JPH0594955A - Plasma processing device - Google Patents

Plasma processing device

Info

Publication number
JPH0594955A
JPH0594955A JP4048948A JP4894892A JPH0594955A JP H0594955 A JPH0594955 A JP H0594955A JP 4048948 A JP4048948 A JP 4048948A JP 4894892 A JP4894892 A JP 4894892A JP H0594955 A JPH0594955 A JP H0594955A
Authority
JP
Japan
Prior art keywords
microwave
substrate
vacuum container
plasma
density distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4048948A
Other languages
Japanese (ja)
Inventor
Yasutaka Harada
靖孝 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Publication of JPH0594955A publication Critical patent/JPH0594955A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a plasma processing device where microwave discharge plasma is always uniform in plane density distribution on a substrate, where the device concerned is made to function to introduce microwaves generated from a microwave generator into a vacuum chamber through the inside of a microwave transmission line provided with an EH tuner as a component element to generate microwave discharge plasma inside a vacuum chamber to treat the surface of a treatment substrate inside the vacuum chamber. CONSTITUTION:An emission intensity meters are mounted on the wall of a vacuum chamber at several positions or a probe is mounted on a substrate transfer hand 12 to make the hand move, or Faraday cups 16 are mounted on the substrate transfer hand 12, the plane density distribution of microwave discharge plasma is automatically measured basing on the signals emitted from the positions of the Faraday cups in the substrate radial direction, an EH tuner 10 and a microwave generator 11 are automatically controlled so as to make the microwave discharge plasma uniform in plane density distribution, and then the vacuum chamber 1 is made to serve as a device which enables a processing object substrate to be subjected to a processing.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、マイクロ波を用いて
形成したプラズマを、被処理基板への薄膜形成あるいは
エッチング等の処理に利用する装置であって、筒状に形
成され一方の端面に板状のマイクロ波透過窓により気密
に閉鎖されるマイクロ波導入口が形成された真空容器
と、マイクロ波発生装置と、真空容器とマイクロ波発生
装置とを結合し内部をマイクロ波が伝わる中空導体から
なるマイクロ波伝送路の一部を構成して該伝送路のイン
ピースダンスを調節するEHチューナとを備え、マイク
ロ波発生装置で発振されたマイクロ波をマイクロ波伝送
路を通しマイクロ波透過窓を透過させて真空容器内へ導
入し、真空容器内にマイクロ波放電プラズマを発生させ
て該真空容器内の被処理基板の表面処理を行うプラズマ
処理装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for utilizing plasma formed by using microwaves for forming a thin film on a substrate to be processed or processing such as etching. A vacuum container in which a microwave inlet that is hermetically closed by a plate-shaped microwave transmission window is formed, a microwave generator, and a hollow conductor that couples the vacuum container and the microwave generator to transmit microwaves inside. And an EH tuner that forms a part of the microwave transmission path and adjusts the in-piece dance of the transmission path, and transmits the microwave oscillated by the microwave generator through the microwave transmission path to a microwave transmission window. The present invention relates to a plasma processing apparatus which is introduced into a vacuum container after passing through it to generate microwave discharge plasma in the vacuum container to perform surface treatment of a substrate to be processed in the vacuum container.

【0002】[0002]

【従来の技術】半導体製造工程のうち、成膜やエッチン
グ工程では、半導体装置の微細構造化に伴い、低圧でも
安定したプラズマを発生,維持できるマイクロ波プラズ
マ処理装置が用いられるようになってきている。その多
くは電子サイクトロン共鳴(EIectron CycIotrn Resona
nce,以下ECRと記す)現象を利用して高密度,高活性
のプラズマを生成するECR型プラズマ処理装置であ
る。
2. Description of the Related Art In a semiconductor manufacturing process, in a film forming or etching process, a microwave plasma processing apparatus capable of generating and maintaining stable plasma even at a low pressure has come to be used due to a fine structure of a semiconductor device. There is. Most of them are EIectron CycIotrn Resona
nce, hereinafter referred to as ECR) phenomenon, which is an ECR type plasma processing apparatus for generating high density and highly active plasma.

