JP4545362B2 - Gas insulated switchgear - Google Patents

Gas insulated switchgear Download PDF

Info

Publication number
JP4545362B2
JP4545362B2 JP2001284258A JP2001284258A JP4545362B2 JP 4545362 B2 JP4545362 B2 JP 4545362B2 JP 2001284258 A JP2001284258 A JP 2001284258A JP 2001284258 A JP2001284258 A JP 2001284258A JP 4545362 B2 JP4545362 B2 JP 4545362B2
Authority
JP
Japan
Prior art keywords
gas
filled
insulated switchgear
container
dry air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001284258A
Other languages
Japanese (ja)
Other versions
JP2003092813A (en
Inventor
伸治 佐藤
健一 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2001284258A priority Critical patent/JP4545362B2/en
Publication of JP2003092813A publication Critical patent/JP2003092813A/en
Application granted granted Critical
Publication of JP4545362B2 publication Critical patent/JP4545362B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は、容器に遮断器、断路器、接地開閉器等の開閉機器が収容され、内部に乾燥空気または窒素ガス等の絶縁ガスが充填されたガス絶縁開閉装置に関するものである。
【0002】
【従来の技術】
電気機器の絶縁媒体として広く用いられているSFガスが、1997年の地球温暖化防止京都会議において、排出抑制ガスに指定され、今後はガス絶縁開閉装置にはSFガスの使用が制限され、SFガスを全く使用しないガス絶縁開閉装置が開発され実用化されてきている。例えば、24kV級のガス絶縁開閉装置としては、文献「SFガスフリーの新型24kVスイッチギア」(電気評論2001年 3月号掲載)に示されたものがある。
【0003】
そのガス絶縁開閉装置の全体構成を図3、遮断部の構成を図4に示す。図において、1a、1b、1cは真空スイッチ、2a、2b、2cは線路側断路器、3a、3b、3cは真空スイッチ1a、1b、1cを開閉する絶縁操作ロッド、4a、4b、4cは接続導体、5a、5b、5cは接続ブッシング、6は真空スイッチ1a、1b、1c、断路器2a、2b、2c、操作ロッド3a、3b、3cが収容された遮断部容器、7は真空スイッチ1a、1b、1cを開閉操作する遮断部操作機構、10は遮断部容器6に真空スイッチ1a、1b、1c、線路側断路器2a、2b、2c、操作ロッド3a、3b、3c等が収容された部分と、接続ブッシング5a、5b、5c、遮断部操作機構7、線路側ブッシング8a、8b、8cとで構成された遮断部である。9a、9b、9cは線路側ブッシング8a、8b、8cと線路間を接続する絶縁導体である。
【0004】
22a、22b、22cは母線側断路器、23a、23b、23cは母線と接続する母線側ブッシング、26は母線側断路器22a、22b、22cが収容された母線側断路器容器、27は母線側断路器22a、22b、22cを操作する母線側断路器操作機構である。20は母線側断路器容器26に収容された母線側断路器22a、22b、22cと母線側断路器操作機構27とで構成された母線側断路器部である。29は遮断部10、母線側断路器部20を収容した筐体である。30は筐体29に遮断部10及び母線側断路部20及びその他の機器が収容されたガス絶縁開閉装置である。
【0005】
遮断部10の内部構造は、真空スイッチ1a、1b、1cの軸方向から見た構成図の図4に示すように、真空スイッチ1a、1cを両側に配置し、中央相の真空スイッチ1bは上方にずらせて配置し、各相の相間には絶縁バリア11a、11b、11cを配置した構成である。ガス絶縁開閉装置30は上記の図示された部分に隠れた位置に接地開閉器が配置されている。
【0006】
このように構成されたガス絶縁開閉装置30は、遮断部10が遮断器部容器6、母線側断路器部20が母線側断路器部容器26にそれぞれ収容されて、それぞれの容器6及び26に乾燥空気または窒素と酸素の混合比が乾燥空気と同等のほぼ8:2の絶縁ガスを大気圧よりも少し高い圧力で充填した構成であり、各相充電部分の対地間及び相間に絶縁バリアを配置することにより、地球温暖化係数の大きなSFガスを使用しないで、SFガスを使用した場合と寸法的に遜色がないガス絶縁開閉装置として実現したものである。
【0007】
このように構成されたガス絶縁開閉装置30は、真空スイッチ1a、1b、1c、線路側断路器2a、2b、2c等の開閉機器が遮断器部容器6に収容され、母線側も同様に母線側断路器22a、22b、22cが母線側断路器部容器26に収容されて絶縁ガスが充填された構成であり、それぞれの容器6または26に漏れがあると絶縁性能が維持できなくなるので、容器の製作過程においてはガス漏れが生じないように厳密な管理のもとに製作され、開閉機器が組み込まれた状態においては、内部に漏れ検査のためのヘリウムガスを充填し、容器の周囲を検査容器に入れて真空引き等によってヘリウムガスの充填圧力よりも低い状態を確保して所定の時間保持し、検査容器中のヘリウムガスの有無及び濃度をヘリウムガス検出器により検知して漏れ検査を行っている。
【0008】
漏れ検査のために充填したヘリウムガスは、容器内に残留した場合の耐電圧性能への影響について把握できていないために、漏れ検査後に開閉機器が収容された容器6または26内を真空引きしてヘリウムガスを抜き取り、乾燥空気または窒素と酸素の混合比が乾燥空気と同等のほぼ8:2の絶縁ガスを所定の圧力で充填している。
【0009】
【発明が解決しようとする課題】
上記従来の空気絶縁式のガス絶縁開閉装置では、開閉機器が収容された容器内にヘリウムガスを充填し、開閉機器が収容された容器6または26の周囲を減圧状態として漏れ検査を行い、漏れ検査後にヘリウムガスが充填された容器内を真空引きしてヘリウムガスを抜き取り、乾燥空気または窒素と酸素の混合比が乾燥空気と同等のほぼ8:2の絶縁ガスを所定の圧力に充填した構成であり、漏れ検査後に容器6または26の真空引き作業、絶縁ガスの充填作業があり、組立作業時間が長く、製作コストが高くなるという問題点があった。
【0010】
この発明は、開閉機器が収容された容器内の漏れ検査のために充填したヘリウムガスの耐電圧性能に対する影響を明確にし、充填したヘリウムガスは容器内に残留させた状態で、所定の圧力の乾燥空気または窒素と酸素の混合比が乾燥空気と同等のほぼ8:2の絶縁ガスを加えて所定の圧力に充填したガス絶縁開閉装置を提供することを目的とする。
【0011】
【課題を解決するための手段】
この発明の請求項1に係るガス絶縁開閉装置は、容器に開閉機器が収容され、上記容器内部に絶縁ガスが充填されて使用されるガス絶縁開閉装置の絶縁ガスは、容器の漏れ検査時に充填されたヘリウムガスに加えて、乾燥空気または窒素と酸素の混合比が乾燥空気と同等のほぼ8:2の絶縁ガスを大気圧よりも高いガス圧力で充填したものである。
【0012】
この発明の請求項2に係るガス絶縁開閉装置は、請求項1の構成の容器の漏れ検査時に充填するヘリウムガスを、乾燥空気または窒素と酸素の混合比が乾燥空気と同等のほぼ8:2の絶縁ガスが充填された状態における分圧比が3〜15%となる量を充填したものである。
【0013】
この発明の請求項3に係るガス絶縁開閉装置は、請求項1の構成の容器の漏れ検査時に充填するヘリウムガスを、乾燥空気または窒素と酸素の混合比が乾燥空気と同等のほぼ8:2の絶縁ガスが充填された状態における分圧比が3〜7%となる量を充填したものである。
【0014】
【発明の実施の形態】
実施の形態1.
実施の形態1は、使用制限されている地球温暖化ガスのSFガスを使用しないガス絶縁開閉装置の構成を変えることなく、漏れ検査に必要な量のヘリウムガスを残留させて、乾燥空気または窒素と酸素の混合比が乾燥空気と同等のほぼ8:2の絶縁ガスを充填した状態で使用できるようにしたものである。
【0015】
漏れ検査後に、漏れ検査のために充填したヘリウムガスを抜き取ることなく所定の圧力の乾燥空気または窒素と酸素の混合ガスを追加する状態で充填することができれば組立時間が短縮できることに着目して次の実験を実施した。
窒素と酸素の混合比が乾燥空気と同等のほぼ8:2の絶縁ガスに、漏れ検査に必要なヘリウムガスの混合比を変えて破壊電圧を求めた結果を図1、図2に示す。図1は先端曲率半径25mmの棒電極対平板電極の電極間距離を30mm、ガス圧力を0.25MPaとし、ヘリウムガスの混合比が0のときの雷インパルスの破壊電圧を1.0としてヘリウムガスの混合比と破壊電圧の関係を示すものである。図2は先端曲率半径10mmの棒電極対平板電極の電極間距離を60mmとし、電極の中間に厚さ10mmの絶縁バリアを棒電極から15mm、平板電極から35mmの間隔に配置し、ガス圧力を0.20MPaとし、ヘリウムガスの混合比が0のときの雷インパルスの破壊電圧を1.0としてヘリウムガスの混合比と破壊電圧を関係を示すものである。
