JPH059470Y2 - - Google Patents

Info

Publication number
JPH059470Y2
JPH059470Y2 JP6796187U JP6796187U JPH059470Y2 JP H059470 Y2 JPH059470 Y2 JP H059470Y2 JP 6796187 U JP6796187 U JP 6796187U JP 6796187 U JP6796187 U JP 6796187U JP H059470 Y2 JPH059470 Y2 JP H059470Y2
Authority
JP
Japan
Prior art keywords
fuel injection
valve
injection amount
opening
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP6796187U
Other languages
Japanese (ja)
Other versions
JPS63177648U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP6796187U priority Critical patent/JPH059470Y2/ja
Publication of JPS63177648U publication Critical patent/JPS63177648U/ja
Application granted granted Critical
Publication of JPH059470Y2 publication Critical patent/JPH059470Y2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

【考案の詳細な説明】 〈産業上の利用分野〉 本考案は、内燃機関の電子制御燃料噴射装置に
関し、特にスロツトル弁開度と機関回転速度との
検出値から吸入空気流量を設定し、この吸入空気
流量に基づいて燃料噴射量を設定するよう構成さ
れた電子制御燃料噴射装置に関する。
[Detailed description of the invention] <Industrial application field> The present invention relates to an electronically controlled fuel injection device for an internal combustion engine, and in particular, the intake air flow rate is set based on the detected values of the throttle valve opening and the engine rotational speed. The present invention relates to an electronically controlled fuel injection device configured to set a fuel injection amount based on an intake air flow rate.

〈従来の技術〉 従来この種の電子制御燃料噴射装置としては、
例えば第5図に示すようなものがある(特願昭61
−008127号等参照)。
<Prior art> Conventionally, this type of electronically controlled fuel injection device
For example, there is something like the one shown in Figure 5.
-Refer to No. 008127, etc.).

内燃機関1の吸気通路2に介装されたスロツト
ル弁3の開度αを検出するスロツトル弁開度セン
サ4と、機関回転速度Nを検出するクランク角セ
ンサ等の回転速度センサ5と、を設け、これらセ
ンサ4,5からの検出信号をコントロールユニツ
ト6に入力する。コントロールユニツト6に内蔵
されたマイクロコンピユータのROMには、スロ
ツトル弁開度αと機関回転速度Nとをパラメータ
として区分される複数の運転領域毎に、各運転領
域に対応して吸入空気流量Qのデータを記憶させ
てあり、スロツトル弁開度αと機関回転速度Nと
の検出値に基づいて前記データの中から該当する
運転領域における吸入空気流量Qのデータを検索
する。
A throttle valve opening sensor 4 for detecting the opening degree α of a throttle valve 3 interposed in the intake passage 2 of the internal combustion engine 1, and a rotation speed sensor 5 such as a crank angle sensor for detecting the engine rotation speed N are provided. , the detection signals from these sensors 4 and 5 are input to the control unit 6. The ROM of the microcomputer built in the control unit 6 stores the intake air flow rate Q corresponding to each of a plurality of operating regions divided using the throttle valve opening α and the engine speed N as parameters. Data is stored, and based on the detected values of throttle valve opening α and engine rotational speed N, data on the intake air flow rate Q in the corresponding operating region is searched from the data.

そして、検索された吸入空気流量Qと回転速度
センサ5によつて検出された機関回転速度Nとに
基づいて基本燃料噴射量Tp(=K×Q/N;Kは
定数)を演算すると共に、機関冷却水温度等の機
関運転状態に応じた各種補正係数COEFと、空燃
比フイードバツク補正係数βと、バツテリ電圧に
よる電磁式燃料噴射弁7の有効開弁時間の変化を
補正する補正分Tsとを演算し、前記基本燃料噴
射量Tpをこれらにより補正して最終的な燃料噴
射量Ti(=Tp×COEF×β+Ts)を演算する。
Then, the basic fuel injection amount Tp (=K×Q/N; K is a constant) is calculated based on the retrieved intake air flow rate Q and the engine rotational speed N detected by the rotational speed sensor 5, and Various correction coefficients COEF according to engine operating conditions such as engine cooling water temperature, air-fuel ratio feedback correction coefficient β, and correction amount Ts for correcting changes in effective valve opening time of electromagnetic fuel injection valve 7 due to battery voltage. The basic fuel injection amount Tp is corrected by these calculations to calculate the final fuel injection amount Ti (=Tp×COEF×β+Ts).

燃料噴射量Tiが設定されると、この燃料噴射
量Tiに相当するパルス巾の噴射パルス信号を燃
料噴射弁7に出力し、機関1に所定量の燃料を噴
射供給させるようにしていた。尚、スロツトル弁
開度αと機関回転速度Nとをパラメータとして区
分される複数の運転領域毎に、各運転領域に対応
して基本燃料噴射量Tpのデータを記憶させるよ
うにしたものもある。
When the fuel injection amount Ti is set, an injection pulse signal with a pulse width corresponding to the fuel injection amount Ti is output to the fuel injection valve 7, thereby causing the engine 1 to inject and supply a predetermined amount of fuel. There is also a system that stores data on the basic fuel injection amount Tp corresponding to each of a plurality of operating ranges that are divided using the throttle valve opening α and the engine rotational speed N as parameters.

