室に排気用バルブを設けた請求項
1に記載の三酸化二ヒ素の精製装置。
2. The apparatus for purifying arsenic trioxide according to claim 1, wherein an exhaust valve is provided in the raw material supply chamber.
JP26015491A 1991-10-08 1991-10-08 Refining device for diarsenic trioxide Pending JPH0597439A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26015491A JPH0597439A (en) 1991-10-08 1991-10-08 Refining device for diarsenic trioxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26015491A JPH0597439A (en) 1991-10-08 1991-10-08 Refining device for diarsenic trioxide

Publications (1)

Publication Number Publication Date
JPH0597439A true JPH0597439A (en) 1993-04-20

Family

ID=17344066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26015491A Pending JPH0597439A (en) 1991-10-08 1991-10-08 Refining device for diarsenic trioxide

Country Status (1)

Country Link
JP (1) JPH0597439A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7232554B2 (en) * 2000-12-14 2007-06-19 Barrick Gold Corporation Process for recovering arsenic from acidic aqueous solution
CN111377478A (en) * 2018-12-29 2020-07-07 东泰高科装备科技有限公司 Purification method of arsenic trioxide
CN113481385A (en) * 2021-07-13 2021-10-08 广西凯玺有色金属有限公司 Process method for cleaning and refining arsenic product
CN114314657A (en) * 2022-02-18 2022-04-12 郑州德凯科技有限公司 Production device and method for continuously preparing arsenic trioxide

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7232554B2 (en) * 2000-12-14 2007-06-19 Barrick Gold Corporation Process for recovering arsenic from acidic aqueous solution
CN111377478A (en) * 2018-12-29 2020-07-07 东泰高科装备科技有限公司 Purification method of arsenic trioxide
CN113481385A (en) * 2021-07-13 2021-10-08 广西凯玺有色金属有限公司 Process method for cleaning and refining arsenic product
CN114314657A (en) * 2022-02-18 2022-04-12 郑州德凯科技有限公司 Production device and method for continuously preparing arsenic trioxide
CN114314657B (en) * 2022-02-18 2023-09-22 郑州德凯科技有限公司 Production device and method for continuously preparing arsenic trioxide

Similar Documents

Publication Publication Date Title
US4073644A (en) Salt cake processing method and apparatus
EP2677045B1 (en) Device and method for removing impurities in aluminum melt
JPH04502726A (en) Dry exhaust gas control method
NO774368L (en) MANUFACTURE OF REFRACTORY METAL BORIDES, CARBIDES OR NITRIDES
JPH07762A (en) Conditioning of dry exhaust gas
CN106216360A (en) A kind of refined and resource utilization method of side-product salt
US2997385A (en) Method of producing refractory metal
US2778726A (en) Purification of refractory metals
JPH0597439A (en) Refining device for diarsenic trioxide
US2067019A (en) Phthalic anhydride recovery
CA1160059A (en) Method and installation for scrubbing the flues for recovering the salts in a process for the production of secondary aluminum
CN211515533U (en) Industrial sodium chloride resource utilization process device
US3341283A (en) Chlorination of aluminum in the presence of iron
FR2525238A1 (en) PROCESS FOR PURIFYING MOLYBDENITE CONCENTRATES
JPH026318A (en) Method of removing n type doping impurity from liquefied or gaseous substance generated by vapor phase precipitation of silicon
NO141418B (en) PROCEDURE FOR REMOVING ALKALI AND EARTH ALKIUM METALS FROM LIGHT METAL MELTS
CN102190292B (en) Device for preparing fullerene
Lavoie et al. Alcan plasma dross treatment process
US3647367A (en) Method for making anhydrous magnesium chloride
RU2038395C1 (en) Method for rendering chromium-containing wastes of electroplating harmless
NO115908B (en)
US4255399A (en) Process for the recovery of magnesium oxide of high purity
US3403005A (en) Apparatus for the purification of an enclosed inert atmosphere
Mc Creary High-purity calcium
US5926498A (en) Melting furnace for the thermal treatment of special waste materials containing heavy metal and/or dioxin