JPH0594742A - Vacuum switchgear - Google Patents

Vacuum switchgear

Info

Publication number
JPH0594742A
JPH0594742A JP25375091A JP25375091A JPH0594742A JP H0594742 A JPH0594742 A JP H0594742A JP 25375091 A JP25375091 A JP 25375091A JP 25375091 A JP25375091 A JP 25375091A JP H0594742 A JPH0594742 A JP H0594742A
Authority
JP
Japan
Prior art keywords
vacuum
gas
pressure
opening distance
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25375091A
Other languages
Japanese (ja)
Other versions
JP2639251B2 (en
Inventor
Masayuki Takahashi
正行 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP25375091A priority Critical patent/JP2639251B2/en
Publication of JPH0594742A publication Critical patent/JPH0594742A/en
Application granted granted Critical
Publication of JP2639251B2 publication Critical patent/JP2639251B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Tests Of Circuit Breakers, Generators, And Electric Motors (AREA)
  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)
  • Arc-Extinguishing Devices That Are Switches (AREA)

Abstract

PURPOSE:To provide a vacuum switchgear by which workability of a judgment on the vacuum quality or various kinds of inspection tests in the vacuum switchgear having a vacuum switch tube in a container to seal up an insulating medium such as SF6 gas can be improved and the judgment on the vacuum quality can be carried out simply/reliably by applying a conventional widespread 20kV withstand voltage testing method. CONSTITUTION:A vacuum switch tube 3 having vacuum dielectric strength of an opening distance Lv=1mm and alternating voltage equal to or higher than 20kV, is housed inside of a container 1 to seal up SF6 gas 2 having pressure and dielectric strength higher than atmospheric pressure air. An opening distance adjusting device 20, by which the pressure of which inter-polar dielectric strength is an opening distance Lc >=1mm when the SF6 gas 2 is filled and alternating voltage becomes lower than 20kV is limited as the maximum pressure Ps of the SF6 gas 2, and by which an opening distance can be also shortened freely from a full opening position Ls to a closed position, is provided in an operation mechanism 10 inside of this vacuum switch tube 3. Even if a trace of vacuum leakage is caused, since an insulating medium is formed of mixed gas of gas having molecular weight smaller than the SF6 gas and the SF gas, by setting partial pressure of the SF6 gas below the atmospheric pressure, the vacuum resistant service life can be improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、絶縁媒体を密封する
容器内に真空スイッチ管(以後VSTと書く)を収納し
た真空開閉装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vacuum switchgear in which a vacuum switch tube (hereinafter referred to as VST) is housed in a container for sealing an insulating medium.

【0002】[0002]

【従来の技術】図8(a),(b) は定格電圧12kV、定格の全
開極距離LS =8mmの遮断器用真空開閉装置の全開極状
態を示す図で、図8(a) は上面図、図8(b) は側面図で
ある。図において1は、絶縁媒体であるSF6 ガス2を密
封する容器であって、一般にキュービクルと呼ばれ、内
部にVST3、その他図示しない高電圧機器を収納して
いる。SF6 ガスの封入圧力は、容器を負圧にしないため
一般に大気圧以上であり、またVST3の図示しないベ
ローズの特性との関係から最高2気圧以下が用いられ
る。3a,3b はVST3の固定電極、可動電極で、LS
全開極距離または全開極位置を表わす。4a,4b はケーブ
ルヘッドで、それぞれ固定電極3a、可動電極3bと電気的
に接続され、密封容器1外部の大気7側に引出されてい
る。8は真空開閉装置のフレーム、10はこのフレーム8
に設けられ、可動電極3bを開閉動作するための操作機構
である。開極動作の場合は、図示しない開放ばねのばね
力がピン11に加わり、駆動レバー12が駆動するシャフト
13を回転中心として回動し、この駆動レバー12の回動力
が継手14を介して主レバー15に伝達され、主レバー15は
主シャフト16の中心を回転中心として主シャフト16とと
もに回動する。この主シャフト16の回動によって可動電
極3bは閉極位置から全開極位置まで移動し、前記の全開
極距離LS に保持される。17は主シャフト16の回動を自
在にするとともに、SF6 ガス2と大気7とを隔離するガ
スシールである。尚、閉極動作は図示しない別の閉極ば
ねのばね力が主シャフト16に伝達されて、可動電極3bを
閉極させる。通常使用状態では、開・閉動作はともに高
速で行われ、可動電極3bの停止位置は閉極位置または全
開極位置LS の2位置に限られ、途中の中間開極位置で
停止することはできない構造になっている。
2. Description of the Related Art FIGS. 8 (a) and 8 (b) are views showing a fully opened state of a vacuum switchgear for a circuit breaker with a rated voltage of 12 kV and a rated fully opened distance L S = 8 mm, and FIG. 8 (a) is a top view. FIG. 8 (b) is a side view. In the figure, reference numeral 1 is a container for sealing SF 6 gas 2 as an insulating medium, which is generally called a cubicle, in which a VST 3 and other high voltage equipment not shown are housed. The SF 6 gas filling pressure is generally higher than atmospheric pressure so as not to make the container negative, and a maximum pressure of 2 atmospheric pressure or lower is used in consideration of the characteristics of the bellows (not shown) of the VST 3. Reference numerals 3a and 3b denote fixed electrodes and movable electrodes of VST3, and L S represents a full opening distance or a full opening position. Cable heads 4a and 4b are electrically connected to the fixed electrode 3a and the movable electrode 3b, respectively, and are drawn out to the atmosphere 7 side outside the sealed container 1. 8 is the frame of the vacuum switchgear, 10 is this frame 8
Is an operating mechanism for opening and closing the movable electrode 3b. In the case of the opening operation, the spring force of an open spring (not shown) is applied to the pin 11 and the shaft driven by the drive lever 12
The rotation of the drive lever 12 is transmitted to the main lever 15 via the joint 14, and the main lever 15 rotates with the center of the main shaft 16 as the rotation center together with the main shaft 16. Due to the rotation of the main shaft 16, the movable electrode 3b moves from the closed position to the fully opened position and is held at the fully opened distance L S. Reference numeral 17 is a gas seal that allows the main shaft 16 to freely rotate and separates the SF 6 gas 2 from the atmosphere 7. In the closing operation, the spring force of another closing spring (not shown) is transmitted to the main shaft 16 to close the movable electrode 3b. In the normal use state, both the opening and closing operations are performed at high speed, and the movable electrode 3b is stopped only at two positions of the closed electrode position or the fully opened electrode position L S. It is a structure that cannot be done.