しかしながら、上記のようにスロツトル弁開度
αと機関回転速度Nとの検出値に基づいて検索さ
れる吸入空気流量Qに基づいて燃料噴射量Tiを
設定するようにした場合、若しくは、スロツトル
弁開度αと機関回転速度Nとの検出値に基づいて
検索される基本燃料噴射量Tpに基づいて燃料噴
射量Tiを設定するようにした場合には、スロツ
トル弁をバイパスして供給される空気が燃料噴射
量の設定に無関係となるため、実際の吸入空気流
量よりも少ない量の吸入空気流量に見合つた燃料
噴射量が設定されて、空燃比がオーバーリーン化
する惧れがあつた。
However, if the fuel injection amount Ti is set based on the intake air flow rate Q that is retrieved based on the detected values of the throttle valve opening degree α and the engine rotational speed N as described above, or If the fuel injection amount Ti is set based on the basic fuel injection amount Tp that is retrieved based on the detected values of degree α and engine rotational speed N, the air that is supplied bypassing the throttle valve is Since this has no relation to the setting of the fuel injection amount, there is a risk that the fuel injection amount will be set to match the intake air flow rate which is smaller than the actual intake air flow rate, causing the air-fuel ratio to become over-lean.

即ち、スロツトル弁をバイパスするバイパス吸
気通路に開閉弁を介装し、この開閉弁を例えば機
関アイドル運転状態における電気負荷の増大時等
の開制御することによりバイパス吸気通路を開い
て空気量を増大させる場合など、スロツトル弁開
度αに関連しない空気が供給されると、スロツト
ル弁開度αと機関回転速度Nとの検出値に基づい
て一義的に決定される吸入空気流量Q以外の空気
が供給されることになり、このスロツトル弁をバ
イパスして供給される空気分に対応する燃料が不
足するものである。
That is, an on-off valve is interposed in the bypass intake passage that bypasses the throttle valve, and this on-off valve is controlled to open, for example, when the electrical load increases during engine idling, thereby opening the bypass intake passage and increasing the amount of air. When air that is not related to the throttle valve opening α is supplied, such as when There is a shortage of fuel corresponding to the amount of air that is supplied bypassing the throttle valve.

このため従来では、バイパス吸気通路を開閉す
る開閉弁のオン・オフ(駆動信号のON・OFF)
によつて検索された吸入空気流量Qを所定量だけ
増量補正するようにしていた。即ち、バイパス吸
気通路を開閉してアイドル回転を制御する場合に
は、吸気通路の負圧が大きくバイパス吸気通路を
流れる空気流は音速流となるため、その流量は通
路面積に応じて略一定となる。従つて、例えば常
閉型の電磁開閉弁がオン状態でバイパス吸気通路
を開く制御が行われているときには、検索された
吸入空気流量Qに所定量(バイパス吸気通路の通
路面積相当の空気流量)を加えた空気流量に基づ
いて燃料噴射量Tiを設定するようにして、空燃
比を問題のないレべルに制御できるようにしてい
たものである。
For this reason, in the past, the on-off valve that opens and closes the bypass intake passage was turned on and off (drive signal turned on and off).
The intake air flow rate Q retrieved by is corrected to increase by a predetermined amount. That is, when controlling idle rotation by opening and closing the bypass intake passage, the negative pressure in the intake passage is large and the airflow flowing through the bypass intake passage becomes a sonic flow, so the flow rate is approximately constant depending on the area of the passage. Become. Therefore, for example, when the normally closed electromagnetic on-off valve is in the on state and the bypass intake passage is controlled to be opened, the retrieved intake air flow rate Q is increased by a predetermined amount (the air flow rate corresponding to the passage area of the bypass intake passage). By setting the fuel injection amount Ti based on the air flow rate plus the air flow rate, the air-fuel ratio can be controlled to a level that does not cause problems.

かかる制御の一例を第6図のフローチヤート
(Ti演算ルーチン)に基づいて簡単に説明する
と、ステツプ(図中では「S」としてあり、以下
同様とする)21では、スロツトル弁開度αと機
関回転速度Nとを入力し、ステツプ22においてこ
れらの検出値に基づき、α−N−Qの3次元マツ
プから吸入空気流量Qのデータを検索する。
An example of such control will be briefly explained based on the flowchart (Ti calculation routine) in FIG. The rotational speed N is input, and in step 22, data on the intake air flow rate Q is retrieved from a three-dimensional map of α-N-Q based on these detected values.

ステツプ23では、スロツトル弁をバイパスする
バイパス吸気通路を開閉する常閉型の電磁開閉弁
のオン・オフを設定し、オンであつてバイパス吸
気通路を開制御がなされているときには、次のス
テツプ24へ進んでステツプ22で検索した吸入空気
流量Qに所定吸入空気流量Q0(バイパス吸気通路
分の吸入空気流量)を加算して最終的吸入空気流
量Qとして設定する。
In step 23, the normally closed electromagnetic on-off valve that opens and closes the bypass intake passage that bypasses the throttle valve is set on and off. When it is on and the bypass intake passage is controlled to open, the next step 24 is set. Proceeding to step 22, a predetermined intake air flow rate Q 0 (intake air flow rate for the bypass intake passage) is added to the intake air flow rate Q retrieved in step 22, and the result is set as the final intake air flow rate Q.