【0003】この種のプラズマ処理装置の構成例を図6
に示す。装置は、段付き円筒として形成された真空容器
1と、該円筒の上部端面の中心に形成された円形のマイ
クロ波導入口を気密に閉鎖する板状のマイクロ波透過窓
4と、内部の大気中をマイクロ波発生装置で発振された
マイクロ波が通る中空導体からなるマイクロ波伝送部
7,8,9と、その途中に配置されマイクロ波発生装置
11から真空容器1に至るマイクロ波伝送路のインピー
ダンスを調整するためのEHチューナ10と、真空容器
1を同軸に囲むソレノイド6と、基板2を真空容器1外
から搬入,搬出する基板搬送用ハンド12とを主要構成
として備えている。
An example of the configuration of this type of plasma processing apparatus is shown in FIG.
Shown in. The apparatus comprises a vacuum container 1 formed as a stepped cylinder, a plate-shaped microwave transmission window 4 that hermetically closes a circular microwave introduction port formed at the center of the upper end surface of the cylinder, and an internal atmosphere. The microwave transmission parts 7, 8 and 9 which are hollow conductors through which the microwaves oscillated by the microwave generator pass, and the impedance of the microwave transmission path from the microwave generator 11 to the vacuum container 1 arranged in the middle. The main components are an EH tuner 10 for adjusting the temperature, a solenoid 6 coaxially surrounding the vacuum container 1, and a substrate transfer hand 12 for loading and unloading the substrate 2 from outside the vacuum container 1.

【0004】EHチューナ10は、図7,図8に示すよ
うに、マイクロ波伝送部9と同一断面を有する主導波管
10aに2つの分岐10b,10cを設け、この両者に
それぞれ、到達したマイクロ波をその底面で完全に反射
する方形ピストン状のプランジャ10dを内蔵させたも
のである。このピストン状ブランジャ10dをそれぞ
れ、分岐10b,10c内で前進または後退させること
により、任意の振幅と位相との反射波が作り出され、等
価的に伝送路のインピーダンスを調節する。また、マイ
クロ波伝送部7は、内部空間の断面形状が、伝送部8と
の接合部の方形から、真空容器1との接合部の,基板2
より直径の大きい円形へ向けて徐々に変化している錐台
状のもので、伝送路を進行してきたマイクロ波が、電界
の方向が変化することなく、かつ基板面積よりも広い波
面をもって真空容器1内へ導入される。
As shown in FIGS. 7 and 8, the EH tuner 10 is provided with two branches 10b and 10c in a main waveguide 10a having the same cross section as that of the microwave transmission section 9, and the two branches 10b and 10c are respectively reached. A square piston-shaped plunger 10d that completely reflects waves on its bottom surface is incorporated. By moving the piston-like blanker 10d forward or backward in the branches 10b and 10c, reflected waves of arbitrary amplitude and phase are created, and the impedance of the transmission line is adjusted equivalently. In addition, in the microwave transmission part 7, the cross-sectional shape of the internal space is changed from the square of the connection part with the transmission part 8 to the substrate 2 of the connection part with the vacuum container 1.
It is a frustum shape that gradually changes toward a circle with a larger diameter, and the microwave traveling through the transmission line has a wave front wider than the substrate area without changing the electric field direction. Introduced into 1.

【0005】ソレノイド6は、その幾何学的中心がマイ
クロ波透過窓4の大気側に位置するように配置され、ソ
レノイド6に流す電流を調節してマイクロ波透過窓4の
真空側にECR条件を満たす磁場領域が形成するととも
に、マイクロ波発生装置11で発振されたマイクロ波
を、マイクロ波透過窓4を透過させて真空容器1内へ導
入し、ガス導入系5から成膜原料ガスを導入すると、ガ
スがECR磁場領域で効率よく電離されてプラズマ化
し、このプラズマが、ソレノイド6が形成する発散磁場
の磁力線に沿って基板台3方向へ向かい、基板2の表面
に薄膜が形成される。このとき、従来では、マイクロ波
発生装置11で発振されたマイクロ波を効率よく導入す
るためにEHチューナ10を調整し反射波を最低に設定
していた。
The solenoid 6 is arranged such that its geometric center is located on the atmospheric side of the microwave transmitting window 4, and the electric current flowing through the solenoid 6 is adjusted to set the ECR condition on the vacuum side of the microwave transmitting window 4. When the magnetic field region to be filled is formed, the microwave oscillated by the microwave generator 11 is introduced into the vacuum container 1 through the microwave transmission window 4, and the film forming raw material gas is introduced from the gas introduction system 5. , The gas is efficiently ionized in the ECR magnetic field region and turned into plasma, and this plasma is directed to the substrate stand 3 direction along the magnetic force lines of the divergent magnetic field formed by the solenoid 6, and a thin film is formed on the surface of the substrate 2. At this time, conventionally, in order to efficiently introduce the microwave oscillated by the microwave generator 11, the EH tuner 10 is adjusted to set the reflected wave to the minimum.