【0016】
この結果、図1ではヘリウムガス分圧比が45%まではヘリウムガスを含まない場合よりも破壊電圧が高く、分圧比5%において最大値を示し、1.15倍となっている。図2では、分圧比が15%以下ではヘリウムガスを含まない場合よりも破壊電圧が高くなっており、分圧比3〜7%の範囲では、ヘリウムガスを含まない場合の1.05倍となっている。
【0017】
上記の結果から漏れ検査のために充填するヘリウムガスをガス絶縁開閉装置の絶縁ガスに対する分圧比が15%以下となる量のヘリウムガスを充填して漏れ検査を実施し、漏れ検査後に所定の圧力まで乾燥空気または窒素と酸素の混合比が乾燥空気と同等のほぼ8:2の絶縁ガスを充填することにより、ヘリウムガスを含まない場合と同等の絶縁耐力が確保されたガス絶縁開閉装置となる。
【0018】
また、漏れ検査のために充填するヘリウムガスをガス絶縁開閉装置の絶縁ガスに対して分圧比が3〜7%の範囲の量を充填して漏れ検査を実施し、同様に漏れ検査後に所定の圧力まで乾燥空気または窒素と酸素の混合比が乾燥空気と同等のほぼ8:2の絶縁ガスを充填することにより、ヘリウムガスをを含まない場合よりも絶縁耐力が1.05倍と高くなり、絶縁信頼性の高いガス絶縁開閉装置となる。
【0019】
ガス絶縁開閉装置の容器6または26に開閉機器を組み込んだ後に実施する漏れ検査は、開閉機器が収容された容器内に漏れ検査のために必要な量のヘリウムガスを充填し、容器の周囲がヘリウムガスの充填圧力よりも低い圧力となるように真空容器に入れて真空引きし、所定の時間真空状態を保持し、真空容器内のヘリウムガスの有無及びヘリウムガス濃度を検知する方法にて漏れ検査を行う。漏れ検査後に開閉機器が収容された容器6または26の内部にヘリウムガスを残留させたまま乾燥空気または窒素と酸素の混合比が乾燥空気と同等のほぼ8:2の絶縁ガスを所定の圧力で充填して組み立てられる。
【0020】
漏れ検査は、例えば図3に示すガス充填検査装置を準備し、この装置によって行うことで漏れ検査、絶縁ガスの充填作業を効率的に行うことができる。図3において、31は真空容器、32はヘリウムガス検出装置、33はガス絶縁開閉装置10または20に設けられたバルブ、34は真空容器31壁を貫通する配管に設けられたバルブ、35は真空容器31に設けられたバルブ、36は真空ポンプに接続された配管に設けられたバルブ、37はヘリウムガスボンベに接続されたバルブ、38は乾燥空気タンクまたは窒素、酸素の混合比が乾燥空気と同等のほぼ8:2に混合された絶縁ガスのタンクに接続されたバルブ、39は真空容器31に設けられた真空容器31内を大気圧に戻すためのバルブである。
【0021】
図3に示すガス充填検査装置による漏れ検査およびガス充填作業は次の手順で行う。
(a)組み立てられたガス絶縁開閉装置10または20を真空容器31内に収容し、バルブ33とバルブ34を接続し、バルブ33を開状態として真空容器31の蓋を取り付けて封止する。
(b)バルブ34、35を開状態とし、バルブ37、38を閉状態とし、真空ポンプを運転してバルブ36を開状態にして、ガス絶縁開閉装置10または20の内部および真空容器31の内部を真空引きする。
(c)所定の真空度に到達後に、バルブ34、35、36を閉状態とし、バルブ38の閉状態を維持して、バルブ37を開状態とし、バルブ34を開状態にしてヘリウムガスを所定の圧力に充填した後にバルブ34、37を閉状態にする。
(所定の圧力=ガス絶縁開閉装置の全圧力の3〜7%または3〜15%)
(d)ヘリウムガスが充填された状態を所定の時間維持して、ヘリウムガス検査装置32により、真空容器31内のヘリウムガスの有無およびヘリウムガス濃度を検知する。
(e)(d)においてヘリウムガス検出値が限界値以下のときに「漏れなし」と判定し、以下の作業を行う。
(f)バルブ33、34は開状態、バルブ35、36、37は閉状態とし、バルブ39を開状態にして真空容器31内の真空状態を大気圧状態にする。
(g)バルブ35の閉状態を確認し、バルブ38を開状態にし、バルブ34を開状態にして乾燥空気または窒素、酸素の混合比が乾燥空気と同等となるほぼ8:2の絶縁ガスを所定の圧力に充填し、バルブ34を閉状態にする。
(h)真空容器31の蓋を取り外し、バルブ33を閉状態にして、ガス絶縁開閉装置を取り出すことにより、漏れ検査およびガス充填作業が完了する。
【0022】
以上のように漏れ検査のために充填したヘリウムガスは容器内に残留させて乾燥空気または窒素と酸素の混合比が乾燥空気と同等となるほぼ8:2の絶縁ガスを所定の圧力に充填したことにより、従来のように漏れ検査後の真空引き、絶縁ガスの充填作業を行うことがなくなり、組立作業時間が短縮できる。
【0023】
【発明の効果】
この発明の請求項1に係るガス絶縁開閉装置は、容器の漏れ検査時に充填されたヘリウムガスに、乾燥空気または窒素と酸素の混合比が乾燥空気と同等のほぼ8:2の絶縁ガスを大気圧よりも高いガス圧力で充填したので、漏れ検査後の真空引き作業、絶縁ガスの充填作業がなくなり、組立作業時間が短縮できる。
【0024】
この発明の請求項2に係るガス絶縁開閉装置は、請求項1の構成の容器の漏れ検査時に充填するヘリウムガスを、乾燥空気または窒素と酸素の混合比が乾燥空気と同等のほぼ8:2の絶縁ガスが充填された状態における分圧比が3〜15%となる量としたので、漏れ検査後の真空引き作業、絶縁ガスの充填作業がなくなり、耐電圧性能の確保された構成となる。
【0025】
この発明の請求項3に係るガス絶縁開閉装置は、請求項1の構成の容器の漏れ検査時に充填するヘリウムガスを、乾燥空気または窒素と酸素の混合比が乾燥空気と同等のほぼ8:2の絶縁ガスが充填された状態における分圧比が3〜7%となる量としたので、ヘリウムガスを含まない場合よりも耐電圧特性が向上した構成となる。
【図面の簡単な説明】
【図1】 窒素と酸素を混合した絶縁ガスにヘリウムガスを加えた絶縁ガスの破壊電圧特性図である。
【図2】 窒素と酸素を混合した絶縁ガスにヘリウムガスを加えた絶縁ガスの電極間に絶縁バリアを配置した場合の破壊電圧特性図である。
【図3】 ガス充填漏れ検査装置の概念図である。
【図4】 従来の乾燥空気を絶縁媒体とした24kV級ガス絶縁開閉装置の構成図である。
【図5】 図4の遮断部の詳細構成図である。
【符号の説明】
31 真空容器、32 ヘリウムガス検出装置、33〜39 バルブ。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a gas-insulated switchgear in which switchgear such as a circuit breaker, a disconnect switch, and a ground switch is housed in a container and filled with an insulating gas such as dry air or nitrogen gas.
[0002]
[Prior art]
SF 6 gas, which is widely used as an insulating medium for electrical equipment, was designated as an emission suppression gas at the Kyoto Conference on Global Warming Prevention in 1997. In the future, the use of SF 6 gas will be restricted for gas insulated switchgear. Gas-insulated switchgear that does not use any SF 6 gas has been developed and put into practical use. For example, as a 24 kV class gas insulated switchgear, there is one shown in the document “SF 6 gas-free new type 24 kV switchgear” (published in the March 2001 issue of Electrical Review).
[0003]