そして、所定吸入空気流量Q0が加算された吸
入空気流量Qに基づいてステツプ25で基本燃料噴
射量Tpを演算し、更にステツプ26でこの基本燃
料噴射量Tpを各種補正係数COEF等によつて補
正演算して最終的な燃料噴射量Tiを設定する。
Then, in step 25, the basic fuel injection amount Tp is calculated based on the intake air flow rate Q to which the predetermined intake air flow rate Q0 has been added, and in step 26, this basic fuel injection amount Tp is calculated using various correction coefficients such as COEF. A correction calculation is performed to set the final fuel injection amount Ti.

一方、電磁開閉弁がオフでバイパス吸気通路が
閉制御されているときには、ステツプ24をジヤン
プしてステツプ25へ進む。従つて、電磁開閉弁が
オフであるときには、ステツプ22で検索された吸
入空気流量Qに基づいて最終的な燃料噴射量Ti
が設定されることになる。
On the other hand, when the electromagnetic on-off valve is off and the bypass intake passage is controlled to be closed, step 24 is jumped and the process proceeds to step 25. Therefore, when the electromagnetic on-off valve is off, the final fuel injection amount Ti is determined based on the intake air flow rate Q retrieved in step 22.
will be set.

〈考案が解決しようとする問題点〉 ところが、このようにバイパス吸気通路を開閉
する開閉弁のオン・オフに基づいて吸入空気流量
の増量補正を行うようにした場合、開閉弁の弁体
が固着したり駆動回路の断線が発生するなどし
て、開閉弁をオン(開制御)させてもバイパス吸
気通路が閉じたままの状態であるときでも、吸入
空気流量の増量補正が行われることになる。この
ため、このような開閉弁の故障時には、燃料噴射
量の設定に用いられる吸入空気流量が実際の吸入
空気流量よりも補正増量分だけ多くなつて空燃比
がオーバーリツチ化し、回転速度の落ち込みが発
生する惧れがあつた。
<Problem to be solved by the invention> However, when the intake air flow rate is increased and corrected based on the on/off status of the on-off valve that opens and closes the bypass intake passage, the valve body of the on-off valve becomes stuck. Even if the bypass intake passage remains closed even if the on-off valve is turned on (open control) due to a break in the drive circuit or a break in the drive circuit, the intake air flow rate will be increased. . Therefore, when such an on-off valve fails, the intake air flow rate used to set the fuel injection amount becomes larger than the actual intake air flow rate by the amount of the correction increase, resulting in an overrich air-fuel ratio and a drop in rotational speed. There was a fear that this would occur.

本考案は上記問題点に鑑みなされたものであ
り、バイパス吸気通路を開閉する開閉弁の異常時
に、燃料噴射量が増量補正されて空燃比がオーバ
ーリツチ化することを回避できる電子制御燃料噴
射装置を提供する。
The present invention was devised in view of the above problems, and is an electronically controlled fuel injection system that can prevent the air-fuel ratio from becoming overrich by increasing the fuel injection amount when an abnormality occurs in the on-off valve that opens and closes the bypass intake passage. I will provide a.

〈問題点を解決するための手段〉 そのため本考案では、第1図に示すように、機
関の吸気通路に介装されたスロツトル弁の開度を
検出するスロツトル弁開度検出手段と、機関の回
転速度を検出する機関回転速度検出手段と、スロ
ツトル弁開度と機関回転速度との検出値に基づい
て当該運転状態における吸入空気流量を設定し該
吸入空気流量に基づいて燃料噴射量を設定する燃
料噴射量設定手段と、前記スロツトル弁をバイパ
スするバイパス吸気通路を開閉する開閉弁の開閉
制御を検出するバイパス吸気通路開閉制御検出手
段と、このバイパス吸気通路開閉制御検出手段に
より開閉弁の開制御状態が検出されているときに
前記燃料噴射量設定手段によつて設定された燃料
噴射量を所定量だけ増量補正して設定する燃料噴
射量補正設定手段と、設定された燃料噴射量に応
じて燃料噴射弁を駆動制御する燃料噴射弁駆動制
御手段と、を備えた内燃機関の電子制御燃料噴射
装置において、前記バイパス吸気通路開閉制御検
出手段により開閉弁の開制御が検出されたときに
前記機関回転速度検出手段によつて機関回転速度
が所定以上に低下したことが検出されると前記開
閉弁の異常を判定する開閉弁異常判定手段と、こ
の開閉弁異常判定手段によつて前記開閉弁の異常
が判定されたときに前記燃料噴射量補正設定手段
による燃料噴射量の増量補正設定を禁止する増量
補正設定禁止手段と、を設けるようにした。
<Means for solving the problem> Therefore, in the present invention, as shown in FIG. An engine rotation speed detection means for detecting the rotation speed, and an intake air flow rate in the relevant operating state based on the detected values of the throttle valve opening degree and the engine rotation speed, and a fuel injection amount is set based on the intake air flow rate. a fuel injection amount setting means; a bypass intake passage opening/closing control detecting means for detecting opening/closing control of an opening/closing valve that opens/closes a bypass intake passage that bypasses the throttle valve; and a bypass intake passage opening/closing control detecting means for controlling opening of the opening/closing valve. fuel injection amount correction setting means for increasing and setting the fuel injection amount set by the fuel injection amount setting means by a predetermined amount when the condition is detected; In an electronically controlled fuel injection device for an internal combustion engine, the electronically controlled fuel injection device for an internal combustion engine is provided with: a fuel injection valve drive control means for driving and controlling a fuel injection valve; an on-off valve abnormality determination means that determines whether the on-off valve is abnormal when the rotational speed detection means detects that the engine rotation speed has decreased to a predetermined level or more; Further, there is provided an increase correction setting prohibition means for prohibiting the increase correction setting of the fuel injection amount by the fuel injection amount correction setting means when an abnormality is determined.