【0006】[0006]

【発明が解決しようとする課題】前記したプラズマ処理
装置において、生成されたプラズマの基板2の面内にお
ける密度分布が極端に不均一な場合がある。この時の成
膜された基板上の膜厚分布とプラズマ密度分布との各測
定結果の一例を図4および図5に示す。図において、横
軸の零点はマイクロ波導入口の中心位置を意味し、測定
位置はマイクロ波導入口中心から半径方向距離を示す。
両測定結果を比較して、プラズマ密度の分布が膜厚の分
布に影響していることがわかる。なお、これらの分布
は、基板に平行な面内では、周方向の差はわずかであ
る。従って、マイクロ波伝送部7が、マイクロ波伝送部
9と同様、全長にわたり断面形状が方形のものであって
も、図4,図5と同様の分布から得られるものと考えら
れる。半導体製造工程の成膜でこのような膜厚の不均一
は大きな問題であり、現在でもそのプラズマ密度の不均
一現象のメカニズムは解明されておらず、装置としての
大きな問題であった。
In the plasma processing apparatus described above, the density distribution of the generated plasma in the surface of the substrate 2 may be extremely uneven. An example of each measurement result of the film thickness distribution and the plasma density distribution on the formed substrate at this time is shown in FIGS. 4 and 5. In the figure, the zero point on the horizontal axis means the center position of the microwave introduction port, and the measurement position shows the radial distance from the center of the microwave introduction port.
Comparing the two measurement results, it can be seen that the plasma density distribution affects the film thickness distribution. Note that these distributions have a slight difference in the circumferential direction in the plane parallel to the substrate. Therefore, even if the microwave transmission part 7 has a rectangular cross-sectional shape over the entire length like the microwave transmission part 9, it is considered that the microwave transmission part 7 can be obtained from the same distribution as in FIGS. 4 and 5. Such film thickness nonuniformity is a major problem in film formation in the semiconductor manufacturing process, and the mechanism of the plasma density nonuniformity phenomenon has not been clarified even now, and it has been a major problem as an apparatus.

【0007】この発明の目的は、真空容器内における面
内の密度分布が均一なプラズマを形成することができ、
これにより基板表面の処理速度の分布、従って処理が成
膜の場合には膜厚分布が均一となるプラズマ処理装置を
得ることである。
An object of the present invention is to form a plasma having a uniform in-plane density distribution in a vacuum container,
Thus, it is possible to obtain a plasma processing apparatus in which the processing speed distribution on the substrate surface, and thus the film thickness distribution is uniform when the processing is film formation.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
に、この発明においては、筒状に形成され一方の端面に
板状のマイクロ波透過窓により気密に閉鎖されるマイク
ロ波導入口が形成された真空容器と、マイクロ波発生装
置と、真空容器とマイクロ波発生装置とを結合し内部を
マイクロ波が伝わる中空導体からなるマイクロ波伝送路
の一部を構成して該伝送路のインピーダンスを調節する
EHチューナとを備え、マイクロ波発生装置で発振され
たマイクロ波をマイクロ波伝送路を通しマイクロ波透過
窓を透過させて真空容器内へ導入し、真空容器内にマイ
クロ波放電プラズマを発生させて該真空容器内の被処理
基板の表面処理を行うプラズマ処理装置において、前記
マイクロ波放電プラズマの被処理基板上における面内の
プラズマ密度分布を、真空容器壁の複数位置に取り付け
た発光強度計により自動測定し、または、基板搬送用ハ
ンドに取り付けたプローブにより基板搬送用ハンドを被
処理基板の直径方向に移動させつつ自動測定し、あるい
は、基板搬送用ハンドに取り付けたファラデーカップに
より自動測定し、測定されたプラズマ密度分布からEH
チューナとマイクロ波発生装置とを制御してプラズマ密
度分布の不均一度が所定値以下となるように制御した後
被処理基板の表面処理工程に入る装置とする。なお、プ
ラズマ密度分布をファラデーカップを用いて行うもので
は、ファラデーカップを複数個用いるようにすれば好適
である。
In order to solve the above-mentioned problems, in the present invention, a microwave introduction port which is formed in a cylindrical shape and is hermetically closed by a plate-shaped microwave transmission window is formed on one end face. A vacuum container, a microwave generator, a vacuum container and a microwave generator, and a part of a microwave transmission line formed of a hollow conductor through which microwaves are transmitted to adjust the impedance of the transmission line. And an EH tuner for transmitting microwaves oscillated by a microwave generator through a microwave transmission path and through a microwave transmission window to be introduced into a vacuum container to generate microwave discharge plasma in the vacuum container. In a plasma processing apparatus for performing a surface treatment on a substrate to be processed in the vacuum container, a plasma density distribution of the microwave discharge plasma on the substrate to be processed on the surface , Automatically measured by a luminescence intensity meter attached to a plurality of positions of the vacuum container wall, or automatically measured while moving the substrate transfer hand by the probe attached to the substrate transfer hand in the diameter direction of the substrate to be processed, or EH is automatically measured from the measured plasma density distribution using a Faraday cup attached to the substrate transfer hand.
The tuner and the microwave generator are controlled to control the non-uniformity of the plasma density distribution to be a predetermined value or less, and then the apparatus for entering the surface treatment step of the substrate to be treated is provided. If the plasma density distribution is performed using a Faraday cup, it is preferable to use a plurality of Faraday cups.