【0003】次に、VST電極間の放電開始電圧特性を
図9について説明する。図9は全開極距離LS を8mmと
して、VST内部圧力Pを10-4Torr以下の高真空から大
気圧(760 Torr)以上の高気圧まで変化させたときのV
ST極間の放電開始電圧Vの変化を示したもので、一般
にパッシェン曲線と呼ばれている。VSTの限界真空度
は、真空開閉装置の定格電圧3.6 〜36kVに対応してやや
異なるが、ほぼP=10-3Torrのオーダで、圧力がそれ以
上になると耐電圧、遮断性能を満足しなくなる。従来大
気中で使用されるVSTにおいては、真空良否判定する
ための耐電圧試験電圧V1 はこの限界真空度から空気大
気圧までをカバーできる電圧値が採用され、定格電圧12
kV用には20kVが標準とされている。しかし、VSTをSF
6 ガス中で使用する場合、パッシェン・ミニマム点から
左側の低気圧側では空気よりも放電開始電圧が低いの
で、試験電圧V1 により真空良否判定できて問題はな
い。しかも、図中に示したようにSF6 ガスの高気圧領域
では試験電圧V1 よりも放電開始電圧が上回るので、真
空良否判定はできない。特に大気圧よりも高い圧力PT
では放電が起っても高真空との判別ができない。電圧V
2 は、この電圧を印加するとVST極間以外の部分で放
電して真空開閉装置の絶縁物を脅かすので、印加しては
ならない課電制限電圧である。従って、SF6 ガスが密閉
される容器内1にVST3を収納した真空開閉装置で、
仮に真空洩れを起してVST内に密封容器1内の封入圧
力PT のSF6 ガスが充満した場合は、従来広く普及して
いる標準の耐電圧試験法を採用できず、特別の工夫が必
要である。
Next, the discharge start voltage characteristic between the VST electrodes will be described with reference to FIG. FIG. 9 shows V when the VST internal pressure P is changed from a high vacuum of 10 −4 Torr or less to a high pressure of atmospheric pressure (760 Torr) or more with the full opening distance L S being 8 mm.
It shows a change in the discharge start voltage V between the ST poles and is generally called a Paschen curve. Although the limit vacuum degree of VST is slightly different corresponding to the rated voltage of the vacuum switchgear of 3.6 to 36 kV, it is on the order of P = 10 -3 Torr, and the withstand voltage and the breaking performance are not satisfied when the pressure is higher than that. In the conventional VST used in the atmosphere, the withstand voltage test voltage V 1 for judging the quality of the vacuum is a voltage value capable of covering from this limit vacuum degree to the atmospheric pressure of the air, and the rated voltage 12
20 kV is standard for kV. But VST is SF
When used in 6 gases, since the discharge starting voltage is lower than air on the low pressure side on the left side of the Paschen minimum point, it is possible to judge whether the vacuum is good or bad by the test voltage V 1, and there is no problem. Moreover, as shown in the figure, since the discharge start voltage is higher than the test voltage V 1 in the high pressure region of SF 6 gas, the vacuum quality cannot be determined. Especially pressure P T higher than atmospheric pressure
Therefore, even if a discharge occurs, it cannot be distinguished from a high vacuum. Voltage V
2 is a voltage limiting voltage that should not be applied, because when this voltage is applied, it discharges in parts other than between the VST electrodes and threatens the insulator of the vacuum switchgear. Therefore, with the vacuum switchgear in which VST3 is stored in the container 1 in which the SF 6 gas is sealed,
If a vacuum leak occurs and the VST is filled with SF 6 gas with a filling pressure P T in the sealed container 1, the standard withstanding voltage test method that has been widely used in the past cannot be adopted, and special measures are taken. is necessary.

【0004】図9で、全開極距離LS よりも小さい開極
距離にした場合の特性はV字形曲線全体が右側にほぼ水
平移動するので、SF6 ガスの特性はLS =8mmの空気の
特性に近付く。その上で従来のSF6 ガスの封入圧力PT
を下げて大気圧に近付けるか、あるいはVSTの電極を
工夫して小開極距離での高真空耐電圧を高く維持しつつ
SF6 ガス耐電圧を下げるなどの手段によって従来標準の
耐電圧試験法を採用できる可能性が考えられる。
In FIG. 9, when the opening distance is smaller than the full opening distance L S , the characteristic of SF 6 gas is that of the air of L S = 8 mm because the entire V-shaped curve moves to the right almost horizontally. Get closer to the characteristics. On top of that, the conventional SF 6 gas filling pressure P T
Lower the pressure to bring it closer to atmospheric pressure, or devise the VST electrode to maintain high vacuum withstand voltage at a small opening distance.
It is possible that the conventional standard withstand voltage test method can be adopted by means such as lowering the withstand voltage of SF 6 gas.

【0005】図10は従来、大気中で使用されるVSTの
耐電圧試験法を示す試験回路図で、真空開閉装置の使用
現場で簡便・確実に真空良否判定ができるので広く普及
している。図10において同一符号は図8〜図9と同等を
示す。30は試験装置で高圧トランス31と、VSTが極間
放電すればこれを検出する電流計32からなり、33は交流
電源である。今、VST3の真空良否を試験する場合
は、真空開閉装置を使用中の電路から切離して、全開極
距離のLS の開極状態で試験装置30に接続し、両電極3
a,3b 間に試験電圧V1 =20kVを印加したときの、極間
放電の有または無を電流計32により検知して、真空は不
良または良と判定する。しかし、SF6 ガス中で使用され
るVSTでは前述のように真空良否の判定できない圧力
範囲がある。また、特開昭62-208521 号公報で提案され
る方法は、VST極間に一定の高電圧を印加しておき、
極間放電が起る回数を一定時間にわたって測定し、単位
時間当たりの放電回数の経過時間に対する変化を観測し
て、時間的減少または増大のパターンに対応して真空は
良または不良と判定する。しかしこの方法も繁雑で熟練
を要する欠点があった。
FIG. 10 is a conventional test circuit diagram showing a withstand voltage test method for VST used in the atmosphere, and is widely used because it is possible to easily and surely determine whether the vacuum switch is good or bad at the site where the vacuum switchgear is used. In FIG. 10, the same reference numerals indicate the same as in FIGS. Reference numeral 30 is a test device, which is composed of a high-voltage transformer 31, an ammeter 32 for detecting if VST discharges between electrodes, and 33 is an AC power supply. Now, when testing the vacuum quality of VST3, the vacuum switchgear is disconnected from the electric circuit in use, and the test device 30 is connected in the open state of L S at the full open distance, and both electrodes 3
The presence or absence of inter-electrode discharge when the test voltage V 1 = 20 kV is applied between a and 3b is detected by the ammeter 32, and the vacuum is judged to be defective or good. However, in the VST used in SF 6 gas, there is a pressure range where the quality of the vacuum cannot be determined as described above. In the method proposed in Japanese Patent Laid-Open No. 62-208521, a constant high voltage is applied between VST electrodes,
The number of times the inter-electrode discharge occurs is measured over a certain period of time, the change in the number of discharges per unit time with respect to the elapsed time is observed, and the vacuum is judged to be good or bad according to the pattern of temporal decrease or increase. However, this method also has the drawback that it is complicated and requires skill.