〈作用〉 かかる構成の電子制御燃料噴射装置によると、
スロツトル弁の開度と機関回転速度とが検出され
ると、これらの検出値に基づいて当該運転状態に
おける吸入空気流量を設定して、これによつて燃
料噴射量を設定する。また、スロツトル弁をバイ
パスするバイパス吸気通路を開閉する開閉弁が開
制御されているときには、このバイパス吸気通路
を介して供給される空気分に相当する量だけ燃料
噴射量を増量補正して設定する。
<Operation> According to the electronically controlled fuel injection device having such a configuration,
When the opening degree of the throttle valve and the engine rotational speed are detected, the intake air flow rate in the relevant operating state is set based on these detected values, and the fuel injection amount is thereby set. Additionally, when the opening/closing valve that opens and closes the bypass intake passage that bypasses the throttle valve is controlled to open, the fuel injection amount is increased by an amount corresponding to the amount of air supplied through the bypass intake passage. .

一方、開閉弁の開制御がなされてバイパス空気
分に相当する燃料増量補正を行つた結果、機関回
転速度が所定以上の低下したことが検出される
と、開閉弁の異常を判定してバイパス空気量に相
当する燃料増量補正を禁止し、バイパス空気量相
当分を含まない通常の燃料噴射量を設定する。
On the other hand, if it is detected that the engine rotational speed has decreased by more than a predetermined value as a result of the opening control of the on-off valve and the fuel increase correction corresponding to the amount of bypass air, it is determined that the on-off valve is abnormal and the bypass air is increased. Prohibits fuel increase correction corresponding to the amount, and sets a normal fuel injection amount that does not include the amount equivalent to the bypass air amount.

〈実施例〉 以下に本考案の一実施例を図面に基づいて説明
する。
<Example> An example of the present invention will be described below based on the drawings.

第2図に本実施例のハードウエア構成を示して
ある。尚、ここで第5図に示した従来例と同一要
素には同一符号を付して説明を省略する。
FIG. 2 shows the hardware configuration of this embodiment. Incidentally, the same elements as those in the conventional example shown in FIG. 5 are given the same reference numerals, and the explanation thereof will be omitted.

コントロールユニツト6には、スロツトル弁開
度検出手段としてのスロツトル弁開度センサ4に
よつて検出されるスロツトル弁3の開度αと、機
関回転速度検出手段としての回転速度センサ5に
よつて検出される機関回転速度Nと、排気通路1
1に介装される酸素濃度センサ10によつて検出
される機関吸入混合気の空燃比と密接な関係にあ
る排気中の酸素濃度と、水温センサ12によつて
検出される冷却ジヤケツト内の機関冷却水温度
Twと、が入力されるようになつている。また、
コントロールユニツト6は、スロツトル弁3をバ
イパスして設けられるバイパス吸気通路8を開閉
する常閉型の電磁開閉弁9及び電磁式燃料噴射弁
7をそれぞれ通電制御によつて開閉制御する。
The control unit 6 has an opening α of the throttle valve 3 detected by a throttle valve opening sensor 4 as a throttle valve opening detection means, and a rotation speed sensor 5 as an engine rotation speed detection means. engine rotational speed N and exhaust passage 1
The oxygen concentration in the exhaust gas, which is closely related to the air-fuel ratio of the engine intake air-fuel mixture, detected by the oxygen concentration sensor 10 installed in the engine 1, and the oxygen concentration in the engine cooling jacket, which is detected by the water temperature sensor 12. cooling water temperature
Tw is now entered. Also,
The control unit 6 controls the opening and closing of a normally closed electromagnetic on-off valve 9 and an electromagnetic fuel injection valve 7, which open and close a bypass intake passage 8 provided by bypassing the throttle valve 3, respectively, by controlling energization.

即ち、コントロールユニツト6は、燃料噴射量
設定手段、燃料噴射弁駆動制御手段、バイパス吸
気通路開閉制御検出手段、燃料噴射量補正設定手
段、開閉弁異常判定手段及び増量補正設定禁止手
段を兼ねるものである。
That is, the control unit 6 also functions as a fuel injection amount setting means, a fuel injection valve drive control means, a bypass intake passage opening/closing control detection means, a fuel injection amount correction setting means, an on/off valve abnormality determination means, and an increase correction setting prohibition means. be.

かかる構成の電子制御燃料噴射装置の作用を第
3図及び第4図のフローチヤートに基づいて説明
する。
The operation of the electronically controlled fuel injection system having such a configuration will be explained based on the flowcharts shown in FIGS. 3 and 4.

第3図のフローチヤートは燃料噴射量Tiの設
定ルーチンであり、ステツプ(図中では「S」と
してあり、以下同様とする)1では、スロツトル
弁開度α、機関回転速度N、冷却水温度Tw等の
各種信号を入力し、ステツプ2では、ステツプ1
において入力したスロツトル弁開度α及び機関回
転速度Nの検出値に基づき、コントロールユニツ
ト6に内蔵されたマイクロコンピユータのROM
に予め記憶されているα−N−Qの3次元マツプ
から当該運転状態に対応した吸入空気流量Qのデ
ータを検索する。
The flowchart in Fig. 3 is a routine for setting the fuel injection amount Ti, and in step 1 (indicated as "S" in the figure, the same shall apply hereinafter), the throttle valve opening α, engine rotational speed N, cooling water temperature, Input various signals such as Tw, and in step 2, step 1
Based on the detected values of the throttle valve opening α and the engine rotational speed N input in the ROM of the microcomputer built in the control unit 6.
Data on the intake air flow rate Q corresponding to the operating state is retrieved from the α-N-Q three-dimensional map stored in advance.

ステツプ3では、スロツトル弁3をバイパスす
るバイパス吸気通路8を開閉する常閉型の電磁開
閉弁9のオン・オフ(駆動信号出力のオン・オ
フ)を判定し、オンであつてバイパス吸気通路8
の開制御がなされているときには、次のステツプ
4へ進んで後述するQ0加算禁止指示がなされて
いるか否かを判定し、禁止指示がなされていない
ときにはステツプ5へ進む。尚、コントロールユ
ニツト6は、電気負荷の増大等を検出して電磁開
閉弁9の開閉駆動を制御する。
In step 3, it is determined whether the normally closed electromagnetic on-off valve 9 that opens and closes the bypass intake passage 8 that bypasses the throttle valve 3 is on or off (the drive signal output is on or off).
When the opening control is being performed, the process proceeds to the next step 4, and it is determined whether or not a Q0 addition prohibition instruction, which will be described later, has been issued.If the prohibition instruction has not been issued, the process proceeds to step 5. The control unit 6 controls the opening/closing of the electromagnetic on-off valve 9 by detecting an increase in electrical load or the like.

ステツプ5では、ステツプ2で検索した吸入空
気流量Qに所定吸入空気流量Q0(バイパス吸気通
路8分の吸入空気流量)を加算して最終的吸入空
気流量Qとして設定する。
In step 5, a predetermined intake air flow rate Q 0 (intake air flow rate for 8 bypass intake passages) is added to the intake air flow rate Q retrieved in step 2, and the result is set as the final intake air flow rate Q.

一方、ステツプ3で電磁開閉弁9がOFFであ
ると判定されバイパス吸気通路8を閉じる制御が
行われているときと、ステツプ4でQ0加算禁止
指示がなされていると判定されたときにはステツ
プ5をジヤンプしてステツプ6へ進む。即ち、電
磁開閉弁9がOFFであるときと、ONされている
ときでもQ0加算禁止指示がなされているときに
はステツプ2で検索され吸入空気流量Qに基づい
て基本燃料噴射量Tpの演算を行い、電磁開閉弁
9がONで然もQ0加算禁止指示がなされていない
ときにはステツプ2で検索した吸入空気流量Qの
バイパス空気量Q0を加算して基本燃料噴射量Tp
の演算を行わせるものである。
On the other hand, when it is determined in step 3 that the electromagnetic on-off valve 9 is OFF and control is being performed to close the bypass intake passage 8, and when it is determined in step 4 that the Q 0 addition prohibition instruction has been issued, step 5 is executed. Jump to step 6. That is, when the electromagnetic on-off valve 9 is OFF and when the Q0 addition prohibition instruction is issued even when it is ON, the basic fuel injection amount Tp is calculated based on the intake air flow rate Q searched in step 2. , when the electromagnetic on-off valve 9 is ON and the Q0 addition prohibition instruction has not been issued, the basic fuel injection amount Tp is obtained by adding the bypass air amount Q0 to the intake air flow rate Q searched in step 2.
The calculations are as follows.

ステツプ6では、ステツプ2で検索された吸入
空気流量Q若しくはステツプ2での検索結果にバ
イパス空気量Q0を加算したものに基づいて基本
燃料噴射量Tp((=K×Q/N;Kは定数)を演
算する。
In step 6, the basic fuel injection amount Tp ((=K×Q/ N ; K is constant).

そして、ステツプ7では、冷却水温度Twを主
として設定される各種補正係数COEF、排気中の
酸素濃度に基づいて設定される空燃比フイードバ
ツク補正係数β(機関アイドル運転状態において
はクランプされる)及びバツテリの電圧による燃
料噴射弁7の有効開弁時間の変化を補正するため
の補正分Tsを設定し、これらによりステツプ6
で演算した基本燃料噴射量Tpを補正演算して最
終的な燃料噴射量Ti(=Tp×COEF×β+Ts)
を設定する。
Then, in step 7, various correction coefficients COEF, which are mainly set based on the cooling water temperature Tw, an air-fuel ratio feedback correction coefficient β (clamped in the engine idling operating state), which is set based on the oxygen concentration in the exhaust gas, and the battery A correction amount Ts is set to correct the change in the effective valve opening time of the fuel injection valve 7 due to the voltage of
The basic fuel injection amount Tp calculated in is corrected to obtain the final fuel injection amount Ti (=Tp×COEF×β+Ts)
Set.

上記のQ0加算禁止指示は、第4図のフローチ
ヤートに示したQ0加算(増量補正設定)禁止指
示ルーチンに従つて行われる。尚、このルーチン
は、機関アイドル運転状態でかつ冷却水温度Tw
が所定以上の完暖状態で実行される。
The Q 0 addition prohibition instruction described above is performed according to the Q 0 addition (increase correction setting) prohibition instruction routine shown in the flowchart of FIG. Note that this routine is performed when the engine is in idle operation and the cooling water temperature Tw
is executed when the temperature is completely warmed up to a predetermined level or higher.

ステツプ11では、電磁開閉弁9のON・OFF
(駆動信号のON・OFF)を判定し、電磁開閉弁
9がONであつてバイパス吸気通路8を開く制御
が行われているときにはステツプ12へ進み、電磁
開閉弁9がOFFであつてバイパス吸気通路8を
閉じる制御が行われているときにはそのままリタ
ーンさせる。
In step 11, the solenoid on/off valve 9 is turned ON/OFF.
(ON/OFF of the drive signal) is determined, and if the electromagnetic on-off valve 9 is ON and the bypass intake passage 8 is controlled to be opened, the process proceeds to step 12, and the electromagnetic on-off valve 9 is OFF and the bypass intake passage 8 is controlled to be opened. When the passage 8 is controlled to be closed, it is returned as is.

ステツプ12では、所定時間前において電磁開閉
弁9がOFFされていたか否かを判定する。これ
は、電磁開閉弁9をONされた直後における回転
速度変動によつてQ0加算禁止指示を判断するた
めのものである。
In step 12, it is determined whether the electromagnetic on-off valve 9 was turned off a predetermined time ago. This is to determine the Q 0 addition prohibition instruction based on the rotation speed fluctuation immediately after the electromagnetic on-off valve 9 is turned on.

ここで、所定時間前においては、電磁開閉弁9
がOFFであつたことが判定されると、ステツプ
13へ進み、電磁開閉弁9をONしてからエンスト
が発生したか否かを判定する。また、所定時間前
においては電磁開閉弁9がOFFでなかつたと判
定された場合、即ち、ONされてから所定時間以
上に経過しているときにはそのままリターンさせ
る。
Here, before the predetermined time, the electromagnetic on-off valve 9
If it is determined that the
Proceed to step 13, and after turning on the electromagnetic on-off valve 9, it is determined whether or not the engine has stalled. Further, if it is determined that the electromagnetic on-off valve 9 was not OFF before a predetermined time, that is, if more than a predetermined time has elapsed since it was turned ON, the control is returned directly.

ステツプ13でエンストの発生が判定されると、
ステツプ15へ進んでQ0加算禁止指示を行う。こ
れは、電磁開閉弁9がONされたため、バイパス
空気量Q0を加算して基本燃料噴射量Tpを演算し
た結果、実際には電磁開閉弁9の故障(弁体の固
着若しくは駆動回路の断線)によつてバイパス吸
気通路8が閉じたままの状態であつたため空燃比
がオーバーリツチ化してエンストが発生したもの
と推測されるためである。
When it is determined in step 13 that an engine stall has occurred,
Proceed to step 15 and instruct Q0 addition to be prohibited. This is because the electromagnetic on-off valve 9 was turned on, so when the basic fuel injection amount Tp was calculated by adding the bypass air amount Q 0 , it was actually determined that the electromagnetic on-off valve 9 was malfunctioning (the valve body was stuck or the drive circuit was disconnected). ), which caused the bypass intake passage 8 to remain closed, causing the air-fuel ratio to become overrich and causing the engine stall.

一方、ステツプ13でエンストが発生していない
と判定された場合には、ステツプ14へ進んで回転
速度Nが所定以上の割合で低下しているか否かを
判定する。ここで、所定以上の回転速度低下が判
定されたときには、エンストに至らないまでもや
はり電磁開閉弁9の故障によつてバイパス吸気通
路8が開かれずに空燃比がオーバーリツチ化して
いるものと判断して、ステツプ15へ進みQ0加算
禁止指示を行う。一方、ステツプ14で回転速度N
が所定以上に低下していないと判定されたときに
は、電磁開閉弁9が正常に動作してバイパス吸気
通路8が開かれているものと見做して、Q0加算
禁止指示を行うことなくそのままリターンさせ
る。
On the other hand, if it is determined in step 13 that engine stalling has not occurred, the process proceeds to step 14, where it is determined whether the rotational speed N is decreasing at a rate greater than a predetermined rate. Here, when it is determined that the rotational speed has decreased by more than a predetermined value, it is determined that the bypass intake passage 8 is not opened due to a failure of the electromagnetic on-off valve 9 and the air-fuel ratio has become overrich, even if the engine has not stalled. Then, the process proceeds to step 15, where a Q0 addition prohibition instruction is issued. On the other hand, in step 14, the rotational speed N
When it is determined that Q0 has not decreased beyond a predetermined level, it is assumed that the electromagnetic on-off valve 9 is operating normally and the bypass intake passage 8 is opened, and the Q0 addition prohibition instruction is not issued. Make it return.

ステツプ15でQ0加算禁止指示が行われると、
第3図のフローチヤートに示した燃料噴射量演算
ルーチンのステツプ4でQ0加算禁止指示が判定
されて、たとえば電磁開閉弁9がON(開制御)
されているときでも、バイパス空気分の燃料増量
を行わない。従つて、電磁開閉弁9が弁体の固着
や駆動回路の断線等によつて開制御されても開か
ない状態になつた場合には、バイパス空気量を見
込んでの燃料噴射量Tiの設定による回転速度N
の落ち込みによりこれを判別して、次回以降にお
いては電磁開閉弁9の開制御がなされても燃料噴
射量Tiを増量設定しないで空燃比がオーバーリ
ツチ化することを回避する。
When the Q 0 addition prohibition instruction is issued in step 15,
In step 4 of the fuel injection amount calculation routine shown in the flowchart of FIG. 3, the Q0 addition prohibition instruction is determined, and for example, the electromagnetic on-off valve 9 is turned on (opening control).
Do not increase the amount of fuel for bypass air even when Therefore, if the electromagnetic on-off valve 9 does not open even if it is controlled to open due to a stuck valve body or a disconnection in the drive circuit, the fuel injection amount Ti should be set in consideration of the amount of bypass air. Rotational speed N
This is determined based on the drop in the fuel injection amount Ti, and the fuel injection amount Ti is not increased even if the electromagnetic on-off valve 9 is controlled to open from the next time onwards, thereby preventing the air-fuel ratio from becoming overrich.

尚、上記のようなQ0加算(バイパス空気量分
の燃料増量補正設定)禁止指示は、禁止判定から
所定時間経過した場合やバツテリが外された場合
などに解除するよう構成し、また、Q0加算禁止
指示の経歴を記憶させるようにしても良い。
The above-mentioned Q 0 addition (fuel increase correction setting for bypass air amount) prohibition instruction is configured to be canceled when a predetermined time has elapsed from the prohibition judgment or when the battery is removed. The history of instructions for prohibiting 0 addition may be stored.

〈考案の効果〉 以上説明したように本考案によると、スロツト
ル弁をバイパスするバイパス吸気通路を開閉する
開閉弁の異常時(開制御で実際には閉のとき)
に、燃料噴射量がこのバイパス空気量分だけ増量
補正されて空燃比がオーバーリツチ化することを
回避でき、回転速度の落ち込みやエンストを防止
することができるという効果がある。
<Effects of the invention> As explained above, according to the invention, when there is an abnormality in the on-off valve that opens and closes the bypass intake passage that bypasses the throttle valve (when it is actually closed due to open control)
Another advantage is that the fuel injection amount is corrected to increase by the amount of bypass air, thereby preventing the air-fuel ratio from becoming overrich, and preventing a drop in rotational speed and engine stalling.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の構成図、第2図は本考案にか
かる内燃機関の電子制御燃料噴射装置の一実施例
を示すシステム図、第3図は同上実施例における
燃料噴射量演算ルーチンを示すフローチヤート、
第4図は同上実施例における増量補正設定禁止指
示ルーチンを示すフローチヤート、第5図は従来
の電子制御燃料噴射装置の一例を示すシステム
図、第6図は従来のバイパス空気による燃料噴射
量増量補正制御を示すフローチヤートである。 1……機関、2……吸気通路、3……スロツト
ル弁、4……スロツトル弁開度センサ、5……回
転速度センサ、6……コントロールユニツト、7
……燃料噴射弁、8……バイパス吸気通路、9…
…電磁開閉弁。
Fig. 1 is a configuration diagram of the present invention, Fig. 2 is a system diagram showing an embodiment of an electronically controlled fuel injection device for an internal combustion engine according to the invention, and Fig. 3 shows a fuel injection amount calculation routine in the same embodiment. flowchart,
Fig. 4 is a flowchart showing the increase correction setting prohibition instruction routine in the same embodiment as above, Fig. 5 is a system diagram showing an example of a conventional electronically controlled fuel injection device, and Fig. 6 is a conventional increase in fuel injection amount using bypass air. 7 is a flowchart showing correction control. DESCRIPTION OF SYMBOLS 1... Engine, 2... Intake passage, 3... Throttle valve, 4... Throttle valve opening sensor, 5... Rotational speed sensor, 6... Control unit, 7
...Fuel injection valve, 8...Bypass intake passage, 9...
...Solenoid on-off valve.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 機関の吸気通路に介装されたスロツトル弁の開
度を検出するスロツトル弁開度検出手段と、機関
の回転速度を検出する機関回転速度検出手段と、
スロツトル弁開度と機関回転速度との検出値に基
づいて当該運転状態における吸入空気流量を設定
し該吸入空気流量に基づいて燃料噴射量を設定す
る燃料噴射量設定手段と、前記スロツトル弁をバ
イパスするバイパス吸気通路を開閉する開閉弁の
開閉制御を検出するバイパス吸気通路開閉制御検
出手段と、該バイパス吸気通路開閉制御検出手段
により開閉弁の開制御状態が検出されているとき
に前記燃料噴射量設定手段によつて設定された燃
料噴射量を所定量だけ増量補正して設定する燃料
噴射量補正設定手段と、設定された燃料噴射量に
応じて燃料噴射弁を駆動制御する燃料噴射弁駆動
制御手段と、を備えた内燃機関の電子制御燃料噴
射装置において、前記バイパス吸気通路開閉制御
検出手段により開閉弁の開制御が検出されたとき
に前記機関回転速度検出手段によつて機関回転速
度が所定以上に低下したことが検出されると前記
開閉弁の異常を判定する開閉弁異常判定手段と、
該開閉弁異常判定手段によつて前記開閉弁の異常
が判定されたときに前記燃料噴射量補正設定手段
による燃料噴射量の増量補正設定を禁止する増量
補正設定禁止手段と、を設けたことを特徴とする
内燃機関の電子制御燃料噴射装置。
Throttle valve opening detection means for detecting the opening of a throttle valve installed in an intake passage of the engine; engine rotation speed detection means for detecting the rotation speed of the engine;
a fuel injection amount setting means that sets an intake air flow rate in the operating state based on detected values of the throttle valve opening degree and engine rotational speed, and sets a fuel injection amount based on the intake air flow rate; and a fuel injection amount setting means that bypasses the throttle valve. bypass intake passage opening/closing control detection means for detecting the opening/closing control of the opening/closing valve that opens and closes the bypass intake passage; and when the opening control state of the opening/closing valve is detected by the bypass intake passage opening/closing control detection means, the fuel injection amount is determined. a fuel injection amount correction setting means for increasing the fuel injection amount set by the setting means by a predetermined amount; and a fuel injection valve drive control for driving and controlling the fuel injection valve according to the set fuel injection amount. In the electronically controlled fuel injection device for an internal combustion engine, the engine rotation speed is set to a predetermined value by the engine rotation speed detection means when the opening control of the on-off valve is detected by the bypass intake passage opening/closing control detection means. On-off valve abnormality determining means that determines whether the on-off valve is abnormal when it is detected that the on-off valve has decreased above the above level;
and an increase correction setting prohibition means for prohibiting the fuel injection amount correction setting means from setting an increase in the fuel injection amount when the on-off valve abnormality determination means determines that the on-off valve is abnormal. An electronically controlled fuel injection system for internal combustion engines.
JP6796187U 1987-05-08 1987-05-08 Expired - Lifetime JPH059470Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6796187U JPH059470Y2 (en) 1987-05-08 1987-05-08

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6796187U JPH059470Y2 (en) 1987-05-08 1987-05-08

Publications (2)

Publication Number Publication Date
JPS63177648U JPS63177648U (en) 1988-11-17
JPH059470Y2 true JPH059470Y2 (en) 1993-03-09

Family

ID=30907344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6796187U Expired - Lifetime JPH059470Y2 (en) 1987-05-08 1987-05-08

Country Status (1)

Country Link
JP (1) JPH059470Y2 (en)

Also Published As

Publication number Publication date
JPS63177648U (en) 1988-11-17

Similar Documents

Publication Publication Date Title
JPH059470Y2 (en)
JPH0252105B2 (en)
JPH0465227B2 (en)
JPH01211638A (en) Air-fuel ratio control device for internal combustion engine
JPH0711257B2 (en) Self-diagnosis control device for internal combustion engine
JPH0747943B2 (en) Electronically controlled fuel injection device for internal combustion engine
JPH072997Y2 (en) Auxiliary air control device for internal combustion engine
JPS6282250A (en) Idling speed control device for internal combustion engine
JP2519817Y2 (en) Engine protector
JP2780754B2 (en) Engine intake air control system
JPH0810672Y2 (en) Electronically controlled fuel injection device for internal combustion engine
JPH07103831B2 (en) Exhaust gas recirculation control device
JP2803084B2 (en) Idle speed control method
JPH08158955A (en) Exhaust gas reflux control device
JPH0612178Y2 (en) Secondary air supply controller for multi-cylinder internal combustion engine
JPH0833136B2 (en) Idle-up system in case of pressure sensor failure
JPH08270476A (en) Control device for internal combustion engine
JPH082448Y2 (en) Engine controller
JP2707678B2 (en) Air-fuel ratio control device for LPG engine
JPH04269363A (en) Failure detecting device for exhaust gas recirculation control device
JPH1113522A (en) Method for coping with abnormality of throttle sensor
JP3255472B2 (en) Failure diagnosis system for evaporative fuel supply system of engine
JPH05141294A (en) Air/fuel ratio control method
JPS63173838A (en) Abnormality determining device for exhaust gas recirculation device
JP3287863B2 (en) Idle speed control device for internal combustion engine