【0009】[0009]

【作用】この発明は、前記したプラズマ密度分布の極端
な不均一現象が、EHチューナとマイクロ波発生装置と
の調整による反射波の増減により解消されるという、本
発明者の調査に基づいてなされたものである。従って、
真空容器壁の複数位置に、測定子の採光方向が基板の直
径と垂直になるように設けた発光強度計からの信号、ま
たは基板搬送用ハンドに取り付けたプローブの基板直径
方向各位置からの信号、あるいは、基板直径各位置にお
けるファラデーカップからの信号から被処理基板上にお
ける面内のプラズマ密度分布を測定し、この分布の不均
一度が所定値以下となるようにEHチューナ内蔵の可動
プランジャを移動させるとともに、この移動に伴う反射
波の振幅や位相の変化を補って常に真空容器内に注入さ
れるマイクロ波パワーが一定になるようにマイクロ波発
生装置の出力調整機構を制御することにより、処理速度
を低下させることなく、被処理基板処理工程の当初から
均一なプラズマ密度分布が確保された状態で処理を行う
ことができる。また、プラズマ密度分布の測定にファラ
デーカップを用いる場合、複数のファラデーカップを基
板搬送用ハンド上で基板直径の全範囲にわたりプラズマ
中のイオン電流が測定できるように配置することによ
り、基板搬送用ハンドの測定各位置での停止,再移動の
制御機構を必要とせず、プラズマ密度分布を簡易にかつ
短時間に測定することができる。
The present invention has been made based on the investigation by the present inventor that the above-mentioned extremely non-uniform phenomenon of the plasma density distribution can be solved by increasing and decreasing the reflected wave by adjusting the EH tuner and the microwave generator. It is a thing. Therefore,
Signals from luminescence intensity meters installed at multiple positions on the wall of the vacuum vessel so that the direction of light emitted from the probe is perpendicular to the diameter of the substrate, or signals from various positions in the substrate diameter direction of the probe attached to the substrate transfer hand. Alternatively, the in-plane plasma density distribution on the substrate to be processed is measured from the signal from the Faraday cup at each position on the substrate diameter, and a movable plunger with a built-in EH tuner is used so that the nonuniformity of this distribution is below a predetermined value. While moving, by controlling the amplitude and phase of the reflected wave due to this movement, by controlling the output adjustment mechanism of the microwave generator so that the microwave power constantly injected into the vacuum container becomes constant, The processing can be performed in the state where a uniform plasma density distribution is secured from the beginning of the processing step of the substrate to be processed without lowering the processing speed. When a Faraday cup is used to measure the plasma density distribution, multiple Faraday cups are placed on the substrate transfer hand so that the ion current in the plasma can be measured over the entire range of the substrate diameter. The plasma density distribution can be measured easily and in a short time without requiring a control mechanism for stopping and re-moving at each position.