FIG. 3 shows the overall configuration of the gas-insulated switchgear and FIG. 4 shows the configuration of the blocking portion. In the figure, 1a, 1b and 1c are vacuum switches, 2a, 2b and 2c are line-side disconnectors, 3a, 3b and 3c are insulating operation rods for opening and closing the vacuum switches 1a, 1b and 1c, and 4a, 4b and 4c are connected. Conductors, 5a, 5b and 5c are connection bushings, 6 is a vacuum switch 1a, 1b and 1c, a disconnector 2a, 2b and 2c, a breaker container containing operation rods 3a, 3b and 3c, and 7 is a vacuum switch 1a, 1b, 1c is a shut-off portion operating mechanism for opening and closing 10 and 10 is a portion in which the shut-off portion container 6 accommodates vacuum switches 1a, 1b, 1c, line side disconnectors 2a, 2b, 2c, operating rods 3a, 3b, 3c, etc. And the blocking bushes 5a, 5b, and 5c, the blocking unit operating mechanism 7, and the line side bushings 8a, 8b, and 8c. Reference numerals 9a, 9b, 9c are insulated conductors connecting the line-side bushings 8a, 8b, 8c and the lines.
[0004]
22a, 22b, and 22c are bus-side disconnectors, 23a, 23b, and 23c are bus-side bushings that are connected to the bus, 26 is a bus-side disconnector container that houses the bus-side disconnectors 22a, 22b, and 22c, and 27 is a bus side This is a bus-side disconnector operating mechanism for operating the disconnectors 22a, 22b, and 22c. Reference numeral 20 denotes a bus-side disconnector unit composed of bus-side disconnectors 22a, 22b, 22c and a bus-side disconnector operating mechanism 27 accommodated in the bus-side disconnector container 26. Reference numeral 29 denotes a housing that houses the blocking unit 10 and the busbar side disconnector unit 20. Reference numeral 30 denotes a gas-insulated switchgear in which the blocking unit 10, the busbar side disconnecting unit 20, and other devices are accommodated in a casing 29.
[0005]
As shown in FIG. 4 of the block diagram of the vacuum switch 1a, 1b, 1c as viewed from the axial direction, the internal structure of the shut-off unit 10 is arranged on both sides of the vacuum switch 1a, 1c, and the central phase vacuum switch 1b is In this configuration, the insulating barriers 11a, 11b, and 11c are arranged between the phases. The gas insulated switchgear 30 is provided with a ground switch at a position hidden behind the illustrated portion.
[0006]
In the gas insulated switchgear 30 configured as described above, the breaker 10 is accommodated in the breaker part container 6 and the busbar side disconnector part 20 is accommodated in the busbar side disconnector part container 26, respectively. It is a configuration in which an insulating gas of about 8: 2 with a mixing ratio of dry air or nitrogen and oxygen equivalent to that of dry air is filled at a pressure slightly higher than the atmospheric pressure, and an insulation barrier is provided between the ground of each phase charging part and between the phases. By arranging it, it is realized as a gas insulated switchgear that is not inferior in dimension to the case of using SF 6 gas without using SF 6 gas having a large global warming potential.
[0007]
In the gas insulated switchgear 30 configured in this way, switchgears such as vacuum switches 1a, 1b, 1c, line-side disconnectors 2a, 2b, 2c are accommodated in the circuit breaker section container 6, and the busbar side is similarly busbar The side disconnectors 22a, 22b, and 22c are accommodated in the bus side disconnector section container 26 and filled with insulating gas. If there is a leak in each container 6 or 26, the insulation performance cannot be maintained. Is manufactured under strict control so that no gas leakage occurs, and when the switchgear is built in, helium gas is filled inside for leak inspection and the surroundings of the container are inspected. Place in a container and secure a state lower than the filling pressure of helium gas by evacuation or the like, hold it for a predetermined time, and detect the presence and concentration of helium gas in the cuvette with a helium gas detector It is doing a leakage inspection Te.
[0008]
Since the helium gas filled for the leak inspection cannot be grasped about the influence on the withstand voltage performance when remaining in the container, the inside of the container 6 or 26 in which the switchgear is accommodated is evacuated after the leak inspection. Then, the helium gas is extracted, and the dry gas or an insulating gas having a mixing ratio of nitrogen and oxygen equivalent to that of dry air is approximately 8: 2 at a predetermined pressure.
[0009]