【0006】一般に6年毎に実施される真空開閉装置の
定期点検においては、真空良否判定のほかにVSTの電
極消耗量、電極接触抵抗、三相のVSTの開閉不揃など
の点検も必要である。真空開閉装置は高機能・多機能化
する程、点検の高信頼化が要求されるが、密封容器1に
収納されてVST3が外部から直接観察も触れることも
できない装置では特にその要求が強く、またケーブルヘ
ッド4a,4b の絶縁物の脱着作業もわずらわしいので、点
検時に作業性が優れた真空開閉装置の開発が望まれてい
る。更に、定期点検周期の延長化の要請から、たとえ極
微量の真空洩れが起ったとしても真空耐用寿命の長い真
空開閉装置の出現が強く期待されている。
Generally, in the periodic inspection of the vacuum switchgear performed every 6 years, in addition to the vacuum quality judgment, it is necessary to inspect the VST electrode consumption, the electrode contact resistance, and the three-phase VST opening / closing misalignment. is there. As the vacuum switchgear becomes more sophisticated and multifunctional, higher inspection reliability is required, but the demand is particularly strong for a device that is housed in the sealed container 1 and the VST 3 cannot be directly observed or touched from the outside. In addition, since the work of removing and installing the insulating material of the cable heads 4a and 4b is troublesome, it is desired to develop a vacuum switchgear that has excellent workability during inspection. Further, due to the demand for extension of the periodic inspection cycle, it is strongly expected that a vacuum switchgear will have a long vacuum service life even if a very small amount of vacuum leakage occurs.

【0007】[0007]

【発明が解決しようとする課題】VSTをSF6 ガス中で
使用する従来の真空開閉装置は以上のように構成されて
いるので、真空洩れを生じた場合、簡便・確実で従来広
く普及している耐電圧試験法では真空良否判定のできな
い圧力範囲があって、試験電圧を高くするとVST極間
以外で放電が起って絶縁物を損傷する恐れがあり、しか
も高真空の正常VSTとVST内にSF6 ガスが充満した
不良VSTの極間放電開始電圧が同程度なので良否判定
ができない。特別の試験回路を用いても試験法が繁雑で
熟練を要する。また真空良否のほか各種点検の際に、そ
の都度ケーブルヘッドの絶縁物の脱着を要するなど点検
時の作業性が劣るなどの問題点があった。
Since the conventional vacuum switchgear which uses VST in SF 6 gas is constructed as described above, it is simple and reliable in the case of vacuum leakage and has been widely used in the past. In the withstanding voltage test method, there is a pressure range where the quality of the vacuum cannot be judged, and if the test voltage is increased, there is a risk that discharge will occur outside the VST pole and damage the insulator. In addition, since the inter-electrode discharge start voltage of the defective VST filled with SF 6 gas is about the same, it is impossible to judge pass / fail. Even if a special test circuit is used, the test method is complicated and requires skill. In addition to the quality of the vacuum, it is necessary to attach and detach the insulating material of the cable head each time when various inspections are performed.

【0008】この発明は上記のような問題点を解消する
ためになされたもので、圧力および絶縁耐力がともに大
気圧空気よりも高い絶縁媒体を密封する容器内にVST
を収納した真空開閉装置の据付現場で真空良否や電極消
耗、電極開閉不揃など各種の点検試験が簡便・確実にで
きて点検作業性が優れるとともに、仮に極微量の真空洩
れが起ったとしても真空耐用寿命の長い真空信頼性の高
い真空開閉装置を得ることを目的とする。
The present invention has been made in order to solve the above-mentioned problems, and a VST is provided in a container for sealing an insulating medium having both a pressure and a dielectric strength higher than atmospheric pressure air.
Various inspection tests such as vacuum quality, electrode wear, and electrode open / close irregularity can be performed easily and reliably at the installation site of the vacuum switchgear that houses the vacuum switchgear, and the inspection workability is excellent. Also aims to obtain a vacuum switchgear with a long vacuum life and high vacuum reliability.

【0009】[0009]

【課題を解決するための手段】この発明に係る絶縁媒体
を密封する容器内に開極距離1mmで交流電圧20kV以上の
真空絶縁耐力を有するVSTを収納した真空開閉器は、
圧力および絶縁耐力が大気圧空気よりも高い上記絶縁媒
体がVST内に充満したときのVST極間の絶縁耐力は
開極距離1mm以上で交流電圧20kV未満となる圧力を最高
圧力とし、且つ操作機構に、開極距離が全開極位置から
閉極位置まで縮小自在の開極距離調整装置を備えたもの
である。また、SF6 ガスよりも分子量の小さいガスとSF
6 ガスとの混合ガスで絶縁媒体を構成し、混合ガス中の
SF6 ガスの分圧を大気圧以下に限定したものである。
According to the present invention, there is provided a vacuum switch in which a VST having a vacuum dielectric strength of AC voltage of 20 kV or more at an opening distance of 1 mm is housed in a container for sealing an insulating medium.
Pressure and dielectric strength higher than atmospheric pressure air The dielectric strength between VST electrodes when the above-mentioned insulating medium is filled in VST is the maximum pressure at which the AC voltage is less than 20 kV at the opening distance of 1 mm or more, and the operating mechanism In addition, it is provided with an opening contact distance adjusting device that can reduce the opening contact distance from the fully opened position to the closed position. In addition, gas with a smaller molecular weight than SF 6 gas and SF
The insulating medium is composed of the mixed gas of 6 gases and
The partial pressure of SF 6 gas is limited to atmospheric pressure or less.

