JPH0596436A - Cutting device for fine depth of cut - Google Patents

Cutting device for fine depth of cut

Info

Publication number
JPH0596436A
JPH0596436A JP3256397A JP25639791A JPH0596436A JP H0596436 A JPH0596436 A JP H0596436A JP 3256397 A JP3256397 A JP 3256397A JP 25639791 A JP25639791 A JP 25639791A JP H0596436 A JPH0596436 A JP H0596436A
Authority
JP
Japan
Prior art keywords
cutting
piezoelectric element
tool
cutting device
cutting tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3256397A
Other languages
Japanese (ja)
Inventor
Tsutomu Hino
励 樋野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP3256397A priority Critical patent/JPH0596436A/en
Publication of JPH0596436A publication Critical patent/JPH0596436A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Automatic Control Of Machine Tools (AREA)
  • Turning (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Machine Tool Units (AREA)

Abstract

PURPOSE:To form a part where no cutting is performed in a very short distance in order to form a mirror mark, in the case of grooving work for a magneto- optical disk metal mold. CONSTITUTION:A cutting tool 1 is mounted to a point end part to arrange a mirror mark forming single-layer piezoelectric element 2 just behind coaxially with the cutting tool, and further a vibration driving multilayer piezoelectric element 4 is arranged rearward of the single-layer piezoelectric element through a tool bed part 3. Parallel spring parts 5 are formed axially symmetrically on both sides of the tool bed part 3.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、μmオーダ精度の切り
込み量で精密な溝加工を行うための切削装置に係り、特
に、光磁気ディスク金型の溝加工に適した微小切り込み
用切削装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cutting device for performing precise groove processing with a cutting amount of .mu.m order accuracy, and more particularly to a minute cutting cutting device suitable for groove processing of a magneto-optical disk die. .

【0002】[0002]

【従来の技術・発明の解決課題】上述のような微小切り
込み用切削装置としては、例えば本出願人の出願になる
実開平1−110048号公報において開示されたもの
が公知である。この微小切り込み用切削装置は、印加電
圧の電圧の大きさに対応して生じる圧電素子の押圧力に
より被削材の方向へ撓む平行ばね機構を用い、さらに被
削材の切削工具の刃先が当接する際に生じる押圧力を他
の圧電素子により起電力に変化すると共に、この起電力
を検出して被削材に切削工具の刃先が当接したことを検
知して0.02μm以下の切り込み量分解能を得るよう
にしたものである。
2. Description of the Related Art As a cutting device for fine cutting as described above, for example, the one disclosed in Japanese Utility Model Laid-Open No. 1-110048 filed by the present applicant is known. This cutting device for minute cutting uses a parallel spring mechanism that bends in the direction of the work material due to the pressing force of the piezoelectric element generated corresponding to the magnitude of the applied voltage, and the cutting edge of the cutting tool for the work material is The pressing force generated at the time of contact is changed to an electromotive force by another piezoelectric element, and the electromotive force is detected to detect that the cutting edge of the cutting tool has come into contact with the work material to make a cut of 0.02 μm or less. It is intended to obtain quantitative resolution.

【0003】ところで、上述の微小切り込み用切削装置
において、平行ばね構造を撓ませる駆動用の圧電素子
は、変位量を大きく取るため、また駆動電圧を低くする
ため、実際には数十層から数百層に重ねた積層型のもの
が用いられている。このように、平行ばね構造と多数層
構造とが採用されていることから、工具の振動を高周波
で制御することは殆ど不可能であり、特に、切削形成さ
れている溝の途中に、10μm以下の短い距離で切削を
中断して、溝が形成されていないミラーマーク部分を残
すという加工が行えなかった。また、できるだけ短い距
離で加工を中断するためには、切削速度を遅くするより
なく、加工能率の低下を招く結果となっている。
By the way, in the above-mentioned cutting device for micro-cutting, the driving piezoelectric element for bending the parallel spring structure has a large displacement amount and a low driving voltage. A laminated type of 100 layers is used. As described above, since the parallel spring structure and the multi-layer structure are adopted, it is almost impossible to control the vibration of the tool at a high frequency, and particularly, 10 μm or less is provided in the middle of the groove formed by cutting. It was not possible to perform a process in which cutting was interrupted at a short distance to leave the mirror mark portion where no groove was formed. Further, in order to interrupt the processing at the shortest distance possible, the cutting efficiency is lowered rather than the cutting speed being slowed.

【0004】本発明は上述のごとき従来の技術的課題に
鑑み、これを有効に解決すべく創案されたものである。
したがって本発明の目的は、切削速度を落とすことなく
10μm以下の短い距離で切削を中断でき、ミラーマー
クの形成に好都合な微小切り込み用切削装置を提供する
ことにある。
The present invention has been made in view of the above-mentioned conventional technical problems so as to effectively solve them.
Therefore, it is an object of the present invention to provide a cutting device for micro-cutting, which is convenient for forming a mirror mark, because cutting can be interrupted at a short distance of 10 μm or less without reducing the cutting speed.

【0005】[0005]

【課題を解決するための手段】本発明に係る微小切り込
み用切削装置は、上述のごとき従来技術の課題を解決
し、その目的を達成するために以下のような構成を備え
ている。即ち、切り込み方向へ撓み得る平行ばね構造を
有し、その先端部に、第1圧電素子を介して切削工具が
取り付けられた工具取付部と、上記切削工具の切り込み
方向への移動を駆動すべく、一端が上記工具取付部の基
端部に当接して数十層ないし数百層の多層からなる第2
圧電素子とを備え、上記第1圧電素子は、単層ないし数
層からなっている。
The cutting device for micro-cutting according to the present invention has the following structure in order to solve the problems of the prior art as described above and to achieve the object. That is, it has a parallel spring structure capable of bending in the cutting direction, and a tool mounting portion having a cutting tool attached to the tip end thereof via the first piezoelectric element and a movement of the cutting tool in the cutting direction. A second end having a multi-layer structure of tens to hundreds of layers, one end of which is in contact with the base end of the tool mounting portion
And a piezoelectric element, and the first piezoelectric element is composed of a single layer or several layers.

【0006】[0006]

【作用および発明の効果】本発明に係る微小切り込み用
切削装置では、第2圧電素子は第1圧電素子とは別の印
加電圧によってその伸縮が制御される。したがって、工
具の切り込み動作を駆動する第2圧電素子が低周波でし
か制御できなくとも、第1圧電素子は層数が少ないので
高周波制御に対応できる。その結果、第2圧電素子が高
周波制御に応答し、切削を行わない箇所を形成するため
に必要なだけ縮む所要時間を短縮化でき、例えば10μ
m程度の短い距離のミラーマークも形成できる。
In the cutting device for microcutting according to the present invention, the expansion and contraction of the second piezoelectric element is controlled by an applied voltage different from that of the first piezoelectric element. Therefore, even if the second piezoelectric element that drives the cutting operation of the tool can be controlled only at a low frequency, the first piezoelectric element has a small number of layers, and therefore can respond to high frequency control. As a result, the time required for the second piezoelectric element to respond to the high frequency control and shrink as much as necessary to form the portion where cutting is not performed can be shortened, for example, 10 μm.
Mirror marks with a short distance of about m can also be formed.

【0007】[0007]

【実施例】以下に本発明の一実施例に係る微小切り込み
用切削装置について、図1および図2を参照して説明す
る。本実施例装置の工具部の概略は、図1に示すように
構成されている。先端部に切削工具1が取り付けられて
おり、その同軸心上の直ぐ後部に、ミラーマーク形成用
の単層圧電素子2が配置され、さらに工具台部3を介し
てその後方に振動駆動用の多層圧電素子4が配置されて
いる。工具台部3の両側には軸対称配置で平行ばね部5
が形成されている。6は多層圧電素子4に対する電圧印
加のためのリード線を示している。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A cutting device for micro-cutting according to an embodiment of the present invention will be described below with reference to FIGS. 1 and 2. The outline of the tool section of the apparatus of this embodiment is configured as shown in FIG. A cutting tool 1 is attached to the tip, a single-layer piezoelectric element 2 for forming a mirror mark is arranged immediately behind the coaxial center of the cutting tool 1, and a single-layer piezoelectric element 2 for forming a mirror mark is further arranged behind the tool base 3 for vibration driving. The multilayer piezoelectric element 4 is arranged. Parallel spring parts 5 are arranged on both sides of the tool base part 3 in an axially symmetrical arrangement.
Are formed. Reference numeral 6 indicates a lead wire for applying a voltage to the multilayer piezoelectric element 4.

【0008】図2は、図1の工具部を用いた本実施例の
微小切り込み用切削装置の概略構成図である。制御用コ
ンピュータ7から第1圧電素子駆動電源8を介して多層
圧電素子4に電圧を印加する。そのとき、変位計9から
得られる工具1と被削材10との間の相対位置検出信号
を変位計アンプ11を介して制御用コンピュータ7に取
り込み、所定の工具刃先移動量が検出されたとき、これ
を切り込み量として、その変位計9の信号の値が常に維
持されるよう、多層圧電素子4への印加電圧値が制御用
コンピュータ7によって制御される。図中、L.P.F
はローパスフィルタである。
FIG. 2 is a schematic configuration diagram of a cutting device for micro-cutting according to the present embodiment, which uses the tool portion shown in FIG. A voltage is applied from the control computer 7 to the multilayer piezoelectric element 4 via the first piezoelectric element drive power source 8. At that time, when a relative position detection signal between the tool 1 and the work material 10 obtained from the displacement meter 9 is taken into the control computer 7 via the displacement meter amplifier 11, and a predetermined tool edge movement amount is detected. The control computer 7 controls the applied voltage value to the multilayer piezoelectric element 4 so that the value of the signal of the displacement meter 9 is always maintained with this cut amount. In FIG. P. F
Is a low-pass filter.

【0009】ここで、単層圧電素子2には、制御開始以
前から予め、所定値の電圧を印加しておき、その伸び量
が、目的の切り込み量より大きくなるようにしておく。
この電圧は、回転制御盤12に同期して図2に示すよう
な単層圧電素子駆動波形となって第2圧電素子駆動電源
13から単層圧電素子2へ印加される。即ち、印加電圧
は一時的に0となり、このとき単層圧電素子2は瞬時に
元の長さに縮み、工具1を上方に引き上げて切り込み量
0の箇所、即ち溝の加工されない箇所が形成される。こ
の部分は、回転制御盤12から得られる回転角検出信号
に同期させることで所定の位置に形成でき、例えば、光
磁気ディスク用金型に必要とされるミラーマーク等を形
成できる。
Here, a voltage of a predetermined value is applied to the single-layer piezoelectric element 2 in advance before the control is started so that the amount of expansion thereof is larger than the target cut amount.
This voltage is applied to the single-layer piezoelectric element 2 from the second piezoelectric-element drive power source 13 in synchronization with the rotation control board 12 to form a single-layer piezoelectric element drive waveform as shown in FIG. That is, the applied voltage temporarily becomes 0, at which time the single-layer piezoelectric element 2 instantly contracts to its original length, and the tool 1 is pulled upward to form a portion where the cutting depth is 0, that is, a portion where the groove is not processed. It This portion can be formed at a predetermined position by synchronizing with a rotation angle detection signal obtained from the rotation control board 12, and for example, a mirror mark or the like required for a mold for a magneto-optical disk can be formed.

【0010】上述の単層圧電素子については、必ずしも
単層である必要はなく、十分に高周波数で制御できる範
囲内で複数層とすることができる。その場合、電圧とし
てはより低電圧で大きな変位が得られる。したがって、
極度には短くない加工の中断には、そのような圧電素子
が有効である。
The above-mentioned single-layer piezoelectric element does not necessarily have to be a single layer, but may have a plurality of layers as long as it can be controlled at a sufficiently high frequency. In that case, a large displacement can be obtained at a lower voltage. Therefore,
Such a piezoelectric element is effective for interrupting machining that is not extremely short.

【0011】また、単層圧電素子駆動波形は、図2に示
されたような矩形波形である必要はなく、この駆動波形
を変化させることによって所定切り込み量を変化させる
ことにも利用できる。なお、圧電素子の変形には、その
両端に印加される電圧の変化を伴うので、これを利用し
て反力検出用センサとしても活用できる。
Further, the drive waveform of the single-layer piezoelectric element does not need to be a rectangular waveform as shown in FIG. 2, but it can be used to change the predetermined cut amount by changing the drive waveform. Since the deformation of the piezoelectric element involves a change in the voltage applied to both ends of the piezoelectric element, it can be used as a reaction force detecting sensor.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の微小切り込み用切削装置に係る一実
施例における工具部を示す概略構成図である。
FIG. 1 is a schematic configuration diagram showing a tool unit in an embodiment according to a cutting device for micro-cutting of the present invention.

【図2】 図1の工具部を用いた本実施例の微小切り込
み用切削装置の概略構成図である。
FIG. 2 is a schematic configuration diagram of a cutting device for micro-cutting according to the present embodiment using the tool unit of FIG.

【符号の説明】[Explanation of symbols]

1 切削工具 2 単層圧電素子 3 工具台部 4 多層圧電素子 5 平行ばね部 1 Cutting Tool 2 Single Layer Piezoelectric Element 3 Tool Platform 4 Multilayer Piezoelectric Element 5 Parallel Spring

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 切り込み方向へ撓み得る平行ばね構造を
有し、その先端部に、第1圧電素子(2)を介して切削工
具(1)が取り付けられた工具取付部(3,5)と、 上記切削工具(1)の切り込み方向への移動を駆動すべ
く、一端が上記工具取付部(3,5)の基端部に当接して数
十層ないし数百層の多層からなる第2圧電素子(4)とを
備え、 上記第1圧電素子(2)は、単層ないし数層からなること
を特徴とする微小切り込み用切削装置。
1. A tool attachment part (3, 5) having a parallel spring structure capable of bending in a cutting direction, and having a cutting tool (1) attached to a tip end portion thereof via a first piezoelectric element (2), In order to drive the movement of the cutting tool (1) in the cutting direction, one end of the cutting tool (1) abuts the base end portion of the tool mounting portion (3, 5) and is composed of several tens to several hundreds of layers. A cutting device for microcutting, comprising a piezoelectric element (4), wherein the first piezoelectric element (2) is composed of a single layer or several layers.
JP3256397A 1991-10-03 1991-10-03 Cutting device for fine depth of cut Pending JPH0596436A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3256397A JPH0596436A (en) 1991-10-03 1991-10-03 Cutting device for fine depth of cut

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3256397A JPH0596436A (en) 1991-10-03 1991-10-03 Cutting device for fine depth of cut

Publications (1)

Publication Number Publication Date
JPH0596436A true JPH0596436A (en) 1993-04-20

Family

ID=17292111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3256397A Pending JPH0596436A (en) 1991-10-03 1991-10-03 Cutting device for fine depth of cut

Country Status (1)

Country Link
JP (1) JPH0596436A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102528522A (en) * 2012-03-05 2012-07-04 广东工业大学 Fast tool servo device with adjustable rigidity
CN105195766A (en) * 2015-11-09 2015-12-30 大连交通大学 Piezoelectric ceramic driving micro-feeding tool rest
CN105904232A (en) * 2016-04-22 2016-08-31 大连交通大学 Piezoelectric actuation two-dimensional micro-feeding platform
CN106975961A (en) * 2017-05-19 2017-07-25 广东工业大学 A kind of long stroke fast tool servo

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102528522A (en) * 2012-03-05 2012-07-04 广东工业大学 Fast tool servo device with adjustable rigidity
CN105195766A (en) * 2015-11-09 2015-12-30 大连交通大学 Piezoelectric ceramic driving micro-feeding tool rest
CN105195766B (en) * 2015-11-09 2017-06-13 大连交通大学 Piezoelectric Ceramic micro-feeding tool holder
CN105904232A (en) * 2016-04-22 2016-08-31 大连交通大学 Piezoelectric actuation two-dimensional micro-feeding platform
CN106975961A (en) * 2017-05-19 2017-07-25 广东工业大学 A kind of long stroke fast tool servo

Similar Documents

Publication Publication Date Title
CA1068793A (en) Method and apparatus for cutting insulating material
JPS6042881B2 (en) external shape indicating device
JPS6219986B2 (en)
GB2089267A (en) Sensing tool electrode wear in electroerosion machining
EP0065993A1 (en) Copy cam driving device for machine tool
KR960013170B1 (en) Processing apparatus with movable processing tool
JPH0596436A (en) Cutting device for fine depth of cut
JP3213725B2 (en) Method and apparatus for detecting machining state of machine tool, and cutting tool used therefor
JP4644000B2 (en) Indentation processing method
EP0708391A2 (en) Processing apparatus with movable processing tool and processing method
JP2011181623A (en) Processing method of plate-like object
JPH10166204A (en) Machining device
JPH05343833A (en) Cutting apparatus of wiring pattern
JP3412208B2 (en) Tool cutting machine
JPH05286113A (en) Cream solder printer
JP3069931B2 (en) Surface shape measuring method and device
JPS58160045A (en) Detecting method of abnormality of tool
JP2000196160A (en) Manufacture of shearing-type piezoelectric device
JPH07136801A (en) Mobile turning tool type cutter
KR19980037802A (en) Micro Cutting System Using Piezoelectric Materials
JP2001133381A (en) Scanning probe microscope
SU793721A1 (en) Method of monitoring cutting process at lathe operation
JPH04164556A (en) Small notch control method for tool of small notch cutting device
JPH04505290A (en) Seat edge position determination method
JPH0572361A (en) Mechanism for fine movement