[Problems to be solved by the invention]
In the conventional air-insulated gas-insulated switchgear described above, helium gas is filled in a container in which the switchgear is housed, and a leak test is performed with the surroundings of the container 6 or 26 in which the switchgear is housed in a decompressed state. After inspecting, the inside of the container filled with helium gas is evacuated to extract helium gas, and the dry air or an insulating gas having a mixing ratio of nitrogen and oxygen equivalent to that of dry air is filled to a predetermined pressure. Then, after the leak inspection, there is a work of evacuating the container 6 or 26 and a work of filling with an insulating gas, and there is a problem that the assembling work time is long and the manufacturing cost is high.
[0010]
The present invention clarifies the influence on the withstand voltage performance of the helium gas filled for the leak inspection in the container in which the switchgear is accommodated, and the filled helium gas remains in the container and has a predetermined pressure. An object of the present invention is to provide a gas-insulated switchgear in which an insulating gas having a mixing ratio of approximately 8: 2 that is equal to dry air or a mixing ratio of nitrogen and oxygen is filled to a predetermined pressure.
[0011]
[Means for Solving the Problems]
In the gas insulated switchgear according to claim 1 of the present invention, an opening / closing device is accommodated in a container, and the insulating gas of the gas insulated switchgear used when the container is filled with an insulating gas is filled at the time of leak inspection of the container. In addition to the helium gas thus formed, an insulating gas having a mixing ratio of dry air or nitrogen and oxygen of approximately 8: 2 equivalent to that of dry air is filled at a gas pressure higher than atmospheric pressure.
[0012]
According to a second aspect of the present invention, the gas insulated switchgear according to the second aspect of the present invention uses helium gas to be filled at the time of leak inspection of the container having the configuration of the first aspect. In such a state, the partial pressure ratio in the state filled with the insulating gas is filled in an amount of 3 to 15%.
[0013]
According to a third aspect of the present invention, the gas insulated switchgear according to the third aspect of the present invention uses helium gas to be filled at the time of the leak inspection of the container of the first aspect. In such a state that the partial pressure ratio is 3 to 7% in the state filled with the insulating gas.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1 FIG.
In the first embodiment, the amount of helium gas necessary for leak inspection is left without changing the configuration of the gas-insulated switchgear that does not use SF 6 gas, a global warming gas whose use is restricted, and dry air or It can be used in a state of being filled with an insulating gas having a mixing ratio of nitrogen and oxygen of about 8: 2, which is equivalent to that of dry air.
[0015]
Focusing on the fact that the assembly time can be shortened if it can be filled with dry air or a mixed gas of nitrogen and oxygen at a predetermined pressure without removing the helium gas filled for leak inspection after leak inspection. The experiment was conducted.
FIG. 1 and FIG. 2 show the results of determining the breakdown voltage by changing the mixing ratio of helium gas necessary for leak inspection to an insulating gas of about 8: 2 in which the mixing ratio of nitrogen and oxygen is equivalent to that of dry air. FIG. 1 shows a helium gas gas with a lightning impulse breakdown voltage of 1.0 when the electrode-to-electrode distance between the rod electrode and the plate electrode with a radius of curvature of 25 mm is 30 mm, the gas pressure is 0.25 MPa, and the mixing ratio of helium gas is 0. This shows the relationship between the mixing ratio and the breakdown voltage. FIG. 2 shows that the distance between the electrode of a rod electrode having a radius of curvature of 10 mm and a plate electrode is 60 mm, an insulating barrier having a thickness of 10 mm is arranged in the middle of the electrode at a distance of 15 mm from the rod electrode and 35 mm from the plate electrode. The lightning impulse breakdown voltage when the helium gas mixture ratio is 0 is set to 0.20 MPa, and the relationship between the helium gas mixture ratio and the breakdown voltage is shown as 1.0.