【0010】[0010]

【作用】この発明における真空開閉装置は、開極距離を
VST定格の全開極距離よりも縮小自在の開極距離調整
装置を設けることにより、縮小開極状態で従来広く普及
している20kV耐電圧試験法を適用して真空良否判定がで
きるようにするとともに、更に縮小開極1mmにおける高
真空VSTの耐電圧下限と絶縁媒体が充満したVSTの
耐電圧上限とを限定することにより上記の真空良否判定
をより簡便・確実にできるようにする。また、絶縁媒体
をSF6 ガスより分子量の小さいガスとSF6 ガスとの混合
ガスにするとともに、混合ガス中のSF6 ガスの分圧を大
気圧以下に限定することにより、放電開始電圧とVST
内部圧力との関係曲線におけるパッシェン・ミニマム点
より低気圧側の絶縁耐力を向上し、SF6 ガス中で使用さ
れるVSTの限界真空度10-4Torrを大気中使用のVST
の限界真空度10-3Torrに近付けるように拡大する。
The vacuum switchgear according to the present invention is provided with a contact opening distance adjusting device that can reduce the contact opening distance less than the full contact distance of the VST rating, so that the 20 kV withstand voltage that has been widely spread in the conventional manner in the reduced contact opening state. The vacuum quality can be determined by applying the test method, and the above vacuum quality can be determined by limiting the lower limit of the withstand voltage of the high vacuum VST and the upper limit of the withstand voltage of the VST filled with the insulating medium at the reduction opening of 1 mm. Make the judgment easier and more reliable. Further, the insulating medium is a mixed gas of a gas having a smaller molecular weight than that of SF 6 gas and SF 6 gas, and the partial pressure of SF 6 gas in the mixed gas is limited to atmospheric pressure or less, whereby the discharge start voltage and VST
The dielectric strength on the low pressure side from the Paschen minimum point in the relationship curve with the internal pressure is improved, and the limit vacuum degree of VST used in SF 6 gas is 10 -4 Torr VST when used in air
Enlarge to reach the critical vacuum of 10 -3 Torr.

【0011】[0011]

【実施例】【Example】

実施例1.以下、この発明の実施例1を図について説明
する。図1は開極距離調整装置を備えた真空開閉装置を
示し、(a) は上面図、(b) は側面図である。図2は開極
距離調整装置の斜視図である。図3(a) は実施例1の電
極Aを示す縦断面図である。図4は放電開始電圧と開極
距離との関係図である。図中の同一符号は従来例の図8
〜図10と同等である。まず図1は定格電圧12kVの遮断器
用の真空開閉装置であり、密封容器1内に絶縁媒体であ
るSF6 ガスが従来例図8の圧力PT よりも低く、大気圧
以上の圧力PS で密封されており、定格の全開極距離L
Sは8mmであるが、図1では点検試験のため縮小開極距
離L=LV〜LG に調整完了状態を示してある。操作機
構10には開極距離を全開極位置から閉極位置まで縮小自
在の開極距離調整装置20が設けられている。
Example 1. Embodiment 1 of the present invention will be described below with reference to the drawings. 1A and 1B show a vacuum switchgear provided with a contact opening distance adjusting device. FIG. 1A is a top view and FIG. 1B is a side view. FIG. 2 is a perspective view of the contact opening distance adjusting device. FIG. 3A is a vertical sectional view showing the electrode A of the first embodiment. FIG. 4 is a relationship diagram between the discharge starting voltage and the opening distance. The same reference numerals in FIG.
~ Equivalent to FIG. First, FIG. 1 is a vacuum switchgear breaker of the rated voltage 12 kV, low SF 6 gas as an insulating medium in a sealed container 1 than the pressure P T in the prior art Figure 8, at above atmospheric pressure in the pressure P S It is hermetically sealed and has a rated full contact distance L
S is a 8 mm, are shown adjustment completion state to the reduced opening distance L = L V ~L G for inspection test in FIG. The operation mechanism 10 is provided with an opening distance adjusting device 20 that can reduce the opening distance from the fully opened position to the closed position.

【0012】図1、図2において21は中央部に穴を有し
フレーム8に当接する当板、22は中央部にめねじを有し
操作機構10の一部である駆動レバー12に固定されている
ピン11を引掛けるためのフック、23は当板21の穴を貫通
しフック22のめねじと係合するボルトである。このボル
ト23を右回転させるとフック22が当板21に近付くように
引寄せられ、従ってピン11、駆動レバー12および駆動シ
ャフト13が駆動シャフト13の中心を回転中心として回動
することによって、図8で記述したと同様にして主シャ
フト16に回動力が伝達されて、可動電極3bを閉極方向に
移動させることができる。逆にボルト23を左回転させる
と図8と同様に開放ばね力がピン11に作用しているので
可動電極3bは開極方向に移動する。この開極距離調整装
置20は開極距離を精密に微調整できるもので、予じめボ
ルト23の回転数Nと開極距離Lの変化との関係を較正し
ておき、テスターで可動電極3bと固定電極3aとの導通を
みながら導通がなくなったところを開極距離L=0mmと
して、開極距離Lが後述する縮小開極距離LV とLG
中間値になるようにボルト23を左回転させて調整が完了
する。
In FIGS. 1 and 2, reference numeral 21 is a contact plate having a hole in the central portion and abutting against the frame 8, 22 is a female screw in the central portion and is fixed to a drive lever 12 which is a part of the operating mechanism 10. A hook for hooking the pin 11 is a bolt, and 23 is a bolt which penetrates the hole of the contact plate 21 and engages with the female thread of the hook 22. When the bolt 23 is rotated to the right, the hook 22 is attracted so as to approach the contact plate 21, so that the pin 11, the drive lever 12, and the drive shaft 13 rotate about the center of the drive shaft 13 as a center of rotation. In the same manner as described in 8, the turning force is transmitted to the main shaft 16 and the movable electrode 3b can be moved in the closing direction. Conversely, when the bolt 23 is rotated counterclockwise, the opening spring force acts on the pin 11 as in FIG. 8, so that the movable electrode 3b moves in the opening direction. This opening distance adjusting device 20 is capable of finely adjusting the opening distance. The relationship between the rotation speed N of the bolt 23 and the change in the opening distance L is calibrated, and the movable electrode 3b is moved by a tester. While checking the conduction between the fixed electrode 3a and the fixed electrode 3a, the place where there is no conduction is set as the opening distance L = 0 mm, and the bolt 23 is set so that the opening distance L becomes an intermediate value between the reduced opening distances L V and L G described later. Rotate counterclockwise to complete the adjustment.

