JPH0595157A - Semiconductor laser device - Google Patents

Semiconductor laser device

Info

Publication number
JPH0595157A
JPH0595157A JP9000591A JP9000591A JPH0595157A JP H0595157 A JPH0595157 A JP H0595157A JP 9000591 A JP9000591 A JP 9000591A JP 9000591 A JP9000591 A JP 9000591A JP H0595157 A JPH0595157 A JP H0595157A
Authority
JP
Japan
Prior art keywords
layer
wavelength
ring
rings
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9000591A
Other languages
Japanese (ja)
Inventor
Iwao Komazaki
岩男 駒崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP9000591A priority Critical patent/JPH0595157A/en
Publication of JPH0595157A publication Critical patent/JPH0595157A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To provide a semiconductor laser which can control the oscillated wave length easily and the check the trouble such as that the short wavelength does not oscillate by the increase of the gain on an active region, by equipping it with a nondoped active layer, a mesa type ring-shaped second clad layer, a cap layer, a current block layer, an electrically isolating area, etc., which are severally specific. CONSTITUTION:This device is equipped with a substrate 1, a first clad layer 3, a light waveguide path layer 3, a nondoped active layer 4 having quantum well structure, and a mesa type ring-shaped second clad layer 5, which consists of first and second rings 5a and 5b widths several times as wide as the oscillated wavelength and diameters several hundred times as long as the oscillated wavelength and in which the intervals between the rings are tens of times as long as the oscillated wavelength. Furthermore, it is equipped with cap layers 6a and 6b made thereon, a current block layer 7, the first electrode 9, the second electrode 10, and an electric isolating area 8, which is made in the current block layer 7 between the first and second rings 5a and 5b, the second clad layer 5, the active layer 4, the light waveguide path layer 3, and the first clad layer 2 to reach the substrate 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体レ−ザ装置に関
し、特に情報処理用の半円リングダブルヘテロ構造多波
長レ−ザアレ−に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor laser device, and more particularly to a semi-circular ring double hetero structure multi-wavelength laser array for information processing.

【0002】[0002]

【従来の技術】周知の如く、光記録分野の波長多重化に
よる記録密度の向上等、半導体レ−ザに求められる機能
として、高性能な波長可変機能が重要である。ところ
で、波長を可変にする方法として、量子井戸層内の基準
準位と高次準位を用いた波長可変半導体レ−ザが提案さ
れている(特開昭63-32985号公報)。この半導体レ−ザ
は、電流注入用の電極を複数に分割し、各注入用電極へ
の注入電流レベルを各電極で独立に制御することにより
種々の量子準位での発振を可能にしたことを特徴とする
ものである。
2. Description of the Related Art As is well known, a high-performance wavelength tunable function is important as a function required of a semiconductor laser such as an improvement in recording density by wavelength multiplexing in the field of optical recording. By the way, a wavelength tunable semiconductor laser using a reference level and a high-order level in a quantum well layer has been proposed as a method of making the wavelength tunable (JP-A-63-32985). This semiconductor laser is capable of oscillating at various quantum levels by dividing the current injection electrode into a plurality of parts and controlling the injection current level to each injection electrode independently. It is characterized by.

【0003】これらの波長可変の原理を、以下に説明す
る。量子井戸構造からなる活性層の場合、注入電流の増
加に伴い、活性層内の利得曲線は図3に示す様に、利得
の最大値は低エネルギ−ギャップ(以下、Eg と記す)
(長波長)側から高Eg (短波長)側へ移ることがよく
知られている。このように、量子井戸構造の活性層をも
つ半導体レ−ザにおいて、共振器方向に均一に電流注入
を行うと、長波長光が発振する。つまり、共振器内の全
損失を低くした状態で、低いEg に対応する光を発振さ
せるものである。なお、図2は図3に対応したバンドダ
イヤグラム図である。
The principle of variable wavelength will be described below. In the case of an active layer having a quantum well structure, as the injection current increases, the gain curve in the active layer has a maximum gain of a low energy gap (hereinafter referred to as Eg) as shown in FIG.
It is well known to shift from the (long wavelength) side to the high Eg (short wavelength) side. As described above, in a semiconductor laser having an active layer having a quantum well structure, long-wavelength light oscillates when current is uniformly injected in the cavity direction. That is, the light corresponding to low Eg is oscillated in a state where the total loss in the resonator is low. 2 is a band diagram corresponding to FIG.

【0004】また、この半導体レ−ザにおいて、不均一
に電流注入を行なうと、短波長光が発振する。この際、
損失領域では利得が小さくなるので、利得領域ではその
分利得を大きくする為、多くの電流注入を行なう。特
に、損失領域の短波長側の利得は非常に小さいので、利
得領域への注入電流を非常に大きくして共振器内の全利
得を短波長光において最も大きくなるようにする。
In addition, in this semiconductor laser, short-wavelength light oscillates when current is nonuniformly injected. On this occasion,
Since the gain is small in the loss region, a large amount of current is injected to increase the gain in the gain region. In particular, since the gain on the short wavelength side in the loss region is very small, the injection current into the gain region is made very large so that the total gain in the resonator becomes the maximum in the short wavelength light.

【0005】ここで、共振方向の均一注入とは、活性層
内の光、電子が集中している活性導波路の光の共振方向
において、等しい電流密度で注入している状態をいう。
これに対し、ある領域で電流密度が共振方向の長さ当り
均一であっても、全共振器において各領域ごとに異なる
電流密度で注入している状態が不均一注入である。ま
た、各領域への注入電流を異ならせるためには、領域間
に分離部分が必要である。この分離部分は、均一注入の
際にも電流が注入されていないことになる。しかしなが
ら、この分離部分が10μm以下の長さであれば、活性層
内部でのキャリアの広がりを考慮すると、略均一注入状
態であるとみなせる。このように、従来の波長可変方式
は均一注入時に長波長光を発振し、不均一注入時に短波
長光を発振させるというものであった。
Here, the uniform injection in the resonance direction means a state in which light and electrons in the active layer are injected at the same current density in the resonance direction of the light in the active waveguide.
On the other hand, even if the current density is uniform over the length in the resonance direction in a certain region, non-uniform injection is a state in which the current density is different in each region in all resonators. Further, in order to make the injection current into each region different, a separation portion is required between the regions. No electric current is injected into this separated portion even during uniform injection. However, if this separation portion has a length of 10 μm or less, it can be regarded as a substantially uniform injection state in consideration of carrier spreading inside the active layer. As described above, the conventional variable wavelength method oscillates long-wavelength light during uniform injection and oscillates short-wavelength light during nonuniform injection.

【0006】[0006]

【発明が解決しようとする課題】しかし、従来技術によ
れば、吸収波長の長さは非常に重要であり、不均一注入
時の吸収領域が長いと短波長光の損失量が大きくなり、
活性領域の利得をいくら大きく増加させても短波長光が
発振しなくなる場合も生じた。この理由は、損失領域で
の短波長側の利得は、注入電流の減少に伴って著しく低
下するが、利得領域での短波長側の利得は注入電流の増
加につれて飽和傾向を示し、損失領域での短波長光の損
失を補い切れない状態が生じるからである。
However, according to the prior art, the length of the absorption wavelength is very important, and if the absorption region at the time of nonuniform injection is long, the loss amount of short wavelength light becomes large,
Even if the gain of the active region is increased, the short wavelength light may not oscillate. The reason for this is that the gain on the short wavelength side in the loss region significantly decreases as the injection current decreases, but the gain on the short wavelength side in the gain region shows a saturation tendency as the injection current increases, and This is because a state in which the loss of the short wavelength light cannot be completely compensated occurs.

【0007】本発明は上記事情に鑑みてなされたもの
で、従来と比べ発振波長を容易に制御し得、活性領域の
利得の増加により短波長光が発振しない場合を阻止でき
る半導体レ−ザ装置を提供することを目的とする。
The present invention has been made in view of the above circumstances, and the semiconductor laser device can control the oscillation wavelength more easily than before and can prevent the case where the short wavelength light does not oscillate due to the increase in the gain of the active region. The purpose is to provide.

【0008】[0008]

【課題を解決するための手段】本発明は、基板と、前記
基板上に形成された第1クラッド層と、前記第1クラッ
ド層上に形成された光導波路層と、前記光導波路層上に
形成された量子井戸構造を有するノンド−プ活性層と、
前記活性層上に形成され、発振波長の数倍の幅でリング
径が少なくとも発振波長の百倍以上の第1・第2リング
からなり、リング間の間隔は少なくとも発振波長の数十
倍以上であるメサ型リング状第2クラッド層と、前記第
2クラッド層の第1・第2リング上に夫々形成されたキ
ャップ層と、前記第2クラッド層の有底領域及び外周領
域に形成された電流ブロック層と、前記電流ブロック
層,キャップ層上に形成された第1電極と、前記基板の
裏面に形成された第2電極と、前記第1・第2リング間
の電流ブロック層,第2クラッド層,活性層,光導波路
層及び第1クラッド層に前記基板に達するように形成さ
れた電気的分離領域とを具備することを特徴とする半導
体レ−ザ装置である。
The present invention provides a substrate, a first cladding layer formed on the substrate, an optical waveguide layer formed on the first cladding layer, and an optical waveguide layer on the optical waveguide layer. A non-doped active layer having a formed quantum well structure,
The first and second rings are formed on the active layer and have a width of several times the oscillation wavelength and a ring diameter of at least 100 times the oscillation wavelength. The spacing between the rings is at least several tens of times the oscillation wavelength. A mesa ring-shaped second clad layer, a cap layer formed on each of the first and second rings of the second clad layer, and a current block formed in a bottomed region and an outer peripheral region of the second clad layer. Layer, the current blocking layer, the first electrode formed on the cap layer, the second electrode formed on the back surface of the substrate, the current blocking layer between the first and second rings, the second cladding layer A semiconductor laser device comprising: an active layer, an optical waveguide layer, and an electrical isolation region formed so as to reach the substrate in the first cladding layer.

【0009】[0009]

【作用】本発明において、半円リング径と導波路損失と
の関係が重要なパラメ−タになるが、河口らにより1977
年応用物理学会欧分誌,巻16,2281頁に掲載された「高
濃度亜鉛拡散によるGaAs−AIGaAs半円リング
レ−ザ」(GaAs−AIGaAs Half Ring Las
er Fabricated by Deep Zn Diffusion)のデ−タ
を図5に示す。リングの半径を発振波長λ0 (0.85μ
m)で規格化して示し、光損失を通常のストライプレ−
ザの値で規格化してある図である。
In the present invention, the relationship between the semicircular ring diameter and the waveguide loss is an important parameter.
"GaAs-AIGaAs Half-Circular Ring Laser by High Concentration Zinc Diffusion" (GaAs-AIGaAs Half Ring Las)
er Fabricated by Deep Zn Diffusion) data is shown in FIG. Set the ring radius to the oscillation wavelength λ 0 (0.85μ
m) is shown as standardized to show the optical loss as a normal stripe ray.
It is the figure standardized by the value of Z.

【0010】図5によれば、半径150 μmで損失は10倍
(〜250 cm-1)に対して、半径300μmでは損失は2.0
倍(〜50cm-1)と著しく減少し、半径800 μm以上では
略ストライプ状導波路とその損失は何等代わらない。そ
こで、リング径から見積られる導波路損失で、発振波長
を可変にすることができ、電流の注入方法は均一で可能
である。
According to FIG. 5, the loss is 10 times (up to 250 cm -1 ) at a radius of 150 μm, while the loss is 2.0 at a radius of 300 μm.
It is remarkably reduced by a factor of two (up to 50 cm -1 ), and at a radius of 800 μm or more, the substantially striped waveguide and its loss do not change at all. Therefore, the oscillation wavelength can be made variable by the waveguide loss estimated from the ring diameter, and the current injection method can be uniform.

【0011】[0011]

【実施例】以下、本発明の一実施例を図1を参照して説
明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIG.

【0012】図中の1は、n型の(100)GaAs基
板(Siド−プ,不純物濃度2×1018cm-3)である。前記
基板1上には、厚み1.5μmのn型AI0.45Ga0.55
As第1クラッド層2(Siド−プ,不純物濃度2×1017
cm-3)が形成されている。前記第1クラッド層2上に
は、厚み50nmのn型AI0.3 Ga0.7 As光導波路層3
(Siド−プ,不純物濃度2×1017cm-3)が形成されてい
る。前記光導波路層3上には、量子井戸構造を有するノ
ンド−プ活性層4(単一量子井戸構造でGaAs井戸幅10n
m)が形成されている。前記活性層4上には、厚み1.5
μmのp型AI0.45Ga0.55As第2クラッド層5が
(Mgド−プ,不純物濃度5×1018cm-3)形成されてい
る。ここで、第2クラッド層5はメサ型リング状になっ
ており、上部には発振波長の数倍の幅でリング径が少な
くとも発振波長の百倍以上の第1リング5a,第2リン
グ5bとなっており、これらリング5a,5b間の間隔
は少なくとも発振波長の数十倍以上である。
Reference numeral 1 in the figure is an n-type (100) GaAs substrate (Si doped, impurity concentration 2 × 10 18 cm -3 ). On the substrate 1, an n-type AI 0.45 Ga 0.55 having a thickness of 1.5 μm is formed.
As first cladding layer 2 (Si doping, impurity concentration 2 × 10 17
cm -3 ) are formed. An n-type AI 0.3 Ga 0.7 As optical waveguide layer 3 having a thickness of 50 nm is formed on the first cladding layer 2.
(Si doping, impurity concentration 2 × 10 17 cm −3 ) is formed. A non-doped active layer 4 having a quantum well structure (a single quantum well structure having a GaAs well width of 10 n is formed on the optical waveguide layer 3).
m) has been formed. A thickness of 1.5 is formed on the active layer 4.
A μm-thick p-type AI 0.45 Ga 0.55 As second cladding layer 5 (Mg doped, impurity concentration 5 × 10 18 cm −3 ) is formed. Here, the second cladding layer 5 is in the shape of a mesa ring, and the upper portion is the first ring 5a and the second ring 5b whose width is several times the oscillation wavelength and whose ring diameter is at least 100 times the oscillation wavelength or more. Therefore, the distance between the rings 5a and 5b is at least several tens of times the oscillation wavelength.

【0013】前記第1リング5a,第2リング5b上に
は、夫々厚み1μmのp+ 型GaAsキャップ層6a,
6b(Mgド−プ,不純物濃度5×1018cm-3)が形成さ
れている。前記第2クラッド層5の有底領域及び外周領
域には、電流ブロック層7(Siド−プ,不純物濃度3
×1018cm-3)が形成されている。前記第1・第2リング
間の電流ブロック層7,第2クラッド層5,ノンド−プ
活性層4,光導波路層3及び第1クラッド層2には、前
記基板1に達するように電気的分離領域としてのGa+
イオン注入領域8が形成されている。前記電流ブロック
層7及びキャップ層6a,6b上には、第1電極として
のp型電極9が形成されている。前記基板1の裏面に
は、第2電極としてのn型電極10が形成されている。
On the first ring 5a and the second ring 5b, a p + -type GaAs cap layer 6a having a thickness of 1 μm,
6b (Mg doping, impurity concentration 5 × 10 18 cm −3 ) is formed. In the bottomed region and the outer peripheral region of the second cladding layer 5, a current blocking layer 7 (Si doping, impurity concentration 3) is formed.
× 10 18 cm -3 ) are formed. The current blocking layer 7, the second cladding layer 5, the non-doped active layer 4, the optical waveguide layer 3 and the first cladding layer 2 between the first and second rings are electrically separated so as to reach the substrate 1. Ga + as a region
An ion implantation region 8 is formed. A p-type electrode 9 as a first electrode is formed on the current blocking layer 7 and the cap layers 6a and 6b. An n-type electrode 10 as a second electrode is formed on the back surface of the substrate 1.

【0014】次に、こうした構成のレ−ザアレ−の製作
方法について説明する。 (1) まず、前記基板1上に、第1クラッド層2,光導波
路層3,ノンド−プ活性層4,第2クラッド層5及びキ
ャップ層6a,6bを順次連続成長する。つづいて、成
長したウェハ全面にCVD法により厚さ400nmのSi
2 膜を付け、フォトリソグラフィ技術によりリング幅
6μm,リング半径150μm,300μmの円形2重
リングパタ−ンを形成する。次に、リン酸系エッチング
液で第2クラッド層5をメサ有底部分の厚さを0.3μ
m残して除去する。
Next, a method of manufacturing a laser array having such a structure will be described. (1) First, the first cladding layer 2, the optical waveguide layer 3, the non-doped active layer 4, the second cladding layer 5 and the cap layers 6a and 6b are successively grown on the substrate 1 in sequence. Next, a 400 nm-thick Si film was formed by CVD on the entire surface of the grown wafer.
An O 2 film is attached, and a circular double ring pattern having a ring width of 6 μm, a ring radius of 150 μm and a ring radius of 300 μm is formed by photolithography. Next, the thickness of the bottom portion of the second cladding layer 5 is 0.3 μm with a phosphoric acid-based etching solution.
Remove the remaining m.

【0015】(2) 次に、MOVPE成長技術を用いて、
電流ブロック層7を選択埋込み成長でメサリング状に埋
め込む。つづいて、全面にCVD法で厚さ400 nmのSi
2 膜を付け、フォトリソグラフィ技術により二重リン
グの中央部分に幅20μmのリング状窓を形成する。次
いで、この窓を通して前記基板1に到達するまで、前記
第1・第2リング間の電流ブロック層7,第2クラッド
層5,ノンド−プ活性層4,光導波路層3及び第1クラ
ッド層2にGa+ をド−ズ量4×1014cm-2でイオン注入
し、700℃,ヒ素雰囲気中で20分アニ−ルし、Ga+
イオン注入領域8を形成する。この後、SiO2 膜を除
去する。
(2) Next, using the MOVPE growth technique,
The current blocking layer 7 is buried in a mesa ring shape by selective burying growth. Next, a 400 nm-thick Si film was formed on the entire surface by CVD.
An O 2 film is attached and a ring-shaped window having a width of 20 μm is formed in the central portion of the double ring by photolithography. Then, the current blocking layer 7, the second cladding layer 5, the non-dope active layer 4, the optical waveguide layer 3 and the first cladding layer 2 between the first and second rings are reached until reaching the substrate 1 through this window. the Ga + de in - ion-implanted with's weight 4 × 10 14 cm -2, 700 ℃, 20 minutes anneal in arsenic atmosphere - and Le, Ga +
The ion implantation region 8 is formed. After that, the SiO 2 film is removed.

【0016】(3) 次に、表面のキャップ層6a,6bを
0.5μmエッチング除去し、キャップ層6a,6bを
形成する。つづいて、基板1の裏面にn型電極10を形成
する。更に、ウェハのリング中央でへき開した後、へき
開端面に酸化保護膜(図示せず)を形成してレ−ザアレ
−を作成する。
(3) Next, the cap layers 6a and 6b on the surface are removed by etching by 0.5 μm to form the cap layers 6a and 6b. Subsequently, the n-type electrode 10 is formed on the back surface of the substrate 1. Further, after cleaving at the center of the ring of the wafer, an oxidation protection film (not shown) is formed on the cleaved end face to form a laser array.

【0017】上記構成のレ−ザアレ−は、次のように動
作する。p型電極9より注入されたキャリアは、メサリ
ングの両サイドが電流ブロック層7で覆われているた
め、メサ中央部分にのみ注入される。本構造では、活性
層4に量子井戸構造を用いているので、その微分利得の
波長吸収性により導波路損失は通常のバルクに比べ1/
2〜1/3であり、活性層4内でキャリア再結合で発生
した光は効率良くリング両端面で帰還を繰り返してレ−
ザ発振する。上記実施例では、メサ幅が狭い部分で4μ
m程度,第2クラッド層残量が0.3μm,活性層厚
み,ガイド層厚みより、メサ中央部分と水平横方向との
実効屈折率差は8×10-3と見積られ、安定した単一モ−
ド発振が得られる条件である。
The laser array having the above construction operates as follows. The carriers injected from the p-type electrode 9 are injected only into the central portion of the mesa because both sides of the mesa ring are covered with the current block layer 7. In this structure, since the quantum well structure is used for the active layer 4, the wavelength loss of the differential gain causes the waveguide loss to be 1 / th that of the ordinary bulk.
It is 2 to 1/3, and the light generated by carrier recombination in the active layer 4 is efficiently returned by repeating the return at both end faces of the ring.
The oscillation. In the above-mentioned embodiment, 4 μ in the narrow mesa width portion.
m, residual amount of the second cladding layer is 0.3 μm, active layer thickness, guide layer thickness, the effective refractive index difference between the central portion of the mesa and the horizontal direction is estimated to be 8 × 10 −3, and a stable single Mode
This is the condition under which the de-oscillation is obtained.

【0018】また、平山らにより1985年応用物理学会欧
分誌,巻24,965 頁に掲載された「Gaイオンビ−ム注
入されたGaAsエピ層の電気的特性」(Japan.J.
Applied Physics,vol24 .L965 ,“Electrical
Properties of GaIon Beam Implanted GaAa
Epilayer ”によれば、Ga+ イオン注入後,700 ℃で
アニ−ルすると、結晶のダメ−ジは回復するが、抵抗値
は5桁上り、その状態は変化しないことにより内側のリ
ングと外側のリングとは完全に分離することができる。
Hirayama et al., "Electrical characteristics of Ga ion beam-implanted GaAs epilayers", published in 1985, European Society of Applied Physics, Vol. 24, p. 965 (Japan. J.
Applied Physics, vol24. L965, "Electrical
Properties of GaIon Beam Implanted GaAa
According to "Epilayer", when Ga + ion implantation is performed and annealing is performed at 700 ° C., the crystal damage is recovered, but the resistance value rises by five digits, and the state does not change. It can be completely separated from the ring.

【0019】ところで、内側のリング径と外側のリング
径の大きさが曲がり導波路損失に大きな差が生じ、バル
クの場合には5倍の差が生じ、内側のリングの全導波路
損失は250cm -1となるが、量子井戸構造でな1/2〜1
/3に低減されているので、100cm -1前後と見積れ、外
側のリングレ−ザの導波路全損失は通常のメサストライ
プレ−ザの導波路損失と同等と見積もれる。そこで、図
4より内側のリングレ−ザでは導波路損失が100 cm-1
り発振波長は800nm 付近と見積もれる。一方、外側のリ
ングレ−ザでは、導波路損失が30cm-1以下と見積もれ、
発振波長は850nm付近と考えられ、二波長レ−ザが期待
できる。
By the way, the size of the inner ring diameter and the outer ring diameter bends to cause a large difference in waveguide loss, and in the case of bulk, a difference of 5 times occurs, and the total waveguide loss of the inner ring is 250 cm. -1 , which is 1/2 to 1 in the quantum well structure
Since it is reduced to / 3, it is estimated to be around 100 cm -1, and the total waveguide loss of the outer ring laser is estimated to be equivalent to the waveguide loss of a normal mesa stripe laser. Therefore, in the ring laser shown in Fig. 4, the waveguide loss is 100 cm -1 , and the oscillation wavelength is estimated to be around 800 nm. On the other hand, in the outer ring laser, the waveguide loss is estimated to be 30 cm -1 or less,
The oscillation wavelength is considered to be around 850 nm, and a dual wavelength laser can be expected.

【0020】上記実施例に係るレ−ザアレ−によれば、
制御性,量産性に優れたMOVPE技術を利用できる構
造であるとともに、活性層は量子井戸構造であり、微分
量子利得が急俊となり、高効率で温度特性の良い素子を
実現できる。
According to the laser array according to the above embodiment,
The active layer has a quantum well structure, the differential quantum gain becomes steep, and an element having high efficiency and good temperature characteristics can be realized while having a structure in which the MOVPE technology excellent in controllability and mass productivity can be used.

【0021】また、導波路がリング状であるために導波
モ−ドの他に放射モ−ドが存在し易いが導波路損失をバ
ルクに対して1/2〜1/3に低減できる。更に、リン
グ径を変えることにより、低準位間遷移から高準位間遷
移に変わり、つまり多波長化できるとともに、低損失化
させるには径を大きくするために長共振器レ−ザが実現
され、高効率,高出力化にも有効であり、実用上動作電
流での差は、内側,外側のリングレ−ザであまり差は無
いと考えられる。これは、導波路損失と共振器長との対
応を考えると動作電流に大きな差は無いと期待できる。
Further, since the waveguide has a ring shape, a radiation mode easily exists in addition to the waveguide mode, but the waveguide loss can be reduced to 1/2 to 1/3 of the bulk. Furthermore, by changing the ring diameter, the transition between low level transitions changes to high level transitions, that is, multiple wavelengths can be achieved, and a long resonator laser is realized to increase the diameter to reduce loss. It is also effective in achieving high efficiency and high output, and it is considered that there is not much difference in operating current in practical use between the inner and outer ring lasers. It can be expected that there is no significant difference in operating current in consideration of the correspondence between the waveguide loss and the resonator length.

【0022】更に、量子井戸として、GaAsの井戸幅
を変え、変調井戸幅構造、更に多波長半円リングレ−ザ
アレ−で、平行多波長読取り書込み光ディスク用光源と
して利用が期待できる。
Further, as a quantum well, the well width of GaAs is changed, a modulation well width structure and a multi-wavelength semi-circular ring laser array are expected to be used as a light source for a parallel multi-wavelength read / write optical disk.

【0023】[0023]

【発明の効果】以上詳述した如く本発明によれば、従来
と比べ発振波長を容易に制御し得、活性領域の利得の増
加により短波長光が発振しない場合を阻止できる半導体
レ−ザ装置を提供できる。
As described above in detail, according to the present invention, the semiconductor laser device can control the oscillation wavelength more easily than before and can prevent the case where the short wavelength light does not oscillate due to the increase in the gain of the active region. Can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係る半円リングダブルヘテ
ロ構造多波長レ−ザアレ−の斜視図。
FIG. 1 is a perspective view of a semi-circular ring double hetero structure multi-wavelength laser array according to an embodiment of the present invention.

【図2】従来の半円リングダブルヘテロ構造多波長レ−
ザアレ−における利得と波長との関係を示す特性図。
FIG. 2 Conventional semicircular ring double heterostructure multiwavelength laser
FIG. 3 is a characteristic diagram showing the relationship between gain and wavelength in the array.

【図3】図2に対応したバンドダイヤグラム図。FIG. 3 is a band diagram corresponding to FIG.

【図4】外側,内側リングレ−ザにおける波長と利得と
の関係を示す特性図。
FIG. 4 is a characteristic diagram showing the relationship between wavelength and gain in the outer and inner ring lasers.

【図5】高濃度亜鉛拡散によるGaAs−AIGaAs
半円リングレ−ザにおける規格された光学ベンディング
損失と規格された半径との関係を示す特性図。
FIG. 5: GaAs-AIGaAs by high-concentration zinc diffusion
The characteristic view which shows the relationship between the standard optical bending loss in a semicircle ring laser, and the standard radius.

【符号の説明】[Explanation of symbols]

1…GaAs基板、2…第1クラッド層、3…光導波路
層、4…ノンド−プ活性層、5…第2クラッド層、5
a,5b…リング、6a,6b…キャップ層、7…電流
ブロック層、8…Ga+ イオン注入領域、9…p型電
極、10…n型電極。
DESCRIPTION OF SYMBOLS 1 ... GaAs substrate, 2 ... 1st cladding layer, 3 ... Optical waveguide layer, 4 ... Non-dope active layer, 5 ... 2nd cladding layer, 5
a, 5b ... Ring, 6a, 6b ... Cap layer, 7 ... Current blocking layer, 8 ... Ga + ion implantation region, 9 ... P-type electrode, 10 ... N-type electrode.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 基板と、前記基板上に形成された第1ク
ラッド層と、前記第1クラッド層上に形成された光導波
路層と、前記光導波路層上に形成された量子井戸構造を
有するノンド−プ活性層と、前記活性層上に形成され、
発振波長の数倍の幅でリング径が少なくとも発振波長の
百倍以上の第1・第2リングからなり、リング間の間隔
は少なくとも発振波長の数十倍以上であるメサ型リング
状第2クラッド層と、前記第2クラッド層の第1・第2
リング上に夫々形成されたキャップ層と、前記第2クラ
ッド層の有底領域及び外周領域に形成された電流ブロッ
ク層と、前記電流ブロック層,キャップ層上に形成され
た第1電極と、前記基板の裏面に形成された第2電極
と、前記第1・第2リング間の電流ブロック層,第2ク
ラッド層,活性層,光導波路層及び第1クラッド層に前
記基板に達するように形成された電気的分離領域とを具
備することを特徴とする半導体レ−ザ装置。
1. A substrate, a first cladding layer formed on the substrate, an optical waveguide layer formed on the first cladding layer, and a quantum well structure formed on the optical waveguide layer. A non-doped active layer and formed on the active layer,
A second mesa-type ring-shaped cladding layer having a width of several times the oscillation wavelength and a first and second ring having a ring diameter of at least 100 times the oscillation wavelength and an interval between the rings of at least several tens of times the oscillation wavelength. And the first and second clad layers
A cap layer formed on each of the rings, a current blocking layer formed in a bottomed region and an outer peripheral region of the second cladding layer, a first electrode formed on the current blocking layer and the cap layer, and The second electrode formed on the back surface of the substrate, the current blocking layer between the first and second rings, the second cladding layer, the active layer, the optical waveguide layer, and the first cladding layer are formed to reach the substrate. And an electrically isolated region.
JP9000591A 1991-03-28 1991-03-28 Semiconductor laser device Withdrawn JPH0595157A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9000591A JPH0595157A (en) 1991-03-28 1991-03-28 Semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9000591A JPH0595157A (en) 1991-03-28 1991-03-28 Semiconductor laser device

Publications (1)

Publication Number Publication Date
JPH0595157A true JPH0595157A (en) 1993-04-16

Family

ID=13986505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9000591A Withdrawn JPH0595157A (en) 1991-03-28 1991-03-28 Semiconductor laser device

Country Status (1)

Country Link
JP (1) JPH0595157A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9281421B2 (en) 2012-02-20 2016-03-08 Mitsubishi Materials Corporation Conductive reflective film and method of manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9281421B2 (en) 2012-02-20 2016-03-08 Mitsubishi Materials Corporation Conductive reflective film and method of manufacturing the same

Similar Documents

Publication Publication Date Title
US6238943B1 (en) Optical semiconductor device and a method of manufacturing the same
US4190813A (en) Strip buried heterostructure laser
US5289484A (en) Laser diode
EP1182758B1 (en) Multi-wavelength surface emitting laser and method for manufacturing the same
JPH0656906B2 (en) Semiconductor laser device
JP2943510B2 (en) Tunable semiconductor laser device
JPH04225588A (en) Semiconductor laser structure
JP2537924B2 (en) Semiconductor laser
JPH0595157A (en) Semiconductor laser device
JP3254812B2 (en) Semiconductor laser and manufacturing method thereof
JPH05283806A (en) Distributed feedback type laser diode having selectivity installed loss part
Oe et al. GaInAsP/InP planar stripe lasers prepared by using sputtered SiO2 film as a Zn‐diffusion mask
JPH04234188A (en) Optoelectronic element and laser and their uses in optical detector manufacture
Tsang et al. GaAs‐Al x Ga1− x As strip‐buried‐heterostructure lasers with lateral‐evanescent‐field distributed feedback
JP3062510B2 (en) Semiconductor optical device
JPS61220389A (en) Integrated type semiconductor laser
JP4003250B2 (en) Semiconductor laser
JPH05167186A (en) Manufacture of semiconductor laser element
CA1125897A (en) Strip buried heterostructure laser
KR100287202B1 (en) Semiconductor laser device and manufacturing method thereof
JPH0697591A (en) Manufacture of semiconductor laser
JPH04245494A (en) Multiwavelength semiconductor laser element and driving method of that element
KR100278630B1 (en) Semiconductor laser diode and manufacturing method thereof
KR900000021B1 (en) Semiconductor laser
JPH046217Y2 (en)

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980514