[0016]
As a result, in FIG. 1, when the helium gas partial pressure ratio is up to 45%, the breakdown voltage is higher than when helium gas is not included, and when the partial pressure ratio is 5%, the maximum value is 1.15 times. In FIG. 2, the breakdown voltage is higher when the partial pressure ratio is 15% or less than when helium gas is not included, and in the range of 3 to 7%, the breakdown voltage is 1.05 times that when helium gas is not included. ing.
[0017]
Based on the above results, helium gas to be filled for leak inspection is filled with helium gas in an amount such that the partial pressure ratio of the gas-insulated switchgear to the insulating gas is 15% or less. By filling with an insulating gas having a mixing ratio of approximately 8: 2 that is equal to that of dry air or a dry air or a mixture ratio of nitrogen and oxygen, a gas-insulated switchgear having a dielectric strength equivalent to that without helium gas is obtained. .
[0018]
In addition, helium gas to be filled for leak inspection is filled with a partial pressure ratio in the range of 3 to 7% with respect to the insulating gas of the gas insulated switchgear, and leak inspection is performed. Filling with an insulating gas of approximately 8: 2 with dry air or a mixture ratio of nitrogen and oxygen equal to that of dry air up to a pressure increases the dielectric strength by 1.05 times compared to the case where helium gas is not included, It becomes a gas insulated switchgear with high insulation reliability.
[0019]
The leak inspection performed after the opening / closing device is incorporated in the container 6 or 26 of the gas insulated switchgear is filled with a helium gas in an amount necessary for the leakage inspection in the container in which the opening / closing device is accommodated. Leaked by a method of detecting the presence of helium gas and the concentration of helium gas in the vacuum container by holding the vacuum state for a predetermined period of time and putting it in a vacuum container so that the pressure is lower than the helium gas filling pressure. Perform an inspection. After the leak inspection, the air 6 or 26 in which the switchgear is accommodated is left with helium gas remaining, and dry air or an insulating gas having a nitrogen / oxygen mixing ratio of about 8: 2 equivalent to dry air at a predetermined pressure. Filled and assembled.
[0020]
For example, a gas filling inspection apparatus shown in FIG. 3 is prepared and the leakage inspection is performed by this apparatus, whereby the leakage inspection and the filling operation of the insulating gas can be performed efficiently. In FIG. 3, 31 is a vacuum vessel, 32 is a helium gas detection device, 33 is a valve provided in the gas insulated switchgear 10 or 20, 34 is a valve provided in a pipe penetrating the wall of the vacuum vessel 31, and 35 is a vacuum. A valve provided in the container 31, 36 is a valve provided in a pipe connected to a vacuum pump, 37 is a valve connected to a helium gas cylinder, 38 is a dry air tank or a mixing ratio of nitrogen and oxygen is equal to dry air A valve 39 connected to a tank of insulating gas mixed at approximately 8: 2 is a valve for returning the inside of the vacuum vessel 31 provided in the vacuum vessel 31 to atmospheric pressure.
[0021]
The leak inspection and gas filling operation by the gas filling inspection apparatus shown in FIG.
(A) The assembled gas insulated switchgear 10 or 20 is accommodated in the vacuum vessel 31, the valve 33 and the valve 34 are connected, the valve 33 is opened, and the lid of the vacuum vessel 31 is attached and sealed.
(B) The valves 34 and 35 are opened, the valves 37 and 38 are closed, the vacuum pump is operated and the valve 36 is opened, and the gas insulated switchgear 10 or 20 and the vacuum vessel 31 are opened. Evacuate.