【0013】この開極距離調整装置20は操作機構10から
脱着可能で、真空良否の判定試験のほか、真空不良と判
定した場合はそのVSTの圧力が図9のパッシェン曲線
上の低気圧側か、高気圧側であるかの判別に用いたり、
電極消耗量の測定、あるいは三相間の電極開閉不揃など
の各種の点検試験に用いるので、通常の真空開閉装置の
使用状態では取外しておくことができる。図2に示す補
助ばね24をボルト23に挿入して装着すれば、補助ばね24
のばね力でフック22を当板21から遠ざけて、通常使用状
態でピン11、駆動レバー12の回動動作を妨げることはな
く、点検試験の都度、開極距離調整装置20を着脱する必
要はない。尚、開極距離調整装置による開極位置の変更
可能範囲は、必要に応じて、定格の全開極距離よりも大
きくすることができる。
This opening distance adjusting device 20 can be attached to and detached from the operating mechanism 10, and in addition to the vacuum quality judgment test, when the vacuum is judged to be poor, the VST pressure is on the low pressure side on the Paschen curve in FIG. , Used to determine whether it is on the high pressure side,
Since it is used for various kinds of inspection tests such as measuring the amount of electrode wear or electrode misalignment between three phases, it can be removed under normal use of the vacuum switchgear. If the auxiliary spring 24 shown in FIG.
It is not necessary to detach the opening distance adjusting device 20 each time an inspection test is performed without moving the hook 22 away from the contact plate 21 by the spring force and hindering the rotation operation of the pin 11 and the drive lever 12 in the normal use state. Absent. The changeable range of the contact opening position by the contact opening distance adjusting device can be made larger than the rated full contact distance if necessary.

【0014】開極距離Lを、LV とLG の中間の距離L
V <L≦LG の状態に調整した真空開閉装置を、図10と
同様に従来と同じ耐電圧試験器30に接続し、従来と同じ
く試験電圧V1 =20kVを印加する。VST3が正常で高
真空であれば極間放電は起らず、従って電流計32には高
圧トランス31の僅かな励磁電流のみが流れる。若しも、
VST3が不良でSF6 ガスが充満している状態であれ
ば、極間放電が起って電流計32には高圧トランス31の短
絡電流が流れる。短絡電流は励磁電流に比べて桁違いに
大きいので、VST3の極間放電の有無が明確に判別で
きる。若しも、真空不良と判定した場合は、開極距離を
変更して再度耐電圧試験を行って、仮に距離を長くした
ときに極間放電が無くなれば当該VSTの圧力は図9の
パッシェン曲線の高気圧側、逆に距離を短くしたときに
極間放電が無くなればパッシェン曲線の低気圧側の真空
不良状態にあることが判別できる。
The opening distance L is defined as a distance L between L V and L G.
The vacuum switchgear adjusted to V <L ≦ L G is connected to the same withstand voltage tester 30 as in the conventional case as in FIG. 10, and the test voltage V 1 = 20 kV is applied as in the conventional case. If VST3 is normal and the vacuum is high, no inter-electrode discharge occurs, and therefore only a small exciting current of the high voltage transformer 31 flows through the ammeter 32. Even if
If state VST3 is defective in SF 6 gas is filled, the short-circuit current of the high voltage transformer 31 flows through the ammeter 32 standing is interpole discharge. Since the short-circuit current is orders of magnitude larger than the exciting current, it is possible to clearly discriminate the presence / absence of inter-electrode discharge of VST3. If it is determined that the vacuum is defective, the open-circuit distance is changed and the withstand voltage test is performed again. If the inter-electrode discharge disappears when the distance is increased, the VST pressure is the Paschen curve shown in FIG. If there is no inter-electrode discharge when the distance is shortened on the high pressure side, on the contrary, it is possible to determine that the vacuum state is on the low pressure side of the Paschen curve.

【0015】実施例1の電極3a,3b は遮断器用のもので
従来例と同等の電極Aは材料Aで構成され、その構造は
図3(a) に示される。電極Aの放電開始電圧特性を示す
図4において、試験電圧V1 を印加したとき、正常の高
真空VSTは開極距離LV で放電が起り、大気圧以上の
圧力PS のSF6 ガスが充満したVSTは開極距離LG
放電が起ることを表わしている。LV は約1mm、LG
約2.5mm であって、その差は僅かである。真空良否の判
定試験は、LG とLV の差が大きい程、試験作業が容易
で良否判定の信頼性が高くなる。LG とLV との中間の
精密調整は図1、図2の開極距離調整装置20によって確
実にできるようになった。
The electrodes 3a and 3b of the first embodiment are for a circuit breaker, and the electrode A equivalent to the conventional example is made of the material A, and its structure is shown in FIG. 3 (a). In FIG. 4 showing the discharge starting voltage characteristic of the electrode A, when the test voltage V 1 is applied, the normal high vacuum VST is discharged at the opening distance L V , and SF 6 gas having a pressure P S above atmospheric pressure is generated. The filled VST represents that discharge occurs at the opening distance L G. L V is about 1 mm and L G is about 2.5 mm, and the difference is slight. In the vacuum quality judgment test, the greater the difference between L G and L V , the easier the test work and the higher the reliability of the quality judgment. Precise adjustment in the middle between L G and L V can be reliably performed by the opening distance adjusting device 20 shown in FIGS.

【0016】実施例2.図5は定格電圧12kVの真空リン
グメインユニットの側面図であり、同一符号は図1と同
様である。真空リングメインユニットは配電網に設置さ
れる区分開閉装置であって、装置の各種の点検性を高め
るため試験用端子6a,6b を密封容器1の大気7側に設け
て、切替断路器5a,5b によりVST電極3a,3b をそれぞ
れ直接外部に引出せる構造になっている。また高い耐電
圧性能を要求されるので、図3(b)に示すように実施例
1の遮断器用電極Aよりも耐電圧の高い材料Bで構成さ
れている。試験用開極距離LV 〜LG は開極距離調整装
置20により、実施例1よりも短かい1〜2mmに調整され
ている。図4は大気圧以上の圧力PS のSF6 ガスを密封
する容器内に電極BのVSTを収納した真空リングメイ
ンユニットの放電開始電圧Vと開極距離Lの関係図で、
実施例1の電極Aとの比較を示す。試験電圧V1 =20kV
で放電するSF6 ガス中の開極距離LG は、高耐電圧電極
の方が短くなって、LG とLV との距離差は1mmに減少
する。実際の真空良否判定はLG とLV の中間距離で行
うが、このように微細な距離調整でも開極距離調整装置
20によって可能である。また、LG とLV との距離差を
大きくするには試験電圧を高めればよいが、真空リング
メインユニットでは試験用端子6a,6b が大気7に露出し
ており、その課電制限電圧V2 は実施例1と同様であり
経済的に安価に構成されている。
Example 2. FIG. 5 is a side view of a vacuum ring main unit having a rated voltage of 12 kV, and the same reference numerals are the same as those in FIG. The vacuum ring main unit is a switchgear installed in the power distribution network. In order to improve various checkability of the device, the test terminals 6a, 6b are provided on the atmosphere 7 side of the sealed container 1, and the switching disconnector 5a, 5b has a structure in which the VST electrodes 3a and 3b can be directly drawn to the outside. Further, since high withstand voltage performance is required, as shown in FIG. 3B, it is made of a material B having a higher withstand voltage than the breaker electrode A of the first embodiment. The test opening distance L V ~L G is opening distance adjusting device 20 are adjusted to shorter 1~2mm than Example 1. FIG. 4 is a relationship diagram between the discharge start voltage V and the opening distance L of the vacuum ring main unit in which the VST of the electrode B is housed in a container that seals SF 6 gas at a pressure P S above atmospheric pressure.
A comparison with the electrode A of Example 1 is shown. Test voltage V 1 = 20kV
The open electrode distance L G in the SF 6 gas discharged at is shorter in the high withstand voltage electrode, and the distance difference between L G and L V is reduced to 1 mm. Actual vacuum quality judgment is performed at the intermediate distance between L G and L V , but even with such fine distance adjustment, the opening distance adjusting device
20 is possible. Further, the test voltage may be increased to increase the distance difference between L G and L V , but in the vacuum ring main unit, the test terminals 6a and 6b are exposed to the atmosphere 7, and the voltage limit voltage V 2 is the same as the first embodiment and is economically inexpensive.

【0017】実施例3.図3(c) はVSTの電極Cの構
造を示す断面図である。電極A,Bがそれぞれ材料A,
Bで一体に構成されているのに対して、実施例3におけ
る電極Cは電極の中央部を材料Cで電極周辺部を材料A
で構成したものである。材料的にみると耐電圧性能は材
料Bが最も高く、材料Cは最も低い。以上のように複合
構成した電極Cの極間放電開始電圧特性は、図6に示す
ように、大気圧以上の圧力PS のSF6 ガスがVST内に
充満した場合の開極距離の短い領域で放電開始電圧が特
に低くなる。SF6 ガスに対する開極距離の長い領域や、
VST内に大気圧空気が充満した場合およびVSTが高
真空の場合においては電極Aの放電開始電圧特性と殆ん
ど変わらない。電極Cのように、電極周辺部を高耐電圧
材料で電極中央部を低耐電圧材料で複合構成した電極を
有する真空開閉装置によれば、真空の良否判定のための
試験用開極距離LV は約1mm、LG は約5mmとなり、図
6の放電開始電圧特性からわかるように、電極周辺部と
電極中央部を同じ材料で構成した電極AよりもLV とL
G との距離差を大幅に拡大できる効果がある。従って、
真空良否判定の試験が極めて簡便となり、良否判定の信
頼性を向上することができる。尚、この複合構成の電極
Cを適用すれば、従来例のガス圧力PT と同じ値まで高
めることも可能である。
Embodiment 3. FIG. 3C is a sectional view showing the structure of the electrode C of the VST. Electrodes A and B are materials A and
While the electrode C in Example 3 is integrally formed with B, the electrode C in the third embodiment has the material C at the central portion of the electrode and the material A at the electrode peripheral portion.
It is composed of. In terms of materials, withstand voltage performance is highest in material B and lowest in material C. As shown in FIG. 6, the inter-electrode discharge starting voltage characteristic of the electrode C having the composite structure as described above is, as shown in FIG. 6, a region in which the opening distance is short when SF 6 gas having a pressure P S equal to or higher than the atmospheric pressure is filled in the VST. Therefore, the discharge starting voltage becomes particularly low. A region with a long opening distance for SF 6 gas,
When the atmospheric pressure air is filled in the VST and when the VST is in a high vacuum, there is almost no difference from the discharge start voltage characteristic of the electrode A. According to the vacuum switchgear having an electrode such as the electrode C in which the electrode peripheral portion is made of a high withstand voltage material and the electrode central portion is made of a low withstand voltage material, a test contact opening distance L for determining the quality of the vacuum is obtained. V is about 1 mm and L G is about 5 mm. As can be seen from the discharge firing voltage characteristics in Fig. 6, L V and L are lower than those of electrode A in which the electrode periphery and the electrode center are made of the same material.
This has the effect of greatly expanding the distance difference from G. Therefore,
The vacuum quality determination test becomes extremely simple, and the reliability of quality determination can be improved. If the electrode C having this composite structure is applied, it is possible to increase the gas pressure to the same value as the conventional gas pressure P T.

【0018】実施例4.図7の放電開始電圧特性は、SF
6 ガスに代えて、SF6 ガスと乾燥空気との混合ガス中で
VSTを使用した実施例を示す。SF6 ガス単独の場合と
比べて、試験用開極距離LG が大きくなってLV との距
離差を拡大できる効果がある。また図9のパッシェン・
ミニマム点より低気圧側の絶縁耐力を高めることになっ
てVSTの限界真空度の領域を拡大できる。従って、仮
にVSTが極く微量の真空洩れを生じた場合の真空耐用
寿命を長くする効果がある。この効果を更に大きくする
ため、SF6 ガスの分圧は従来例の最高圧力2気圧の1/
2にすれば真空耐用寿命を従来例の2倍にできる。極く
微量の真空洩れを生じたときの、VST内部へのガス洩
れ速度はVST外部の圧力に比例するからである。
Example 4. The discharge start voltage characteristic of Fig. 7 is SF
An example is shown in which VST is used in a mixed gas of SF 6 gas and dry air instead of 6 gas. Compared with the case of using SF 6 gas alone, the test opening distance L G is increased, and the distance difference from L V can be enlarged. In addition, Paschen of Figure 9
By increasing the dielectric strength on the low pressure side from the minimum point, the range of the limit vacuum degree of VST can be expanded. Therefore, if VST causes a very small amount of vacuum leakage, there is an effect of extending the vacuum service life. In order to further increase this effect, the partial pressure of SF 6 gas is 1 / the maximum pressure of 2 atm of the conventional example.
If it is set to 2, the vacuum service life can be doubled as compared with the conventional example. This is because the gas leak rate into the VST when a very small amount of vacuum leak occurs is proportional to the pressure outside the VST.

【0019】実施例5.実施例4のSF6 ガスに混入する
第2ガスは乾燥空気に限らず、分子量MがSF6 の146 よ
りも小さいガスであればよく、パッシェン・ミニマム点
よりも低気圧側の絶縁耐力をSF6 ガスよりも高めること
ができる。 たとえば、N2(分子量M=28、以下同様),
CO2(44),あるいはCF4(88) などの炭化フッソ系ガス、あ
るいはHe(4),Ne( 20),A(40),Kr(83.8),Xe(131.3) など
の希ガスを用いてSF6 ガスとの混合ガスとし、全圧力が
大気圧よりも高く、パッシェン・ミニマム点の右側の高
気圧側における絶縁耐力が大気圧空気よりも高い範囲に
おいて各成分の分圧を定めることができる。
Example 5. The second gas mixed in the SF 6 gas of Example 4 is not limited to dry air, and any gas having a molecular weight M smaller than 146 of SF 6 may be used, and the dielectric strength on the low pressure side of the Paschen minimum point may be SF. Can be higher than 6 gas. For example, N 2 (molecular weight M = 28, and so on),
Carbonized fluorine gas such as CO 2 (44) or CF 4 (88) or noble gas such as He (4), Ne (20), A (40), Kr (83.8), Xe (131.3) As a mixed gas with SF 6 gas, the total pressure is higher than atmospheric pressure, and the partial pressure of each component can be determined in the range where the dielectric strength on the high pressure side on the right side of the Paschen minimum point is higher than atmospheric pressure air. ..

【0020】実施例6.以上の実施例では、VST周囲
の絶縁媒体がSF6ガスを含む気体である場合について説
明したが、これらの気体に代えて、たとえば真空式固体
絶縁開閉装置や真空式負荷時タップ切替器におけるシリ
コン油や変圧器油、あるいは超電導用真空開閉器におけ
る液体窒素や液体水素、液体ヘリウムなどの液体絶縁媒
体中でVSTを使用する場合もVSTが真空洩れを起し
た場合は先ず気体として侵入するので、上記の開極距離
調整装置20を備えた真空開閉装置はVSTの真空良否判
定を正確に行うことができるものである。
Example 6. In the above embodiments, the case where the insulating medium around the VST is a gas containing SF 6 gas has been described, but instead of these gases, for example, a silicon in a vacuum solid insulation switchgear or a vacuum load tap changer is used. When VST is used in liquid insulating medium such as oil or transformer oil, or liquid nitrogen, liquid hydrogen, or liquid helium in a vacuum switch for superconductivity, if VST causes a vacuum leak, it first enters as a gas. The vacuum switchgear provided with the above-mentioned opening contact distance adjusting device 20 can accurately determine whether the VST vacuum is good or bad.

【0021】[0021]

【発明の効果】以上のように、この発明によれば絶縁媒
体を密封する容器内に収納されたVSTの真空絶縁耐力
を開極距離1mmで交流電圧20kV以上とし、絶縁媒体がV
ST内に充満したときの絶縁耐力を開極距離1mm以上で
交流電圧20kV未満となる圧力を最高圧力とし、且つ操作
機構に開極距離が全開極位置から閉極位置まで縮小自在
の開極距離調整装置備えたので、従来広く普及している
耐電圧試験法を適用して簡便に真空良否判定できるとと
もに、各種点検試験の作業性の優れた真空開閉装置が得
られる効果がある。
As described above, according to the present invention, the vacuum dielectric strength of the VST housed in the container for sealing the insulating medium is set to an opening voltage of 1 mm and an AC voltage of 20 kV or more.
The dielectric strength when filled in ST is the maximum pressure at which the opening distance is 1 mm or more and the AC voltage is less than 20 kV, and the opening distance of the operating mechanism can be reduced from the fully open position to the closed position. Since the adjusting device is provided, there is an effect that a vacuum switchgear having excellent workability of various inspection tests can be obtained while easily applying a conventional withstanding voltage test method to easily determine whether the vacuum is good or bad.

【0022】また、絶縁媒体をSF6 ガスよりも分子量の
小さいガスとSF6 ガスとの混合ガスにするとともに混合
ガス中のSF6 ガスの分圧を大気圧以下に限定したので、
たとえ極く微量の真空洩れが生じてもVSTの真空耐用
寿命を従来より2倍以上に延長する真空開閉装置が得ら
れる効果がある。
Further, since the insulating medium is a mixed gas of gas having a smaller molecular weight than SF 6 gas and SF 6 gas, and the partial pressure of SF 6 gas in the mixed gas is limited to atmospheric pressure or less,
Even if a very small amount of vacuum leakage occurs, there is an effect that a vacuum switchgear that extends the vacuum service life of VST more than twice as long as the conventional one can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例1を示す真空開閉装置の(a)
は上面図、(b)は側面図である。
FIG. 1 (a) of a vacuum switchgear showing Embodiment 1 of the present invention.
Is a top view and (b) is a side view.

【図2】この発明の実施例1〜実施例6に共通の開極距
離調整装置の斜視図である。
FIG. 2 is a perspective view of a contact opening distance adjusting device common to Embodiments 1 to 6 of the present invention.

【図3】この発明の実施例1〜実施例3の電極の縦断面
図で、(a) は実施例1、(b)は実施例2、(c) は実施例
3を示す。
FIG. 3 is a vertical cross-sectional view of electrodes of Examples 1 to 3 of the present invention, in which (a) shows Example 1, (b) shows Example 2, and (c) shows Example 3.

【図4】この発明の実施例1、実施例2に共通の放電開
始電圧と開極距離の関係図である。
FIG. 4 is a diagram showing a relationship between a discharge starting voltage and an opening distance, which is common to the first and second embodiments of the present invention.

【図5】この発明の実施例2を示す真空開閉装置の側面
図である。
FIG. 5 is a side view of a vacuum switchgear according to a second embodiment of the present invention.

【図6】この発明の実施例3の放電開始電圧と開極距離
の関係図である。
FIG. 6 is a relationship diagram of a discharge starting voltage and an opening distance according to a third embodiment of the present invention.

【図7】この発明の実施例4の放電開始電圧と開極距離
の関係図である。
FIG. 7 is a relationship diagram of a discharge starting voltage and an opening distance according to a fourth embodiment of the present invention.

【図8】従来のVCBの(a) は上面図、(b)は側面図で
ある。
FIG. 8A is a top view and FIG. 8B is a side view of a conventional VCB.

【図9】従来の真空開閉装置の放電開始電圧とVST内
部圧力の関係図である。
FIG. 9 is a relationship diagram between a discharge start voltage and a VST internal pressure of a conventional vacuum switchgear.

【図10】従来の真空良否判定用の耐電圧試験法を示す
試験回路図である。
FIG. 10 is a test circuit diagram showing a conventional withstand voltage test method for vacuum quality judgment.

【符号の説明】[Explanation of symbols]

1 密封容器 2 絶縁媒体 3 真空スイッチ管 LV 開極距離 LG 開極距離 LS 全閉極距離 PS 最高圧力 10 操作機構 20 開極距離調整装置1 Sealed container 2 Insulating medium 3 Vacuum switch tube L V Opening distance L G Opening distance L S Total closing distance P S Maximum pressure 10 Operating mechanism 20 Opening distance adjusting device

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 気体または液体であって圧力および絶縁
耐力が大気圧空気よりも高い絶縁媒体を密封する容器内
に、開極距離1mmで交流電圧20kV以上の真空絶縁耐力を
有する真空スイッチ管を収納し、この真空スイッチ管内
に前記絶縁媒体が充満したとき極間絶縁耐力は開極距離
1mm以上で交流電圧20kV未満である圧力を前記絶縁媒体
の最高圧力とし、且つ開極距離が全開極位置から閉極位
置まで縮小自在の開極距離調整装置を操作機構に備えた
ことを特徴とする真空開閉装置。
1. A vacuum switch tube having a vacuum dielectric strength of an AC voltage of 20 kV or more at an opening distance of 1 mm in a container that seals an insulating medium that is a gas or a liquid and has a higher pressure and dielectric strength than atmospheric pressure air. When the vacuum switch tube is housed and the insulating medium is filled, the interelectrode dielectric strength is the maximum pressure of the insulating medium at the opening distance of 1 mm or more and the AC voltage is less than 20 kV, and the opening distance is at the fully open position. The vacuum switchgear is characterized in that the operating mechanism is provided with an opening distance adjusting device that can be reduced from the closing position to the closing position.
【請求項2】 全圧力および絶縁耐力が大気圧空気より
も高い混合ガスを密封する容器内に真空スイッチ管を収
納し、前記混合ガスをSF6 ガスよりも分子量の小さいガ
スとSF6 ガスで構成するとともに前記SF6 ガスの分圧を
大気圧以下に限定したことを特徴とする真空開閉装置。
Wherein accommodating the vacuum switch tube total pressure and dielectric strength to seal the high gas mixture than air at atmospheric pressure in the container, the mixed gas with a small gas and SF 6 gas molecular weight than SF 6 gas A vacuum switching device characterized in that the partial pressure of the SF 6 gas is limited to atmospheric pressure or less.
JP25375091A 1991-10-01 1991-10-01 Vacuum switchgear Expired - Lifetime JP2639251B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25375091A JP2639251B2 (en) 1991-10-01 1991-10-01 Vacuum switchgear

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25375091A JP2639251B2 (en) 1991-10-01 1991-10-01 Vacuum switchgear

Publications (2)

Publication Number Publication Date
JPH0594742A true JPH0594742A (en) 1993-04-16
JP2639251B2 JP2639251B2 (en) 1997-08-06

Family

ID=17255624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25375091A Expired - Lifetime JP2639251B2 (en) 1991-10-01 1991-10-01 Vacuum switchgear

Country Status (1)

Country Link
JP (1) JP2639251B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7098418B1 (en) 2005-04-28 2006-08-29 Mitsubishi Denki Kabushiki Kaisha Vacuum circuit breaker, vacuum circuit breaker contact slow closing method, and contact erosion measuring method and contact gap length setting method using that slow closing method
JP2012159424A (en) * 2011-02-01 2012-08-23 Chugoku Electric Power Co Inc:The Device and method for testing vacuum circuit breaker
CN103956294A (en) * 2014-04-28 2014-07-30 宁波兴邦电器有限公司 Solid-encapsulation insulation outdoor high-voltage switchgear
CN116679200A (en) * 2023-08-03 2023-09-01 国网山东省电力公司淄博供电公司 Method for detecting action characteristics of high-voltage circuit breaker and terminal

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7098418B1 (en) 2005-04-28 2006-08-29 Mitsubishi Denki Kabushiki Kaisha Vacuum circuit breaker, vacuum circuit breaker contact slow closing method, and contact erosion measuring method and contact gap length setting method using that slow closing method
JP2012159424A (en) * 2011-02-01 2012-08-23 Chugoku Electric Power Co Inc:The Device and method for testing vacuum circuit breaker
CN103956294A (en) * 2014-04-28 2014-07-30 宁波兴邦电器有限公司 Solid-encapsulation insulation outdoor high-voltage switchgear
CN103956294B (en) * 2014-04-28 2017-02-15 宁波兴邦电器有限公司 Solid-encapsulation insulation outdoor high-voltage switchgear
CN116679200A (en) * 2023-08-03 2023-09-01 国网山东省电力公司淄博供电公司 Method for detecting action characteristics of high-voltage circuit breaker and terminal
CN116679200B (en) * 2023-08-03 2023-11-14 国网山东省电力公司淄博供电公司 Method for detecting action characteristics of high-voltage circuit breaker and terminal

Also Published As

Publication number Publication date
JP2639251B2 (en) 1997-08-06

Similar Documents

Publication Publication Date Title
EP0476502B1 (en) Gas insulated electric apparatus
JP4879936B2 (en) Gas filling inspection apparatus and gas leakage inspection method
JPH07111855B2 (en) Tank type circuit breaker
JP2639251B2 (en) Vacuum switchgear
Nishikawa et al. Arc extinction performance of SF 6 gas blast interrupter
KR101371667B1 (en) Method for checking and changing insulating gas of load break switch on live wire state
Yanabu et al. Use of axial magnetic fields to improve high-current vacuum interrupters
Węgierek et al. Test stand for testing and diagnostics of medium voltage vacuum interrupters.
JP2000059935A (en) Gas filling method of gas-insulated electric apparatus, and its foreign-matter inspecting method
Dullni et al. Switching of capacitive currents
JP2885233B2 (en) Vacuum drop detector for vacuum valve type switchgear
Damstra et al. Pressure estimation in vacuum circuit breakers
JP4545362B2 (en) Gas insulated switchgear
JPH08306279A (en) Vacuum degree monitoring device for vacuum circuit-breaker
TWI485736B (en) Vacuum switch and vacuum insulated switchgear
JP3346780B2 (en) Vacuum switch abnormality detection device
EP0977046B1 (en) Method and apparatus for testing the quality of the vacuum in a vacuum switch
JP2004336892A (en) Sealed gas-insulated switchgear
JP3321480B2 (en) Fault location system
GB2203559A (en) Testing of vacuum interrupters
JP7175799B2 (en) VACUUM VALVE PRESSURE MONITORING DEVICE AND PRESSURE MONITORING METHOD
JPH03205716A (en) Vacuum down detecting device for vacuum valve-type switchgear
Damstra et al. Vacuum-state estimation of vacuum circuit breakers
Falkingham The assessment of vacuum insulation condition in time expired (> 20 years old) vacuum interrupters and switches
Beauchemin et al. Hydro-Quebec's concerns related to performances of SF/sub 6/circuit-breakers

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080425

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090425

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100425

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100425

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120425

Year of fee payment: 15

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120425

Year of fee payment: 15