【0010】[0010]

【実施例】図1に本発明の第1の実施例を示す。図にお
いて、基板搬送用ハンド12に取り付けられたプローブ
14は、先端に突き出た2本のプローブ12aの間に電
圧を印加し、プローブ12aを基板2の直径方向に移動
させながらプローブ12aに流れる電流を測定する。こ
の電流は測定信号として常に制御装置15に送られ、こ
こで送られた測定信号値の解析が行われてプラズマ密度
分布の均一性が判定され、均一性が不十分な場合には制
御信号がEHチューナ10とマイクロ波発生装置11と
に出力される。この結果、EHチューナ10では、その
E分岐10b(図6)およびH分岐10cそれぞれに内
蔵のプランジャ10dの図示されない駆動機構が制御さ
れ、プランジャ10dのマイクロ波反射面の位置が、プ
ラズマ密度分布を均一化する方向に移動する。また、マ
イクロ波発生装置11では、その出力調整機構が制御さ
れ、EHチューナ10における反射波の変化を補って真
空容器1内へ導入されるマイクロ波電力が一定に保たれ
る。この制御工程はプラズマ密度分布の均一化が達成さ
れるまで繰り返される。
1 shows a first embodiment of the present invention. In the figure, the probe 14 attached to the substrate transfer hand 12 applies a voltage between the two probes 12 a protruding at the tip, and moves the probe 12 a in the diameter direction of the substrate 2 while flowing a current through the probe 12 a. To measure. This current is always sent as a measurement signal to the control device 15, and the measurement signal value sent here is analyzed to determine the uniformity of the plasma density distribution. If the uniformity is insufficient, the control signal is sent. It is output to the EH tuner 10 and the microwave generator 11. As a result, in the EH tuner 10, the drive mechanism (not shown) of the plunger 10d built in each of the E branch 10b (FIG. 6) and the H branch 10c is controlled, and the position of the microwave reflection surface of the plunger 10d changes the plasma density distribution. Move in the direction of homogenization. Further, in the microwave generator 11, its output adjusting mechanism is controlled so that the microwave power introduced into the vacuum container 1 is kept constant by compensating for the change in the reflected wave in the EH tuner 10. This control process is repeated until a uniform plasma density distribution is achieved.

【0011】図2に本発明の第2の実施例を示す。真空
容器1の壁には、プラズマ光の発光強度を測定するため
の発光強度計17が複数、その測定子の採光方向が基板
2の直径と垂直になるように設けられ、発光強度の計測
信号が制御装置15に入力される。以降の制御工程は第
1の実施例の場合と同様である。図3に本発明の第3の
実施例を示す。この実施例では、基板搬送用ハンド12
の上に複数のファラデーカップ16が1列に並んで配置
され、各位置のファラデーカップ16に入射したイオン
電流が制御装置15に送られてプラズマ密度分布が求め
られる。以降の制御工程は第1の実施例の場合と同様で
ある。
FIG. 2 shows a second embodiment of the present invention. A plurality of luminescence intensity meters 17 for measuring the luminescence intensity of plasma light are provided on the wall of the vacuum container 1 so that the direction of lighting of the probe is perpendicular to the diameter of the substrate 2, and a measurement signal of the luminescence intensity is provided. Is input to the controller 15. The subsequent control steps are the same as in the case of the first embodiment. FIG. 3 shows a third embodiment of the present invention. In this embodiment, the substrate transfer hand 12
A plurality of Faraday cups 16 are arranged side by side in a row on the above, and the ion current incident on the Faraday cups 16 at each position is sent to the controller 15 to obtain the plasma density distribution. The subsequent control steps are the same as in the case of the first embodiment.

【0012】[0012]

【発明の効果】本発明においては、プラズマ処理装置を
以上のような制御が行われた後被処理基板の表面処理工
程に入る装置としたので、被処理基板処理工程の当初か
らプラズマ密度分布の均一性が確保された状態で処理が
行われ、処理結果の歩留りがよくなり、スループットが
向上する。しかも特に、プローブおよびファラデーカッ
プをプラズマ密度分布の測定に用いるものでは、基板搬
送用ハンドを利用するようにしたので、プラズマ密度分
布制御のために装置に新たに付加する機構が最小とな
り、装置の信頼性と経済性とを損なうことなく上記効果
を得ることができる。
According to the present invention, since the plasma processing apparatus is an apparatus that enters into the surface treatment step of the substrate to be processed after the above-described control is performed, the plasma density distribution of The processing is performed in the state where the uniformity is ensured, the yield of the processing results is improved, and the throughput is improved. Moreover, in particular, in the case where the probe and the Faraday cup are used for measuring the plasma density distribution, since the substrate transfer hand is used, the mechanism newly added to the apparatus for controlling the plasma density distribution is minimized, The above effect can be obtained without impairing reliability and economical efficiency.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の第1の実施例によるプラズマ処理装
置を示す装置全体の部分断面図
FIG. 1 is a partial sectional view of an entire apparatus showing a plasma processing apparatus according to a first embodiment of the present invention.