(C) After reaching a predetermined degree of vacuum, the valves 34, 35, and 36 are closed, the valve 38 is maintained closed, the valve 37 is opened, and the valve 34 is opened to supply helium gas. Then, the valves 34 and 37 are closed.
(Predetermined pressure = 3-7% or 3-15% of the total pressure of the gas insulated switchgear)
(D) The state filled with helium gas is maintained for a predetermined time, and the presence or absence of helium gas in the vacuum vessel 31 and the helium gas concentration are detected by the helium gas inspection device 32.
(E) When the detected helium gas value is less than the limit value in (d), it is determined that there is no leakage, and the following operation is performed.
(F) The valves 33 and 34 are opened, the valves 35, 36, and 37 are closed, and the valve 39 is opened to bring the vacuum inside the vacuum vessel 31 to atmospheric pressure.
(G) Confirm the closed state of the valve 35, open the valve 38, open the valve 34, and open the valve 34 with an insulating gas of approximately 8: 2 so that the mixing ratio of dry air or nitrogen and oxygen is equal to that of dry air. A predetermined pressure is filled and the valve 34 is closed.
(H) The lid of the vacuum vessel 31 is removed, the valve 33 is closed, and the gas insulated switchgear is taken out, thereby completing the leak inspection and the gas filling operation.
[0022]
As described above, the helium gas filled for the leak inspection is left in the container and filled with a predetermined pressure of approximately 8: 2 insulating gas in which the mixing ratio of dry air or nitrogen and oxygen is equal to that of dry air. As a result, there is no need to perform evacuation and insulation gas filling after a leak test as in the prior art, and the assembly time can be reduced.
[0023]
【The invention's effect】
In the gas insulated switchgear according to the first aspect of the present invention, the helium gas filled at the time of the container leak inspection is largely filled with an insulating gas having a mixing ratio of 8: 2 that is equal to that of dry air or dry air. Since the filling is performed at a gas pressure higher than the atmospheric pressure, the evacuation work after the leak inspection and the filling work of the insulating gas are eliminated, and the assembling work time can be shortened.
[0024]
According to a second aspect of the present invention, the gas insulated switchgear according to the second aspect of the present invention uses helium gas to be filled at the time of leak inspection of the container having the configuration of the first aspect. Since the partial pressure ratio is 3 to 15% in a state where the insulating gas is filled, there is no need to perform the vacuuming operation after the leakage inspection and the insulating gas filling operation, and the withstand voltage performance is ensured.
[0025]
According to a third aspect of the present invention, the gas insulated switchgear according to the third aspect of the present invention uses helium gas to be filled at the time of the leak inspection of the container of the first aspect. Since the partial pressure ratio in the state filled with the insulating gas is 3 to 7%, the withstand voltage characteristic is improved as compared with the case where helium gas is not included.
[Brief description of the drawings]
FIG. 1 is a breakdown voltage characteristic diagram of an insulating gas obtained by adding helium gas to an insulating gas in which nitrogen and oxygen are mixed.
FIG. 2 is a breakdown voltage characteristic diagram when an insulating barrier is disposed between electrodes of an insulating gas obtained by adding helium gas to an insulating gas in which nitrogen and oxygen are mixed.
FIG. 3 is a conceptual diagram of a gas filling leak inspection apparatus.
FIG. 4 is a configuration diagram of a conventional 24 kV class gas insulated switchgear using dry air as an insulating medium.
FIG. 5 is a detailed configuration diagram of the blocking unit of FIG. 4;
[Explanation of symbols]
31 vacuum vessel, 32 helium gas detector, 33-39 valve.

