JPH0596591A - Controller for injection molding machine - Google Patents

Controller for injection molding machine

Info

Publication number
JPH0596591A
JPH0596591A JP29037091A JP29037091A JPH0596591A JP H0596591 A JPH0596591 A JP H0596591A JP 29037091 A JP29037091 A JP 29037091A JP 29037091 A JP29037091 A JP 29037091A JP H0596591 A JPH0596591 A JP H0596591A
Authority
JP
Japan
Prior art keywords
values
rule
value
database
operating condition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP29037091A
Other languages
Japanese (ja)
Inventor
Yasumasa Suga
恭正 菅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP29037091A priority Critical patent/JPH0596591A/en
Publication of JPH0596591A publication Critical patent/JPH0596591A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/76Measuring, controlling or regulating

Abstract

PURPOSE:To reduce the adjusting operation of an operator largely by providing a fuzzy arithmetic section with a waveform database, a rule database and a gravity- center arithmetic section arithmetically operating the center of gravity of the membership functions of each rule. CONSTITUTION:The controller of an injection molding machine has a fuzzy arithmetic section 20 receiving the command values and detecting values of each operation condition, computing correction values at every operation condition, adding the correction values to the corresponding command values and outputting the added values as adjusting values and a control section 30 receiving the adjusting values and detecting values of each operation condition and computing manipulated variables at every operation condition. The fuzzy arithmetic section 20 receives a waveform database, in which the optimum-state transition waveform of a molten resin is stored at every molded form, a rule database, in which the heuristics of an operator is stored at every operation condition, and data from the waveform data-base and the rule database, obtains the membership functions of rules corresponding at every operation condition, and arithmetically operates the center of gravity of the synthetic membership function of the maximum values of the membership functions by agravity-center arithmetic section.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は射出成形機の制御装置に
関し、特にファジー推論を活用した制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a controller for an injection molding machine, and more particularly to a controller utilizing fuzzy inference.

【0002】[0002]

【従来の技術】一般に、射出成形は、樹脂の可塑化→射
出→保圧→冷却という工程で行われる。このような工程
を経て得られる成形品の重量、寸法、光弾性等を一様に
するには、樹脂の状態遷移(樹脂の比容積、温度、圧力
の推移)の再現性を良くすることが必要となる。なお、
比容積とは成形品の密度の逆数、保圧とは保圧工程で制
御される金型内樹脂圧力である。
2. Description of the Related Art Generally, injection molding is carried out by the steps of plasticizing resin, injecting, holding pressure, and cooling. In order to make the weight, size, photoelasticity, etc. of the molded product obtained through these processes uniform, it is necessary to improve the reproducibility of the resin state transition (transition of resin specific volume, temperature, pressure). Will be needed. In addition,
The specific volume is the reciprocal of the density of the molded product, and the holding pressure is the resin pressure inside the mold controlled in the holding step.

【0003】ところで、溶融状態における樹脂の比容積
−温度−圧力の関係は、以下のスペンサーの状態方程式
で表わされることが知られている。 (P+π)(V−ω)=Rm T 但し、Pは樹脂圧力、Vは比容積、Tは樹脂温度、π、
ω、Rm はそれぞれ材料に応じて決まる定数。
By the way, it is known that the relationship between the specific volume of resin in the molten state-the temperature-the pressure is represented by the following equation of state of Spencer. (P + π) (V−ω) = R m T where P is the resin pressure, V is the specific volume, T is the resin temperature, π,
ω and R m are constants determined according to the material.

【0004】この関係を、P、V、Tの3次元の面で表
わすと図4のようになり、上述した可塑化→射出→保圧
→冷却の1成形サイクルで図4中実線で示すような軌跡
を描く。この軌跡は、射出成形作業が繰り返し行われて
も同じであることが望ましい。
This relationship is expressed in the three-dimensional plane of P, V, and T as shown in FIG. 4, which is shown by the solid line in FIG. 4 in one molding cycle of plasticization → injection → holding pressure → cooling described above. Draw a trace. It is desirable that this locus be the same even when the injection molding operation is repeated.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、実際に
は成形サイクルの開始から終了までの間に樹脂温度が変
動するために、時間経過とともに図4中実線で示すよう
な軌跡から外れて破線で示すような軌跡を描くようにな
り、その結果、成形品の品質にばらつきが生じてしま
う。これは、樹脂温度が変動すると、射出開始直前の加
熱シリンダにおけるリザーバ内の比容積が変化し、金型
への充填に際して樹脂の初期条件(初期状態)が変化す
ることに起因する。
However, in reality, since the resin temperature fluctuates from the start to the end of the molding cycle, it deviates from the locus shown by the solid line in FIG. Such a trajectory is drawn, and as a result, the quality of the molded product varies. This is because when the resin temperature changes, the specific volume in the reservoir in the heating cylinder immediately before the start of injection changes, and the initial condition (initial state) of the resin changes when filling the mold.

【0006】従来はオペレータが樹脂の種類、成形品の
種別、金型温度等の成形条件と経験則から樹脂の可塑化
時の流動状態を推測し、加熱シリンダの温度やスクリュ
回転速度、背圧といった運転条件を粗く設定する。その
後、オペレータは、成形を行いながら徐々に各運転条件
を調整し成形を行うようにしている。このため、射出成
形機のオペレータは熟練を要求されるだけでなく、調整
作業も各運転条件が相互に関連し合っているため大きな
手間を必要とする。本発明の課題は、ファジー推論を利
用してオペレータの経験則を制御に取り込むことによ
り、オペレータの調整作業を大幅に軽減することのでき
る射出成形機の制御装置を提供することにある。
Conventionally, an operator estimates the flow state at the time of plasticizing the resin from the molding conditions such as the type of resin, the type of molded product, the mold temperature and the empirical rule, and the temperature of the heating cylinder, the screw rotation speed, the back pressure. Roughly set the operating conditions. After that, the operator gradually adjusts each operating condition while performing the molding to perform the molding. For this reason, the operator of the injection molding machine is not only required to have the skill, but also the adjustment work requires a lot of labor because the respective operating conditions are mutually related. An object of the present invention is to provide a control device for an injection molding machine that can significantly reduce the operator's adjustment work by incorporating the empirical rule of the operator into the control by utilizing fuzzy reasoning.

【0007】[0007]

【課題を解決するための手段】本発明は、背圧、スクリ
ュ回転数、シリンダ温度等の運転条件の指令値及び検出
値にもとづいて射出成形を行う射出成形機の制御装置に
おいて、前記各運転条件の指令値及び検出値を受けて運
転条件毎に補正値を算出し対応する前記指令値に加算し
て調整値として出力するファジー演算部と、前記各運転
条件の調整値及び検出値を受けて運転条件毎に操作量を
算出する制御部とを備え、前記ファジー演算部は、成形
品別に溶融樹脂の最適な状態遷移波形を記憶した波形デ
ータベースと、前記各運転条件毎にオペレータの経験則
を蓄積したルールデータベースと、前記波形データベー
ス、前記ルールデータベースからのデータを受け、前記
各運転条件毎に該当するルールのメンバシップ関数を得
ると共に、各ルールのメンバシップ関数の最大値をとっ
て合成した合成メンバシップ関数の重心を演算する重心
演算部とを含むことを特徴とする。
SUMMARY OF THE INVENTION The present invention relates to an injection molding machine control device for performing injection molding based on a command value and a detected value of operating conditions such as back pressure, screw rotation speed, cylinder temperature and the like. A fuzzy calculator that receives a command value and a detected value of a condition, calculates a correction value for each operating condition, adds the correction value to the corresponding command value and outputs the adjusted value, and receives the adjusted value and the detected value of each operating condition. The fuzzy operation unit includes a waveform database storing the optimum state transition waveform of the molten resin for each molded product, and an operator's empirical rule for each operating condition. And a data base from which the waveform database and the rule database are stored to obtain a membership function of the rule corresponding to each operating condition, and Characterized in that it comprises a gravity calculation unit for calculating the center of gravity of the synthetic membership function synthesized by taking the maximum value of the membership function.

【0008】[0008]

【実施例】図面を参照して本発明の実施例について説明
する。図1を参照して、射出成形機10の制御系は、フ
ァジー演算部20と制御部30及び成形品種別指定部4
0とから成る。射出成形機10は、加熱シリンダ100
の内部に回転及び往復動自在にスクュ101が配置さ
れ、このスクリュ101は射出シリンダ102により往
復動するように駆動されると共に、回転駆動系103に
より回転駆動される。スクリュ101を回転させると共
に往復させることで加熱シリンダ100内の樹脂を金型
104のキャビティ105に充填し加圧成形する。
Embodiments of the present invention will be described with reference to the drawings. Referring to FIG. 1, the control system of the injection molding machine 10 includes a fuzzy calculation unit 20, a control unit 30, and a molding product type designation unit 4
It consists of 0 and. The injection molding machine 10 includes a heating cylinder 100.
A screw 101 is rotatably and reciprocally disposed inside the screw 101. The screw 101 is driven by an injection cylinder 102 so as to reciprocate, and is rotationally driven by a rotary drive system 103. By rotating and reciprocating the screw 101, the resin in the heating cylinder 100 is filled in the cavity 105 of the mold 104 and pressure-molded.

【0009】本実施例では、運転条件として加熱シリン
ダ100の温度、射出シリンダ102における背圧、回
転駆動系103の回転数、すなわちスクリュ回転数とを
用いる場合について説明する。このため、加熱シリンダ
100、射出シリンダ102、回転駆動系103にはそ
れぞれ検出器(図示せず)が設けられ、温度検出値T
D、背圧検出値PD、回転速度検出値RDがそれぞれ、
ファジー演算部20、制御部30に与えられる。
In this embodiment, the case where the temperature of the heating cylinder 100, the back pressure in the injection cylinder 102, and the rotational speed of the rotary drive system 103, that is, the screw rotational speed are used as operating conditions will be described. Therefore, a detector (not shown) is provided in each of the heating cylinder 100, the injection cylinder 102, and the rotary drive system 103, and the temperature detection value T
D, the back pressure detection value PD, and the rotation speed detection value RD are respectively
It is given to the fuzzy operation unit 20 and the control unit 30.

【0010】ファジー演算部20にはまた、加熱シリン
ダ100の温度指令値TI、射出シリンダ102の背圧
指令値PI、スクリュの回転速度指令値RIが与えられ
る。各運転条件の検出値及び指令値を受けて、ファジー
演算部20は、運転条件毎に補正値を算出すると共に、
各補正値を対応する指令値に加算して温度調整値TC、
背圧調整値PC、回転速度調整値RCとして出力する。
The fuzzy calculator 20 is also supplied with a temperature command value TI of the heating cylinder 100, a back pressure command value PI of the injection cylinder 102, and a screw rotation speed command value RI. In response to the detected value and the command value of each operating condition, the fuzzy operation unit 20 calculates a correction value for each operating condition, and
Adding each correction value to the corresponding command value, the temperature adjustment value TC,
It is output as a back pressure adjustment value PC and a rotation speed adjustment value RC.

【0011】制御部30は、各運転条件の検出値と調整
値とを受けて運転条件毎に操作量を算出し、加熱シリン
ダ100の温度操作量TO、射出シリンダ102の背圧
操作量PO、スクリュの回転速度操作量ROとして出力
する。加熱シリンダ100、射出シリンダ102、回転
駆動系103はそれぞれ、対応する上記の操作量にもと
づいて動作する。なお、成形品種別指定部4Oは、あら
かじめ決まっている成形品の種別を指定するためのもの
である。
The control unit 30 receives the detected value and the adjusted value of each operating condition to calculate the operating amount for each operating condition, and the temperature operating amount TO of the heating cylinder 100, the back pressure operating amount PO of the injection cylinder 102, The rotation speed manipulated variable RO of the screw is output. The heating cylinder 100, the injection cylinder 102, and the rotary drive system 103 each operate based on the corresponding operation amount. The molding product type designation unit 4O is for designating a predetermined type of molded product.

【0012】次に、ファジー演算部20について図2を
参照して説明する。ファジー演算部20は、成形品別に
溶融樹脂の最適な状態遷移波形(図4参照)を記憶した
波形データベース21と、各運転条件毎にオペレータの
経験則を蓄積したルールデータベース22と、波形デー
タベース21、ルールデータベース22からのデータを
受け、各運転条件毎に該当するルールのメンバシップ関
数を得ると共に、各ルールのメンバシップ関数の最大値
をとって合成した合成メンバシップ関数の重心を演算
し、波形データベース21からの最適な状態遷移波形と
のずれを考慮しながら加熱シリンダ100の温度補正値
TC′、射出シリンダ102の背圧補正値PC′、スク
リュの回転速度補正値RC′を出力する重心演算部23
とを含む。各補正値は、対応する指令値に加算されて、
加算結果が温度調整値TC、背圧調整値PC、回転速度
調整値RCとして出力される。
Next, the fuzzy calculator 20 will be described with reference to FIG. The fuzzy operation unit 20 includes a waveform database 21 that stores optimum state transition waveforms of molten resin (see FIG. 4) for each molded product, a rule database 22 that stores an empirical rule of an operator for each operating condition, and a waveform database 21. , Receives the data from the rule database 22, obtains the membership function of the rule corresponding to each operating condition, calculates the center of gravity of the synthesized membership function obtained by taking the maximum value of the membership function of each rule, The center of gravity for outputting the temperature correction value TC 'of the heating cylinder 100, the back pressure correction value PC' of the injection cylinder 102, and the screw rotation speed correction value RC 'while considering the deviation from the optimum state transition waveform from the waveform database 21. Computing unit 23
Including and Each correction value is added to the corresponding command value,
The addition result is output as a temperature adjustment value TC, a back pressure adjustment value PC, and a rotation speed adjustment value RC.

【0013】オペレータは樹脂の特性や、成形品の構造
や、その他の環境条件などから可塑化時の樹脂の流動の
状態を経験的に推測しながら成形条件の調整を行なう。
こういった調整を行う過程で、オペレータは、よい成形
品を得るための効果的な条件調整則を持っている。例え
ば「樹脂温度が少し高くてスクリュ回転数も少し高けれ
ば(樹脂の流動性がよくなっているが温度による調整は
時定数が大きいため、温度の変更は行わずに)背圧を少
し小さくする(ことによって樹脂の逆流を防ぐ)」とい
った形で状況に応じて効果的な経験則(ルール)を用い
る。
The operator adjusts the molding conditions by empirically estimating the flow state of the resin during plasticization from the characteristics of the resin, the structure of the molded product, and other environmental conditions.
In the process of making such adjustments, the operator has effective conditioning rules for obtaining good molded products. For example, "If the resin temperature is a little higher and the screw rotation speed is a little higher (the flowability of the resin is good, but the time constant is large because the adjustment by temperature is large, do not change the temperature) and reduce the back pressure a little. Use an effective empirical rule depending on the situation, such as (preventing resin backflow).

【0014】ルールデータベース22は、下記の例の如
く、「もし〜が〜で、〜が〜であれば〜を〜する」とい
うように、人間が普段用いる言語値として記述し、成形
品別に蓄積しておく。また、「高い」というような言語
値は、あらかじめメンバシップ関数(MSF)として、
確からしさの度合として記述しておく。
As shown in the following example, the rule database 22 is described as a language value that a person usually uses, such as "if ~ is ~, and ~ is ~", and is stored for each molded product. I'll do it. In addition, a language value such as "high" is previously stored as a membership function (MSF).
Describe it as the degree of certainty.

【0015】(例) ルール1 「もし、温度検出値TDが少し高くて回転速度検出値R
Dが少し遅ければ、背圧補正値PC′を低くする」 ルール2 「もし、回転速度検出値RDが少し速くて背圧検出値P
Dも少し高ければ背圧補正値PC′を低くする」
(Example) Rule 1 "If the temperature detection value TD is a little high and the rotation speed detection value R is
If D is a little late, lower back pressure correction value PC '. Rule 2 "If rotational speed detection value RD is a little faster and back pressure detection value P
If D is also a little higher, lower the back pressure correction value PC '. "

【0016】ファジー演算部20は、こういった経験者
のもつ経験則をルールとして成形品別にルールデータベ
ース22に蓄積しておき、ファジー推論によって各運転
条件を自動的に調整する。ルール1を例にとってファジ
ー推論の演算過程(重心演算過程)を説明する。図3に
ルール1の場合の構成を示す。オペレータはまず、“シ
リンダ温度が少し高い”、“スクリュ回転数が少し遅
い”、“背圧補正量を少し小さく”といった言語表現を
メンバシップ関数と呼ばれる関数で記述する。メンバシ
ップ関数は横軸に入力量の値、縦軸にその入力の起こる
確からしさを0〜1の範囲で記述する。例では三角関数
で記述しているが、その他の任意の形の関数としても記
述できる。
The fuzzy arithmetic unit 20 stores the experience rules of such experienced persons as rules in the rule database 22 for each molded product, and automatically adjusts each operating condition by fuzzy inference. Taking rule 1 as an example, a calculation process of fuzzy inference (a center of gravity calculation process) will be described. FIG. 3 shows the configuration in the case of rule 1. The operator first describes a language expression such as "cylinder temperature is a little high", "screw rotation speed is a little slow", and "back pressure correction amount is a little small" by a function called membership function. In the membership function, the horizontal axis represents the value of the input amount, and the vertical axis represents the probability that the input will occur in the range of 0 to 1. In the example, the trigonometric function is described, but the function can be described as any other function.

【0017】入力として温度検出値が“220℃”、ス
クリュ回転数が“200rpm ”であった時、それぞれの
確からしさは“0.5”、“0.3”であり、この値の
ミニマム(MIN)を取り、確からしさとして“0.
3”を得る。この値と背圧補正量のメンバシップ関数と
のミニマム(MIN)を取り、斜線部を取る。ルール2
においても、同様の手順により背圧補正量のメンバシッ
プ関数を得る。次にルール1、ルール2の斜線部のメン
バシップ関数のマキシマム(MAX)を取って合成メン
バシップ関数を得、この合成メンバシップ関数の重心を
求め、これを背圧補正値PC′として用いる。ルール数
に制限はなく、他の補正値(回転速度補正値、温度補正
値)に関しても同様の手順により求める。以上のように
して、ファジー演算部20は、成形品別の理想的な状態
遷移波形(PVT波形)に対するずれを、経験者のノウ
ハウを活用して、各運転条件の指令値を最適かつ迅速に
修正する。
When the detected temperature value is "220 ° C." and the screw rotation speed is "200 rpm" as inputs, the respective probabilities are "0.5" and "0.3", and the minimum value () MIN), and as a certainty "0.
3 "is obtained. The minimum (MIN) of this value and the membership function of the back pressure correction amount is taken, and the shaded part is taken. Rule 2
Also in, the membership function of the back pressure correction amount is obtained by the same procedure. Next, the maximum (MAX) of the membership functions in the shaded areas of Rule 1 and Rule 2 is taken to obtain a composite membership function, the center of gravity of this composite membership function is determined, and this is used as the back pressure correction value PC '. There is no limit to the number of rules, and other correction values (rotational speed correction value, temperature correction value) are obtained by the same procedure. As described above, the fuzzy operation unit 20 optimally and quickly corrects the command value of each operating condition for the deviation with respect to the ideal state transition waveform (PVT waveform) of each molded product by utilizing the know-how of an experienced person. To do.

【0018】なお、成形品の種別が代わる場合には、そ
れに応じてルールデータベース22の出力する内容、波
形データベース21の出力する内容が代えられることは
言うまでもない。
Needless to say, when the type of molded product changes, the contents output from the rule database 22 and the contents output from the waveform database 21 are changed accordingly.

【0019】[0019]

【発明の効果】以上説明してきたように、本発明によれ
ばファジー推論を利用してオペレータの経験則を制御に
取り込むことにより、オペレータが逐次行う成形条件の
調整作業を大幅に軽減することが可能となる。
As described above, according to the present invention, the fuzzy inference is utilized to incorporate the empirical rule of the operator into the control, so that the operator's sequential adjustment work of molding conditions can be significantly reduced. It will be possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の構成図。FIG. 1 is a configuration diagram of an embodiment of the present invention.

【図2】図1に示されたファジー演算部の構成図。FIG. 2 is a configuration diagram of a fuzzy operation unit shown in FIG.

【図3】本発明のファジー演算部で用いられるメンバシ
ップ関数の例を示した図。
FIG. 3 is a diagram showing an example of a membership function used in the fuzzy operation unit of the present invention.

【図4】射出成形機の成形サイクルにおける溶融樹脂の
状態遷移の軌跡を示した図。
FIG. 4 is a diagram showing a locus of state transition of molten resin in a molding cycle of an injection molding machine.

【符号の説明】[Explanation of symbols]

100 加熱シリンダ 101 スクリュ 102 射出シリンダ 103 回転駆動系 104 金型 105 キャビティ 100 Heating Cylinder 101 Screw 102 Injection Cylinder 103 Rotational Drive System 104 Mold 105 Cavity

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 背圧、スクリュ回転数、シリンダ温度等
の運転条件の指令値及び検出値にもとづいて射出成形を
行う射出成形機の制御装置において、前記各運転条件の
指令値及び検出値を受けて運転条件毎に補正値を算出し
対応する前記指令値に加算して調整値として出力するフ
ァジー演算部と、前記各運転条件の調整値及び検出値を
受けて運転条件毎に操作量を算出する制御部とを備え、
前記ファジー演算部は、成形品別に溶融樹脂の最適な状
態遷移波形を記憶した波形データベースと、前記各運転
条件毎にオペレータの経験則を蓄積したルールデータベ
ースと、前記波形データベース、前記ルールデータベー
スからのデータを受け、前記各運転条件毎に該当するル
ールのメンバシップ関数を得ると共に、各ルールのメン
バシップ関数の最大値をとって合成した合成メンバシッ
プ関数の重心を演算する重心演算部とを含むことを特徴
とする射出成形機の制御装置。
1. A control device for an injection molding machine that performs injection molding based on command values and detected values of operating conditions such as back pressure, screw rotation speed, cylinder temperature, etc. A fuzzy operation unit that receives and calculates a correction value for each operating condition and adds it to the corresponding command value and outputs it as an adjustment value; and an operation amount for each operating condition by receiving the adjustment value and the detection value of each operating condition. And a control unit for calculating,
The fuzzy operation unit, a waveform database that stores the optimum state transition waveform of the molten resin for each molded product, a rule database that accumulates an empirical rule of the operator for each operating condition, the waveform database, from the rule database A center of gravity computing unit for receiving data, obtaining a membership function of a rule corresponding to each operating condition, and computing a center of gravity of a synthesized membership function obtained by taking the maximum value of the membership function of each rule. A control device for an injection molding machine, which is characterized in that
JP29037091A 1991-10-11 1991-10-11 Controller for injection molding machine Withdrawn JPH0596591A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29037091A JPH0596591A (en) 1991-10-11 1991-10-11 Controller for injection molding machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29037091A JPH0596591A (en) 1991-10-11 1991-10-11 Controller for injection molding machine

Publications (1)

Publication Number Publication Date
JPH0596591A true JPH0596591A (en) 1993-04-20

Family

ID=17755152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29037091A Withdrawn JPH0596591A (en) 1991-10-11 1991-10-11 Controller for injection molding machine

Country Status (1)

Country Link
JP (1) JPH0596591A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995027235A1 (en) * 1994-03-31 1995-10-12 Omron Corporation Control system and method
EP0707936A3 (en) * 1994-10-19 1998-02-04 K.K. Holding Ag Process to determine the switch-over point in the production of an injection-moulded part
FR2829960A1 (en) * 2001-09-21 2003-03-28 Jean Pierre Lesbats Plastic component injection mould temperature and pressure setting procedure uses calculations of mass determined from appropriate coefficients

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995027235A1 (en) * 1994-03-31 1995-10-12 Omron Corporation Control system and method
EP0707936A3 (en) * 1994-10-19 1998-02-04 K.K. Holding Ag Process to determine the switch-over point in the production of an injection-moulded part
FR2829960A1 (en) * 2001-09-21 2003-03-28 Jean Pierre Lesbats Plastic component injection mould temperature and pressure setting procedure uses calculations of mass determined from appropriate coefficients

Similar Documents

Publication Publication Date Title
US3797808A (en) Plastication control system for injection molding machines
US3721512A (en) Plastication control system for injection molding machines
JP3794252B2 (en) Electric injection molding machine and injection control method for electric injection molding machine
CN103978669A (en) Automatic thickness control system and method of blown film
US5176858A (en) Method and apparatus for controlling molding machine
KR19990063673A (en) Improved combination control for injection molding
KR102292530B1 (en) Injection molding machine and injection control data generating method
JPH0596591A (en) Controller for injection molding machine
JP2628266B2 (en) Speed control method and apparatus for injection molding machine
JPH08258097A (en) Injection speed program control profile setting method and device in injection molding machine
JPS62104726A (en) Weight regulator for controllable injection molding machine
KR910000288B1 (en) Injection molding machines and methods for controlling the same
CN108859042B (en) Injection molding process control method and system
KR102332290B1 (en) Injection molding machine and injection control data generating method
JP3244373B2 (en) Reservoir internal pressure adjusting device in injection molding machine
JP2807924B2 (en) Control device for injection molding machine
JPH03211031A (en) Resin flow quantity control device of injection molding machine
JPS61110524A (en) Injection molding machine whose backward movement rate of screw has been made constant
JPS63209918A (en) Method for setting molding conditions of injection molder
JP3053977B2 (en) How to set injection operation conditions for injection molding machines
WO2023275120A1 (en) A method for controlling an injection molding machine
JP2601736B2 (en) Injection control method and apparatus for injection molding machine
JPS6285922A (en) Injection molding machine
JPH06106592A (en) Method and apparatus for controlling molding machine
JPH09193224A (en) Method and apparatus for controlling injection molding machine

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990107