【図2】この発明の第2の実施例によるプラズマ処理装
置を示す図であって、同図(a)は装置全体の部分断面
図、同図(b)は装置要部の正面図
2A and 2B are views showing a plasma processing apparatus according to a second embodiment of the present invention, wherein FIG. 2A is a partial cross-sectional view of the entire apparatus, and FIG. 2B is a front view of a main part of the apparatus.

【図3】この発明の第3の実施例によるプラズマ処理装
置を示す装置全体の部分断面図
FIG. 3 is a partial sectional view of the entire apparatus showing a plasma processing apparatus according to a third embodiment of the present invention.

【図4】従来のプラズマ処理装置におけるマイクロ波放
電プラズマの被成膜基板上の面内密度分布の一測定例を
示す図
FIG. 4 is a diagram showing an example of measurement of in-plane density distribution of microwave discharge plasma on a film formation substrate in a conventional plasma processing apparatus.

【図5】従来のプラズマ処理装置における成膜時の膜厚
分布の一測定例を示す図
FIG. 5 is a diagram showing an example of measurement of film thickness distribution during film formation in a conventional plasma processing apparatus.

【図6】従来のプラズマ処理装置の構成例を示す装置全
体の部分断面図
FIG. 6 is a partial cross-sectional view of the entire apparatus showing a configuration example of a conventional plasma processing apparatus.

【図7】マイクロ波伝送路の一部を構成してマイクロ波
伝送路のインピーダンスを調節するEHチューナの外部
構造を示す斜視図
FIG. 7 is a perspective view showing an external structure of an EH tuner that constitutes a part of the microwave transmission line and adjusts the impedance of the microwave transmission line.

【図8】EHチューナのE分岐,H分岐の内部構造を示
す図であって、同図(a)は各分岐の正面図、同図
(b)は側面断面図
8A and 8B are diagrams showing an internal structure of an E branch and an H branch of an EH tuner, wherein FIG. 8A is a front view of each branch, and FIG. 8B is a side sectional view.

【符号の説明】[Explanation of symbols]

1 真空容器 2 基板(被処理基板) 4 マイクロ波透過窓 7 マイクロ波伝送部 8 マイクロ波伝送部 9 マイクロ波伝送部 10 EHチューナ 12 基板搬送用ハンド 14 プローブ 15 制御装置 16 ファラデーカップ 17 発光強度計 1 Vacuum Container 2 Substrate (Substrate to be Processed) 4 Microwave Transmission Window 7 Microwave Transmission Section 8 Microwave Transmission Section 9 Microwave Transmission Section 10 EH Tuner 12 Substrate Transfer Hand 14 Probe 15 Control Device 16 Faraday Cup 17 Luminescence Intensity Meter

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H05H 1/16 9014−2G ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI technical display location H05H 1/16 9014-2G

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】筒状に形成され一方の端面に板状のマイク
ロ波透過窓により気密に閉鎖されるマイクロ波導入口が
形成された真空容器と、マイクロ波発生装置と、真空容
器とマイクロ波発生装置とを結合し内部をマイクロ波が
伝わる中空導体からなるマイクロ波伝送路の一部を構成
して該伝送路のインピーダンスを調節するEHチューナ
とを備え、マイクロ波発生装置で発振されたマイクロ波
をマイクロ波伝送路を通しマイクロ波透過窓を透過させ
て真空容器内へ導入し、真空容器内にマイクロ波放電プ
ラズマを発生させて該真空容器内の被処理基板の表面処
理を行うプラズマ処理装置において、前記マイクロ波放
電プラズマの被処理基板上における面内のプラズマ密度
分布を、真空容器壁の複数位置に取り付けた発光強度計
により自動測定し、測定されたプラズマ密度分布からE
Hチューナとマイクロ波発生装置とを自動制御してプラ
ズマ密度分布の不均一度が所定値以下となるように自動
制御した後、被処理基板の処理工程に入ることを特徴と
するプラズマ処理装置。
1. A vacuum container, which is formed in a cylindrical shape and has a microwave introduction port hermetically closed by a plate-shaped microwave transmission window on one end surface thereof, a microwave generator, a vacuum container and a microwave generator. A microwave oscillated by a microwave generator, which is provided with an EH tuner which is coupled to a device and constitutes a part of a microwave transmission line formed of a hollow conductor through which microwaves are transmitted, and which adjusts impedance of the transmission line. A plasma processing apparatus for introducing microwaves into a vacuum container through a microwave transmission path through a microwave transmission path, generating microwave discharge plasma in the vacuum container, and performing surface treatment of a substrate to be processed in the vacuum container. In, the in-plane plasma density distribution of the microwave discharge plasma on the substrate to be processed is automatically measured by a luminescence intensity meter attached to a plurality of positions on the wall of the vacuum container. E from the measured plasma density distribution
A plasma processing apparatus, wherein the H tuner and the microwave generator are automatically controlled to automatically control the nonuniformity of the plasma density distribution to be a predetermined value or less, and then the processing step of the substrate to be processed is started.
【請求項2】筒状に形成され一方の端面に板状のマイク
ロ波透過窓により気密に閉鎖されるマイクロ波導入口が
形成された真空容器と、マイクロ波発生装置と、真空容
器とマイクロ波発生装置とを結合し内部をマイクロ波が
伝わる中空導体からなるマイクロ波伝送路の一部を構成
して該伝送路のインピーダンスを調節するEHチューナ
とを備え、マイクロ波発生装置で発振されたマイクロ波
をマイクロ波伝送路を通しマイクロ波透過窓を透過させ
て真空容器内へ導入し、真空容器内にマイクロ波放電プ
ラズマを発生させて該真空容器内の被処理基板の表面処
理を行うプラズマ処理装置において、前記マイクロ波放
電プラズマの被処理基板上における面内のプラズマ密度
分布を、基板搬送用ハンドに取り付けたプローブにより
基板搬送用ハンドを被処理基板の直径方向に移動させつ
つ自動測定し、測定されたプラズマ密度分布からEHチ
ューナとマイクロ波発生装置とを自動制御してプラズマ
密度分布の不均一度が所定値以下となるように自動制御
した後、被処理基板の処理工程に入ることを特徴とする
プラズマ処理装置。
2. A vacuum container, which is formed in a tubular shape and has a microwave introduction port hermetically closed by a plate-shaped microwave transmission window on one end surface, a microwave generator, a vacuum container and a microwave generator. A microwave oscillated by a microwave generator, which is provided with an EH tuner which is coupled to a device and constitutes a part of a microwave transmission line formed of a hollow conductor through which microwaves are transmitted, and which adjusts impedance of the transmission line. A plasma processing apparatus for introducing microwaves into a vacuum container through a microwave transmission path through a microwave transmission path, generating microwave discharge plasma in the vacuum container, and performing surface treatment of a substrate to be processed in the vacuum container. In the in-plane plasma density distribution of the microwave discharge plasma on the substrate to be processed, the substrate transfer hand is measured by a probe attached to the substrate transfer hand. Automatic measurement is performed while moving in the diametrical direction of the substrate to be processed, and the EH tuner and the microwave generator are automatically controlled based on the measured plasma density distribution so that the nonuniformity of the plasma density distribution is below a predetermined value. A plasma processing apparatus, characterized in that, after being controlled, a processing step of a substrate to be processed is started.
【請求項3】筒状に形成され一方の端面に板状のマイク
ロ波透過窓により気密に閉鎖されるマイクロ波導入口が
形成された真空容器と、マイクロ波発生装置と、真空容
器とマイクロ波発生装置とを結合し内部をマイクロ波が
伝わる中空導体からなるマイクロ波伝送路の一部を構成
して該伝送路のインピーダンスを調節するEHチューナ
とを備え、マイクロ波発生装置で発振されたマイクロ波
をマイクロ波伝送路を通しマイクロ波透過窓を透過させ
て真空容器内へ導入し、真空容器内にマイクロ波放電プ
ラズマを発生させて該真空容器内の被処理基板の表面処
理を行うプラズマ処理装置において、前記マイクロ波放
電プラズマの被処理基板上における面内のプラズマ密度
分布を、基板搬送用ハンドに取り付けたファラデーカッ
プにより自動測定し、測定されたプラズマ密度分布から
EHチューナとマイクロ波発生装置とを自動制御してプ
ラズマ密度分布の不均一度が所定値以下となるように自
動制御した後、被処理基板の処理工程に入ることを特徴
とするプラズマ処理装置。
3. A vacuum container, which is formed in a tubular shape and has a microwave introduction port hermetically closed by a plate-shaped microwave transmission window on one end face, a microwave generator, a vacuum container and a microwave generator. A microwave oscillated by a microwave generator, which is provided with an EH tuner which is coupled to a device and constitutes a part of a microwave transmission line formed of a hollow conductor through which microwaves are transmitted, and which adjusts impedance of the transmission line. A plasma processing apparatus for introducing microwaves into a vacuum container through a microwave transmission path through a microwave transmission path, generating microwave discharge plasma in the vacuum container, and performing surface treatment of a substrate to be processed in the vacuum container. In, the in-plane plasma density distribution of the microwave discharge plasma on the substrate to be processed is automatically measured by a Faraday cup attached to the substrate transfer hand. , Automatically controlling the EH tuner and the microwave generator based on the measured plasma density distribution so that the nonuniformity of the plasma density distribution becomes a predetermined value or less, and then entering the processing step of the substrate to be processed. A plasma processing apparatus characterized by the above.
【請求項4】請求項第3項記載のプラズマ処理装置にお
いて、基板搬送用ハンドに取り付けるファラデーカップ
を複数個とし、基板搬送用ハンドを静止させてプラズマ
密度分布を自動測定することを特徴とするプラズマ処理
装置。
4. The plasma processing apparatus according to claim 3, wherein a plurality of Faraday cups are attached to the substrate transfer hand, and the substrate transfer hand is stationary to automatically measure the plasma density distribution. Plasma processing equipment.
JP4048948A 1991-08-07 1992-03-06 Plasma processing device Pending JPH0594955A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP3-196898 1991-08-07
JP19689891 1991-08-07

Publications (1)

Publication Number Publication Date
JPH0594955A true JPH0594955A (en) 1993-04-16

Family

ID=16365484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4048948A Pending JPH0594955A (en) 1991-08-07 1992-03-06 Plasma processing device

Country Status (1)

Country Link
JP (1) JPH0594955A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1126189A (en) * 1997-07-07 1999-01-29 Hitachi Ltd Plasma processing method and device
US9659752B2 (en) 2015-01-20 2017-05-23 Tokyo Electron Limited Method for presetting tuner of plasma processing apparatus and plasma processing apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1126189A (en) * 1997-07-07 1999-01-29 Hitachi Ltd Plasma processing method and device
US9659752B2 (en) 2015-01-20 2017-05-23 Tokyo Electron Limited Method for presetting tuner of plasma processing apparatus and plasma processing apparatus

Similar Documents

Publication Publication Date Title
JP7305095B2 (en) Method and system for controlling plasma performance
JP6890459B2 (en) Plasma processing equipment and control method
KR100237587B1 (en) Microwave plasma processing method and apparatus
US8308898B2 (en) Tuner and microwave plasma source
US8945342B2 (en) Surface wave plasma generating antenna and surface wave plasma processing apparatus
JPWO2004010746A1 (en) Plasma processing apparatus and control method thereof
JP6899693B2 (en) Plasma processing equipment and control method
US10109463B2 (en) Microwave automatic matcher and plasma processing apparatus
KR20130018459A (en) Plasma processing apparatus and plasma processing method
US11244810B2 (en) Electric field sensor, surface wave plasma source, and surface wave plasma processing apparatus
US9583314B2 (en) Plasma processing apparatus
KR102387618B1 (en) Plasma density monitor, plasma processing apparatus, and plasma processing method
JPH0594955A (en) Plasma processing device
JP2760845B2 (en) Plasma processing apparatus and method
JP3732287B2 (en) Plasma processing equipment
WO2010016417A1 (en) Plasma processing apparatus
JP2005072371A (en) Plasma generator, method of manufacturing thin film, and method of manufacturing fine structure
JPS62122217A (en) Processing equipment employing microwave plasma
JP2004363247A (en) Plasma processing apparatus
JPH07263180A (en) Plasma measuring method
US9659752B2 (en) Method for presetting tuner of plasma processing apparatus and plasma processing apparatus
JPH0729695A (en) Etching method
JPH06216073A (en) Plasma processing apparatus
JPH01241798A (en) Microwave plasma device
JPH10261496A (en) Microwave plasma treatment method and apparatus