Claims (3)

容器に開閉機器が収容され、上記容器内部に絶縁ガスが充填されたガス絶縁開閉装置において、上記絶縁ガスは、上記容器の漏れ検査時に充填されたヘリウムガスに加えて、乾燥空気または窒素と酸素の混合比が乾燥空気と同等のほぼ8:2の絶縁ガスが大気圧よりも高いガス圧力で充填されていることを特徴とするガス絶縁開閉装置。In a gas-insulated switchgear in which an opening / closing device is accommodated in a container, and the container is filled with an insulating gas, the insulating gas includes dry air or nitrogen and oxygen in addition to the helium gas filled at the time of leakage inspection of the container. A gas-insulated switchgear characterized in that an insulating gas having a mixing ratio of approximately 8: 2 equivalent to that of dry air is filled at a gas pressure higher than atmospheric pressure. 容器の漏れ検査時に充填するヘリウムガスは、乾燥空気または窒素と酸素の混合比が乾燥空気と同等のほぼ8:2の絶縁ガスが充填された状態における分圧比が3〜15%となる量が充填されていることを特徴とする請求項1記載のガス絶縁開閉装置。The amount of helium gas to be filled at the time of the container leakage inspection is such that the partial pressure ratio is 3 to 15% in a state in which dry air or a mixture ratio of nitrogen and oxygen is approximately 8: 2 equivalent to that of dry air. The gas insulated switchgear according to claim 1, wherein the gas insulated switchgear is filled. 容器の漏れ検査時に充填するヘリウムガスは、乾燥空気または窒素と酸素の混合比が乾燥空気と同等のほぼ8:2の絶縁ガスが充填された状態における分圧比が3〜7%となる量が充填されていることを特徴とする請求項1記載のガス絶縁開閉装置。The amount of helium gas to be filled at the time of the container leakage inspection is such that the partial pressure ratio is 3 to 7% in the state where the dry air or the mixing ratio of nitrogen and oxygen is approximately 8: 2 equivalent to that of dry air. The gas insulated switchgear according to claim 1, wherein the gas insulated switchgear is filled.
JP2001284258A 2001-09-19 2001-09-19 Gas insulated switchgear Expired - Fee Related JP4545362B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001284258A JP4545362B2 (en) 2001-09-19 2001-09-19 Gas insulated switchgear

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001284258A JP4545362B2 (en) 2001-09-19 2001-09-19 Gas insulated switchgear

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008158907A Division JP4879936B2 (en) 2008-06-18 2008-06-18 Gas filling inspection apparatus and gas leakage inspection method

Publications (2)

Publication Number Publication Date
JP2003092813A JP2003092813A (en) 2003-03-28
JP4545362B2 true JP4545362B2 (en) 2010-09-15

Family

ID=19107612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001284258A Expired - Fee Related JP4545362B2 (en) 2001-09-19 2001-09-19 Gas insulated switchgear

Country Status (1)

Country Link
JP (1) JP4545362B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008237019A (en) * 2008-06-18 2008-10-02 Mitsubishi Electric Corp Device for inspecting gas charge and device for inspecting gas leak

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109375067A (en) * 2018-09-20 2019-02-22 沈阳华德海泰电器有限公司 A kind of localization method of dry air insulated switching installation insulation fault
CN113193505B (en) * 2021-04-27 2022-07-15 国网新疆电力有限公司昌吉供电公司 Power distribution website trouble early warning device
KR102412731B1 (en) * 2021-11-30 2022-06-27 산일전기 주식회사 Eco-friendly GIS that can detect dry air leakage using high sensitive vibration sensor and the method using it

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS548900A (en) * 1977-06-21 1979-01-23 Westinghouse Electric Corp Gassinsulated high voltage electric device
JPS59168144U (en) * 1983-04-25 1984-11-10 三菱電機株式会社 Leak test equipment for gas insulated equipment
JPH05244709A (en) * 1992-02-28 1993-09-21 Toshiba Corp Gas insulated switchgear
JPH11252726A (en) * 1998-03-06 1999-09-17 Toshiba Corp Gas-insulated switchgear, mold-insulated apparatus and insulating spacer
JP2000067716A (en) * 1998-08-18 2000-03-03 Toshiba Corp Gas-blast circuit breaker
JP2000152447A (en) * 1998-11-06 2000-05-30 Hitachi Ltd Power transmission and distribution apparatus
JP2001185656A (en) * 1999-12-24 2001-07-06 Kyocera Corp Method for manufacturing hermetically sealed electronic component

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS548900A (en) * 1977-06-21 1979-01-23 Westinghouse Electric Corp Gassinsulated high voltage electric device
JPS59168144U (en) * 1983-04-25 1984-11-10 三菱電機株式会社 Leak test equipment for gas insulated equipment
JPH05244709A (en) * 1992-02-28 1993-09-21 Toshiba Corp Gas insulated switchgear
JPH11252726A (en) * 1998-03-06 1999-09-17 Toshiba Corp Gas-insulated switchgear, mold-insulated apparatus and insulating spacer
JP2000067716A (en) * 1998-08-18 2000-03-03 Toshiba Corp Gas-blast circuit breaker
JP2000152447A (en) * 1998-11-06 2000-05-30 Hitachi Ltd Power transmission and distribution apparatus
JP2001185656A (en) * 1999-12-24 2001-07-06 Kyocera Corp Method for manufacturing hermetically sealed electronic component

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008237019A (en) * 2008-06-18 2008-10-02 Mitsubishi Electric Corp Device for inspecting gas charge and device for inspecting gas leak

Also Published As

Publication number Publication date
JP2003092813A (en) 2003-03-28

Similar Documents

Publication Publication Date Title
JP4879936B2 (en) Gas filling inspection apparatus and gas leakage inspection method
TWI627650B (en) Switching device and fuse unit
US6759616B2 (en) Gas insulated switchgear
US6510046B2 (en) Gas-insulated switchgear
JP2782474B2 (en) Load switching equipment with three-position switch
WO2000021108A1 (en) Vacuum switch and vacuum switch gear using the vacuum switch
JP4521110B2 (en) Combined gas insulated switchgear
KR20020039244A (en) Gas-Insulated Switching Apparatus
JP4545362B2 (en) Gas insulated switchgear
WO2000069041A1 (en) Vacuum switch gear
JP2936946B2 (en) Insulation test equipment
JP4712609B2 (en) Switchgear
JP4477463B2 (en) Withstand voltage test method for sealed electrical equipment
JPH10210615A (en) Power-receiving and transforming facility device
JP2005027439A (en) Gas insulated switchgear
JP2002315120A (en) Gas-insulated switch
GB2471925A (en) Electrical switchgear
JP2012253896A (en) Electric power gas insulation apparatus, and filling or exhausting method of insulation gas for the same
JP2004336892A (en) Sealed gas-insulated switchgear
JPS5818827A (en) Gas breaker
JP3202340B2 (en) Power receiving equipment
JP2003068175A (en) Switch gear for power
JP3290220B2 (en) Fault location system
Falkingham et al. An innovative modern design of outdoor medium voltage vacuum switchgear
Bieri et al. The return of the true medium voltage dead tank circuit breaker

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080204

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100409

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100629

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100630

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4545362

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees