JPH0594664U - Absorption refrigerator bleed device - Google Patents

Absorption refrigerator bleed device

Info

Publication number
JPH0594664U
JPH0594664U JP3590592U JP3590592U JPH0594664U JP H0594664 U JPH0594664 U JP H0594664U JP 3590592 U JP3590592 U JP 3590592U JP 3590592 U JP3590592 U JP 3590592U JP H0594664 U JPH0594664 U JP H0594664U
Authority
JP
Japan
Prior art keywords
solution
absorber
exhaust pipe
dilute solution
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3590592U
Other languages
Japanese (ja)
Other versions
JP2558853Y2 (en
Inventor
伸二 頓宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP3590592U priority Critical patent/JP2558853Y2/en
Publication of JPH0594664U publication Critical patent/JPH0594664U/en
Application granted granted Critical
Publication of JP2558853Y2 publication Critical patent/JP2558853Y2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

(57)【要約】 【目的】 分離捕集したガスを自動的に放出できるとと
もに容量の大きなガス貯蔵室を必要とせず、かつ吸収器
内の吸収口の部分でガスを巻き込み易くした吸収式冷凍
機の抽気装置を提供する。 【構成】 吸収器で生成された稀溶液を溶液循環ポンプ
で吸引する稀溶液吸い込み管の吸収器側の末端を吸収器
底面に対向して開口させ、該開口に逆U字形の配管を接
続し、前記溶液循環ポンプの出口側に不凝縮性ガス分離
器を設け、該不凝縮性ガス分離器に稀溶液が流入する分
離器本体区画と不凝縮性ガスを蓄える排気管区画とを設
け、両区画の間に、分離器本体区画内の不凝縮性ガスの
量が増加して稀溶液液面が低下すると開いて不凝縮性ガ
スを排気管区画に導入するフロート式弁を設け、排気管
区画と大気との間に、該排気管区画の不凝縮性ガスの圧
力がある設定値を超えると開いて排気管区画の不凝縮性
ガスを大気中に放出する逆止弁を設けてなる吸収式冷凍
機の抽気装置。
(57) [Summary] [Purpose] Absorption refrigeration that can automatically release separated and collected gas, does not require a large-capacity gas storage chamber, and facilitates gas entrapment at the absorption port in the absorber. To provide a bleed device for a machine. [Structure] An end of the dilute solution suction pipe for sucking the dilute solution produced in the absorber by a solution circulation pump is opened facing the bottom face of the absorber, and an inverted U-shaped pipe is connected to the opening. , A non-condensable gas separator is provided on the outlet side of the solution circulation pump, and a separator main body section into which the dilute solution flows into the non-condensable gas separator and an exhaust pipe section for storing the non-condensable gas are provided. Between the compartments, a float valve is installed to open the non-condensable gas into the exhaust pipe compartment when the amount of the non-condensable gas in the separator body compartment increases and the liquid level of the dilute solution decreases, and the exhaust pipe compartment is installed. Between the air and the atmosphere, an absorption formula provided with a check valve that opens when the pressure of the non-condensable gas in the exhaust pipe section exceeds a set value and releases the non-condensable gas in the exhaust pipe section to the atmosphere Refrigerator extraction device.

Description

【考案の詳細な説明】[Detailed description of the device]

【0001】[0001]

【産業上の利用分野】[Industrial applications]

本考案は吸収式冷凍機の抽気装置に係り、より詳しくは不凝縮性ガス補集機構 を簡素化してガス分離の向上を図った吸収式冷凍機に関する。 The present invention relates to an extraction refrigeration system for an absorption refrigerating machine, and more particularly to an absorption refrigerating machine that simplifies a non-condensable gas collection mechanism to improve gas separation.

【0002】[0002]

【従来の技術】[Prior Art]

吸収式冷凍機は、その作動原理から、機内の主要部を大気圧以下に維持する必 要があるが、各種の原因で機内に不凝縮姓の気体が次第にたまり、放置しておく とそのために機内の圧力が所定の圧力よりも上昇して装置の効率が低下する恐れ がある。従来、実公昭62ー44284号に示されるように、冷却水の一部で低 温熱交換器から分流されてくる濃溶液を冷却し、吸収器より更に低圧の部位を作 りここを前記不凝縮性ガスを集める補助吸収器とし、この補助吸収器からガス分 離器を介して分離した前記ガスを貯蔵するガス貯蔵室を設け、このガス貯蔵室に 連結し、冷房運転の際にガス貯蔵室が大気圧以上の時に開き、ガスを大気中に放 出する真空バルブを備えた吸収式冷凍機の抽気装置が知られている。 Due to the operating principle of an absorption chiller, it is necessary to maintain the main part of the machine at atmospheric pressure or below.However, due to various reasons, the non-condensing gas gradually accumulates in the machine, and if it is left unattended, There is a risk that the pressure inside the machine will rise above the prescribed pressure and the efficiency of the equipment will decrease. Conventionally, as shown in Japanese Utility Model Publication No. 62-44284, the concentrated solution diverted from the low temperature heat exchanger is cooled with a part of the cooling water to form a part of the pressure lower than that of the absorber. A gas absorber that collects the volatile gas, and a gas storage chamber that stores the gas separated from the auxiliary absorber through a gas separator is provided.The gas storage chamber is connected to this gas storage chamber and is used during cooling operation. A bleeder for an absorption refrigerating machine is known, which is equipped with a vacuum valve that opens when the atmospheric pressure is higher than atmospheric pressure and discharges gas into the atmosphere.

【0003】 補助吸収器からガス分離器への吸収液の流れは、図3に示すようになっている 。即ち、補助吸収器16には管17から冷媒蒸気が導入され、管18から濃溶液 が滴下されてコイル状管19内を流れる冷却水によって冷却されつつ稀溶液Aに なり、管20からガス分離器へ導出されるようになっている。不凝縮性ガスBは 稀溶液Aに混入してガス分離器へ送られる。The flow of the absorbing liquid from the auxiliary absorber to the gas separator is as shown in FIG. That is, the refrigerant vapor is introduced from the pipe 17 into the auxiliary absorber 16, the concentrated solution is dropped from the pipe 18 and becomes the diluted solution A while being cooled by the cooling water flowing in the coiled pipe 19, and the gas is separated from the pipe 20. It is designed to be delivered to a vessel. The non-condensable gas B is mixed with the dilute solution A and sent to the gas separator.

【0004】[0004]

【考案が解決しようとする課題】[Problems to be solved by the device]

しかしながら、このような従来の吸収式冷凍機の抽気装置にあっては、装置が 小型、小容量化した場合、前記濃溶液の一部を補助吸収器16に分流制御するの は、流量が少量のため制御が困難である。特に、吸収式冷凍機が空冷化されると 運転圧力が変化し、通常使用されるオリフィスやキャピラリー等では制御不能と なる。また、大気に手動にてガスを放出する必要があり、頻繁なメンテナンスを 要することとなる。メンテナンス回数を減じるためには、ガス貯蔵室容量を増加 させればよいが、このために吸収式冷凍機全体が大きくなり小型化できない。 However, in such a conventional bleeder for an absorption refrigerating machine, when the device is downsized and the volume is reduced, it is necessary to control a part of the concentrated solution to the auxiliary absorber 16 so that the flow rate is small. Therefore, it is difficult to control. In particular, when the absorption chiller is cooled by air, the operating pressure changes and it becomes impossible to control it with the orifices and capillaries that are normally used. In addition, it is necessary to manually release the gas to the atmosphere, which requires frequent maintenance. In order to reduce the number of maintenances, it is necessary to increase the capacity of the gas storage chamber, but this makes the entire absorption chiller larger and cannot be downsized.

【0005】 また、吸収器からガス分離器への吸収液の流れを図4のような配置とすると、 吸収口の部分でガスが分離され、ガスを巻き込みにくくガス分離器へガスを導出 しにくくなる。Further, when the flow of the absorbing liquid from the absorber to the gas separator is arranged as shown in FIG. 4, the gas is separated at the absorption port portion, and it is difficult to entrain the gas and to lead the gas to the gas separator. Become.

【0006】 本考案は上記問題点を解決するためになされたもので、その目的はガス捕集機 構が簡素であり、捕集分離したガスを自動的に放出できるとともに容量の大きな ガス貯蔵室を必要とせず、かつ吸収器内の吸収口の部分でガスが分離され、ガス を巻き込み易くした吸収式冷凍機の抽気装置を提供することにある。The present invention has been made in order to solve the above problems, and its purpose is to have a simple gas collecting mechanism, which can automatically release the collected and separated gas and has a large capacity gas storage chamber. It is an object of the present invention to provide a bleed device for an absorption chiller that does not require the above and that gas is separated at the absorption port portion in the absorber so that the gas can be easily entrained.

【0007】[0007]

【課題を解決するための手段】[Means for Solving the Problems]

上記目的を達成するため本考案は、蒸発器にて蒸発した冷媒蒸気を吸収器にて 吸収溶液に吸収させて稀溶液を溶液循環ポンプを介して高温再生器へ送り、この 高温再生器にて加熱することによって冷媒と吸収濃溶液に再生・分離し、分離さ れた冷媒及び吸収濃溶液を前記蒸発器及び吸収器へ還流する循環系と、前記溶液 循環ポンプの下流に配設されたガス分離器とを含んでなる吸収式冷凍機の抽気装 置において、吸収器内の稀溶液を溶液循環ポンプに送るための吸い込み口を逆U 字管で構成したことと、前記ガス分離器内に稀溶液が滞留する区画と排気管区画 とを設け、両区画の間に稀溶液の液面が低下すると開くフロート式弁を設け、排 気管区画と外部との間に排気管区画の圧力が設定値を超えたときに開く逆止弁を 設けたたことを特徴とする。 In order to achieve the above-mentioned object, the present invention makes the absorbing solution absorb the refrigerant vapor evaporated in the evaporator and sends the dilute solution to the high temperature regenerator via the solution circulation pump. A circulation system that regenerates and separates into a refrigerant and an absorption concentrated solution by heating, and returns the separated refrigerant and absorption concentrated solution to the evaporator and the absorber, and a gas arranged downstream of the solution circulation pump. In the extraction device of the absorption refrigerator including a separator, the suction port for sending the dilute solution in the absorber to the solution circulation pump is composed of an inverted U-shaped tube, and the inside of the gas separator is A zone where the diluted solution stays and an exhaust pipe section are provided, and a float valve that opens when the liquid level of the diluted solution drops is provided between both sections, and the pressure of the exhaust tube section is set between the exhaust tube section and the outside. That a check valve that opens when the value is exceeded is installed And butterflies.

【0008】[0008]

【作用】[Action]

吸収器内の稀溶液を吸引する吸い込み口に逆U字形の管を設けたので、該吸い 込み口に吸い込まれた稀溶液に混入した不凝縮性ガスは再び吸収器内に戻りにく く、また、逆U字形の管のために開口が吸収器底面に対向する形となり、稀溶液 が溶液循環ポンプで吸引される際に液面が上下に変動して、液面付近の不凝縮性 ガスが稀溶液とともに吸引されやすい。 Since an inverted U-shaped tube is provided at the suction port for sucking the dilute solution in the absorber, the non-condensable gas mixed in the dilute solution sucked in the suction port is difficult to return to the absorber again. Also, because of the inverted U-shaped tube, the opening faces the bottom of the absorber, and when the dilute solution is sucked by the solution circulation pump, the liquid level fluctuates up and down, causing noncondensable gas near the liquid level. Is easily aspirated together with the dilute solution.

【0009】 溶液循環ポンプによってガス分離器の稀溶液が滞留する区画に送りこまれた稀 溶液に混入していた不凝縮性ガスは、該区画内で稀溶液から分離され、稀溶液液 面上に溜る。溜った不凝縮性ガスの量が多くなると不凝縮性ガスの圧力に押され て稀溶液液面が低下し、液面低下に伴ってフロート式弁が開く。フロート式弁が 開くと、稀溶液液面上に溜っていた不凝縮性ガスが排気管区画に流入する。不凝 縮性ガスが排気管区画に流入すると稀溶液が滞留する区画内の不凝縮性ガスの圧 力が低下して稀溶液液面が上昇し、フロート式弁が閉じる。この過程が繰り返さ れて排気管区画内の圧力がある設定値を超えると逆止弁が開き、排気管区画内の 不凝縮性ガスが大気中に放出される。排気管区画内の不凝縮性ガスが大気中に放 出されると該排気管区画内の圧力は低下し、次に同じ手順が繰り返されて圧力が 上昇するまで逆止弁は閉じたままとなる。The non-condensable gas mixed in the dilute solution sent to the section where the dilute solution of the gas separator stays by the solution circulation pump is separated from the dilute solution in the section, and is separated on the liquid surface of the dilute solution. Collect. When the amount of accumulated non-condensable gas increases, the pressure of the non-condensable gas pushes down the liquid level of the dilute solution, and the float valve opens as the liquid level decreases. When the float valve opens, the non-condensable gas accumulated on the liquid surface of the dilute solution flows into the exhaust pipe section. When the non-condensable gas flows into the exhaust pipe compartment, the pressure of the non-condensable gas in the compartment where the dilute solution stays decreases, the liquid level of the dilute solution rises, and the float valve closes. When this process is repeated and the pressure in the exhaust pipe section exceeds a certain set value, the check valve opens and the non-condensable gas in the exhaust pipe section is released to the atmosphere. When the non-condensable gas in the exhaust pipe section is released into the atmosphere, the pressure in the exhaust pipe section decreases, and the check valve remains closed until the pressure is increased again by repeating the same procedure. ..

【0010】[0010]

【実施例】【Example】

以下、本考案が適用された吸収式冷凍機の一実施例を図1,2に基づいて説明 する。図1に示す吸収式冷凍機は、稀溶液を加熱する高温再生器1と、該高温再 生器1に接続された分離器2と、該分離器2に接続された低温再生器3と、該低 温再生器3に接続された凝縮器4と、該凝縮器4に液冷媒管21で接続された蒸 発器5と、該蒸発器5に冷媒蒸気通路を介して接続された吸収器6と、該吸収器 6に稀溶液吸い込み配管15を介して接続された溶液循環ポンプ9と、該溶液循 環ポンプ9の出口側にガス分離器10を介して接続された低温溶液熱交換器7と 、該低温溶液熱交換器7と前記高温再生器1を結ぶ配管に介装された高温溶液熱 交換器8と、を含んで構成されている。 An embodiment of an absorption refrigerator according to the present invention will be described below with reference to FIGS. The absorption refrigerator shown in FIG. 1 includes a high temperature regenerator 1 for heating a dilute solution, a separator 2 connected to the high temperature regenerator 1, and a low temperature regenerator 3 connected to the separator 2. A condenser 4 connected to the low temperature regenerator 3, a vaporizer 5 connected to the condenser 4 by a liquid refrigerant pipe 21, and an absorber connected to the evaporator 5 via a refrigerant vapor passage. 6, a solution circulation pump 9 connected to the absorber 6 via a dilute solution suction pipe 15, and a low temperature solution heat exchanger connected to the outlet side of the solution circulation pump 9 via a gas separator 10. 7, and a high temperature solution heat exchanger 8 interposed in a pipe connecting the low temperature solution heat exchanger 7 and the high temperature regenerator 1.

【0011】 図1に示す吸収式冷凍機において、高温再生器1は燃焼室を備え、冷媒を吸収 して濃度が薄くなった稀溶液を加熱する。該高温再生器1に接続して設けられた 分離器2は、加熱された稀溶液から蒸発する冷媒蒸気と冷媒蒸気を蒸発させて濃 度が濃くなった中間濃溶液とを分離し、前者を低温再生器3の管側へ後者を高温 溶液熱交換器8の加熱流体側へと送り込む。高温溶液熱交換器8で被加熱流体側 を流れる稀溶液に熱を与えて温度が低下した中間濃溶液は低温再生器3の胴側に 流入する。低温再生器3では、分離器2から流入して管側を流れる冷媒蒸気で胴 側に流入する中間濃溶液が再加熱され、該中間濃溶液の中から更に新たな冷媒蒸 気が発生し、新たな冷媒蒸気を発生させた中間濃溶液は濃度が高くなって濃溶液 となる。In the absorption refrigerator shown in FIG. 1, the high temperature regenerator 1 has a combustion chamber and absorbs a refrigerant to heat a dilute solution having a low concentration. A separator 2 connected to the high temperature regenerator 1 separates a refrigerant vapor that evaporates from a heated dilute solution and an intermediate concentrated solution that is concentrated by evaporating the refrigerant vapor, The latter is sent to the tube side of the low temperature regenerator 3 and to the heating fluid side of the high temperature solution heat exchanger 8. The high temperature solution heat exchanger 8 applies heat to the dilute solution flowing on the heated fluid side to lower the temperature, and the intermediate concentrated solution flows into the barrel side of the low temperature regenerator 3. In the low temperature regenerator 3, the intermediate concentrated solution flowing from the separator 2 and flowing into the tube side reheats the intermediate concentrated solution flowing into the body side, and new refrigerant vapor is generated from the intermediate concentrated solution. The concentration of the intermediate concentrated solution in which new refrigerant vapor is generated becomes high and becomes a concentrated solution.

【0012】 新たに発生した冷媒蒸気及び分離器2から流入した冷媒蒸気は、前記中間濃溶 液に熱を与えて一部凝縮して生成された冷媒液を伴って凝縮器24へ流入し、生 成された濃溶液は低温溶液熱交換器7の加熱流体側に流入する。凝縮器4は低温 再生器3で新たに発生した冷媒蒸気と低温再生器3で冷媒液とならなかった冷媒 蒸気を冷却水を用いて冷却液化して冷媒液にし、蒸発器5へ送り込む。蒸発器5 には、内部に冷却すべき循環水が流れる伝熱管(冷水器)14が配設されており 、該伝熱管14外面に凝縮器4から送られてくる冷媒液が散布器を用いて散布さ れる。蒸発器内部は、大気圧よりも低い所定の圧力に減圧されており、散布され た冷媒液は伝熱管14内を流れる循環水の熱を奪って蒸発し、熱を奪われた循環 水は冷水となって、所要の冷水負荷に送られる。また、蒸発した冷媒蒸気は、冷 媒蒸気通路を経て吸収器6に流入する。The newly generated refrigerant vapor and the refrigerant vapor flowing from the separator 2 flow into the condenser 24 together with the refrigerant liquid generated by applying heat to the intermediate concentrated solution and partially condensing the intermediate concentrated solution, The formed concentrated solution flows into the heating fluid side of the low temperature solution heat exchanger 7. The condenser 4 uses the cooling water to liquefy the refrigerant vapor newly generated in the low temperature regenerator 3 and the refrigerant vapor that has not become the refrigerant liquid in the low temperature regenerator 3 into the refrigerant liquid, and sends it to the evaporator 5. The evaporator 5 is provided with a heat transfer tube (cooling water) 14 through which circulating water to be cooled flows, and the refrigerant liquid sent from the condenser 4 is applied to the outer surface of the heat transfer tube 14 by using a sprayer. Be sprayed. The inside of the evaporator is depressurized to a predetermined pressure lower than the atmospheric pressure, and the sprayed refrigerant liquid takes away the heat of the circulating water flowing through the heat transfer tubes 14 to evaporate, and the circulating water deprived of the heat is cold water. And sent to the required cold water load. Further, the evaporated refrigerant vapor flows into the absorber 6 via the cooling medium vapor passage.

【0013】 一方、低温溶液熱交換器7の加熱流体側に流入し、被加熱流体側を流れる稀溶 液に熱を与えて温度が低下した濃溶液は吸収器6に流入し、その上部に設けられ た散布器を経て内装された冷却水管外面上に散布・滴下される。散布・滴下され た濃溶液は、蒸発器5から吸収器6に流入してくる冷媒蒸気を吸収し、稀溶液と なる。吸収器6における吸収作用によって蒸発器5内は所定の真空度に維持され ており、蒸発器5内の伝熱管14上に散布された冷媒液は所定の温度で蒸発でき るようになっている。また、濃溶液が冷媒蒸気を吸収して稀溶液となる際に発生 する吸収熱は、吸収器6に内装されコイル状パイプで構成された冷却水管13内 を流れる冷却水により冷却される。冷却水管13は凝縮器4内の冷却水管とも連 なっている。図5は、蒸発器5と流下液膜式吸収器6が同一容器内に配設された 例を示す。On the other hand, the concentrated solution flowing into the heating fluid side of the low temperature solution heat exchanger 7 and applying heat to the dilute solution flowing in the heated fluid side flows into the absorber 6 and then flows to the upper part thereof. It is sprayed and dripped on the outer surface of the cooling water pipe installed through the provided sprayer. The concentrated solution that has been sprayed and dropped absorbs the refrigerant vapor flowing from the evaporator 5 into the absorber 6 and becomes a dilute solution. The inside of the evaporator 5 is maintained at a predetermined vacuum degree by the absorption action of the absorber 6, and the refrigerant liquid sprinkled on the heat transfer tubes 14 inside the evaporator 5 can be evaporated at a predetermined temperature. .. Further, the absorption heat generated when the concentrated solution absorbs the refrigerant vapor to become the diluted solution is cooled by the cooling water flowing inside the cooling water pipe 13 which is built in the absorber 6 and is constituted by the coiled pipe. The cooling water pipe 13 is also connected to the cooling water pipe in the condenser 4. FIG. 5 shows an example in which the evaporator 5 and the falling-film absorber 6 are arranged in the same container.

【0014】 吸収器6において冷媒蒸気を吸収して稀溶液となった吸収液は、溶液循環ポン プ9により、低温溶液熱交換器7および高温溶液熱交換器8を介して高温再生器 1に送られ、前述のサイクルが繰り返される。The absorbing liquid that has absorbed the refrigerant vapor in the absorber 6 and becomes a dilute solution is passed to the high temperature regenerator 1 via the low temperature solution heat exchanger 7 and the high temperature solution heat exchanger 8 by the solution circulation pump 9. Sent and the cycle described above is repeated.

【0015】 溶液循環ポンプ9の出口側と低温溶液熱交換器7の被加熱流体入り口(稀溶液 入り口)を結ぶ配管には、溶液循環ポンプ9から送り出される稀溶液に含まれる 不凝縮性ガスを分離するガス分離器10が介装されている。該ガス分離器10は 、円筒状の容器である稀溶液が滞留する区画をなす分離器本体10Aと、該分離 器本体10Aの上部に接続され分離器本体10A内と外気とを連通する排気管区 画をなす排気管10Bと、該排気管10Bと分離器本体10Aとの間に装着され て分離器本体10A内の稀溶液が排気管10Bに流入するのを防ぐフロート式弁 と、前記排気管10Bの上端開口部に装着されて外気が排気管10B内に流入す るのを防止する逆止弁12とを含んで構成されている。分離器本体10Aと前記 溶液循環ポンプ9の出口側を結ぶ配管及び分離器本体10Aと前記低温溶液熱交 換器7の被加熱流体入り口(稀溶液入り口)側を結ぶ配管は、いずれも分離器本 体10Aの下部に接続されている。フロート式弁11は、通常稀溶液の浮力によ り閉じられている。The pipe connecting the outlet side of the solution circulation pump 9 and the heated fluid inlet (dilute solution inlet) of the low temperature solution heat exchanger 7 is filled with the non-condensable gas contained in the diluted solution sent from the solution circulation pump 9. The gas separator 10 for separating is interposed. The gas separator 10 includes a separator body 10A, which is a cylindrical container in which a dilute solution is retained, and an exhaust pipe section which is connected to an upper portion of the separator body 10A and communicates the inside of the separator body 10A with the outside air. An exhaust pipe 10B, a float type valve installed between the exhaust pipe 10B and the separator body 10A to prevent the dilute solution in the separator body 10A from flowing into the exhaust pipe 10B, and the exhaust pipe. The check valve 12 is attached to the upper opening of 10B and prevents the outside air from flowing into the exhaust pipe 10B. The pipe connecting the separator body 10A and the outlet side of the solution circulating pump 9 and the pipe connecting the separator body 10A and the heated fluid inlet (dilute solution inlet) side of the low temperature solution heat exchanger 7 are both separators. It is connected to the bottom of the main body 10A. The float valve 11 is normally closed by the buoyancy of the dilute solution.

【0016】 吸収器6と溶液循環ポンプ9の入り口側を結ぶ稀溶液吸い込み配管15の吸収 器6との接続部は、図2に示されるように形成されている。すなわち該配管15 の吸収器側末端は、吸収器6内の下部で吸収器6の底面に対向して下向きに開口 しており、該開口は逆U字形管を介して吸収器外部の稀溶液吸い込み配管15に 接続されている。The connecting portion between the absorber 6 and the absorber 6 of the dilute solution suction pipe 15 that connects the inlet side of the solution circulation pump 9 is formed as shown in FIG. That is, the end of the pipe 15 on the absorber side is opened downward facing the bottom surface of the absorber 6 in the lower part of the absorber 6, and the opening is provided through the inverted U-shaped tube to the diluted solution outside the absorber. It is connected to the suction pipe 15.

【0017】 吸収器6内で流下壁面を流下しつつ冷媒蒸気を吸収した濃溶液は、稀溶液とな って吸収器底部にたまり、稀溶液吸い込み配管15の末端開口部の高さに達する 。吸収器底部にたまった稀溶液は溶液循環ポンプ9に吸引され、該稀溶液に混入 している不凝縮性ガスとともにガス分離器10に送りこまれる。稀溶液吸い込み 配管15の末端開口が下向きとなっており、該開口に接続して逆U字形の管が設 けられているので、一旦開口内に吸引された稀溶液内に混入している不凝縮性ガ スは前記末端開口から吸収器内に放出されることなくガス分離器10内に送りこ まれ、吸収器内から確実に取り出される。また、溶液循環ポンプ9によって吸引 される際に、逆U字形部分の存在のために稀溶液液面が上下し、不凝縮性ガスを 含んだ冷媒蒸気が稀溶液とともに吸引されやすい。特に図5に示す流下液膜式吸 収器では、吸収器底部の稀溶液液面上に不凝縮性ガスが溜りやすく、逆U字形管 による不凝縮性ガスの吸いだし効果が大きい。The concentrated solution that has absorbed the refrigerant vapor while flowing down the falling wall surface in the absorber 6 becomes a dilute solution and accumulates at the bottom of the absorber, and reaches the height of the end opening of the dilute solution suction pipe 15. The dilute solution accumulated at the bottom of the absorber is sucked by the solution circulation pump 9 and sent to the gas separator 10 together with the non-condensable gas mixed in the dilute solution. Suction of dilute solution Since the end opening of the pipe 15 is facing downward and an inverted U-shaped pipe is connected to the end, the dilute solution once sucked into the opening is not mixed with the dilute solution. The condensable gas is fed into the gas separator 10 without being discharged into the absorber through the terminal opening, and is reliably taken out from the absorber. Further, when sucked by the solution circulation pump 9, the liquid level of the dilute solution rises and falls due to the existence of the inverted U-shaped portion, and the refrigerant vapor containing the non-condensable gas is easily sucked together with the dilute solution. In particular, in the falling liquid film type absorber shown in FIG. 5, the non-condensable gas is likely to accumulate on the liquid surface of the dilute solution at the bottom of the absorber, and the effect of sucking the non-condensable gas by the inverted U-shaped tube is great.

【0018】 溶液循環ポンプ9によってガス分離器10に送りこまれた稀溶液に混入してい た不凝縮性ガスは、該ガス分離器内で稀溶液から分離され、稀溶液液面上に溜る 。溜った不凝縮性ガスの量が多くなると不凝縮性ガスの圧力に押されて液面が低 下し、フロート式弁11が開く。フロート式弁11が開くと、稀溶液液面上に溜 っていた不凝縮性ガスが排気管10Bに流入する。不凝縮性ガスが排気管10B に流入するとガス分離器本体10A内の不凝縮性ガスの圧力が低下して稀溶液液 面が上昇し、フロート式弁11が閉じる。この過程が繰り返されて排気管10B 内の圧力がある設定値を超えると逆止弁12が開き、排気管10B内の不凝縮性 ガスが大気中に放出される。排気管10B内の不凝縮性ガスが大気中に放出され ると該排気管10B内の圧力は低下し、次に同じ手順が繰り返されて圧力が上昇 するまで逆止弁12は閉じたままとなる。逆止弁12は、冷凍運転停止時に、機 内に大気が流入するのを防止する役割も果たしている。また、排気管10Bの長 さは流入する冷媒蒸気の凝縮を促進し、冷媒の大気中への放出を防ぐために、長 くするのが望ましい。The non-condensable gas mixed in the dilute solution sent to the gas separator 10 by the solution circulation pump 9 is separated from the dilute solution in the gas separator and accumulates on the liquid surface of the dilute solution. When the amount of the accumulated non-condensable gas increases, the pressure of the non-condensable gas pushes the liquid surface to lower the float valve 11. When the float valve 11 is opened, the non-condensable gas accumulated on the liquid surface of the dilute solution flows into the exhaust pipe 10B. When the non-condensable gas flows into the exhaust pipe 10B, the pressure of the non-condensable gas in the gas separator body 10A decreases, the liquid level of the dilute solution rises, and the float valve 11 closes. When this process is repeated and the pressure in the exhaust pipe 10B exceeds a certain set value, the check valve 12 opens and the non-condensable gas in the exhaust pipe 10B is released to the atmosphere. When the non-condensable gas in the exhaust pipe 10B is released into the atmosphere, the pressure in the exhaust pipe 10B decreases, and the check valve 12 remains closed until the pressure is increased again by repeating the same procedure. Become. The check valve 12 also plays a role of preventing the inflow of air into the machine when the refrigeration operation is stopped. The length of the exhaust pipe 10B is preferably long in order to promote the condensation of the inflowing refrigerant vapor and prevent the refrigerant from being released into the atmosphere.

【0019】[0019]

【考案の効果】[Effect of the device]

以上、説明したように、本考案の吸収式冷凍機の抽気装置によれば、吸収器底 部の稀溶液吸い込み配管に逆U字形の部分が設けられるので、不凝縮性ガス捕集 のための低圧部を設けることなく、効率的に不凝縮性ガスを捕集することが可能 となり、装置全体の小型化が可能となった。また、溶液循環ポンプの出口側に設 けた不凝縮性ガス分離器に稀溶液が流入する分離器本体区画と不凝縮性ガスを蓄 える排気管区画とが設けられ、両区画の間に、分離器本体区画内の不凝縮性ガス の量が増加して稀溶液液面が低下すると開いて不凝縮性ガスを排気管区画に導入 するフロート式弁が設けられ、排気管区画と大気との間に、該排気管区画の不凝 縮性ガスの圧力がある設定値を超えると開いて排気管区画の不凝縮性ガスを大気 中に放出する逆止弁が設けられるので、捕集分離された不凝縮性ガスが自動的に 大気中に放出され、メンテナンス回数をへらすことが可能になるとともに、容量 の大きなガス貯蔵室を設ける必要がなくなり、冷凍装置の小型化が可能になる。 As described above, according to the extraction device of the absorption refrigerating machine of the present invention, the dilute solution suction pipe at the bottom of the absorber is provided with the inverted U-shaped portion, so that the non-condensable gas is collected. The non-condensable gas can be efficiently collected without providing a low pressure part, and the size of the entire device can be reduced. In addition, the non-condensable gas separator installed on the outlet side of the solution circulation pump is provided with a separator main body section in which the dilute solution flows and an exhaust pipe section for storing the non-condensable gas, and a separation section is provided between both sections. A float valve is provided to open the non-condensable gas into the exhaust pipe compartment when the amount of the non-condensable gas in the main unit compartment increases and the liquid level of the dilute solution decreases. In addition, a check valve that opens when the pressure of the non-condensable gas in the exhaust pipe section exceeds a certain set value and releases the non-condensable gas in the exhaust pipe section to the atmosphere is collected and separated. The non-condensable gas is automatically released into the atmosphere, reducing the number of maintenance cycles and eliminating the need for a large-capacity gas storage chamber, which makes it possible to downsize the refrigeration system.

【図面の簡単な説明】[Brief description of drawings]

【図1】本考案を適用した吸収式冷凍機の一実施例の主
要部の構成を示すブロック図である。
FIG. 1 is a block diagram showing a configuration of a main part of an embodiment of an absorption refrigerator according to the present invention.

【図2】本考案の実施例の部分の詳細を示す断面図であ
る。
FIG. 2 is a sectional view showing details of a portion of an embodiment of the present invention.

【図3】従来技術の例を示す断面図である。FIG. 3 is a sectional view showing an example of a conventional technique.

【図4】従来技術の例を示す断面図である。FIG. 4 is a sectional view showing an example of a conventional technique.

【図5】図1に示す実施例の部分を示す斜視図である。5 is a perspective view showing a part of the embodiment shown in FIG. 1. FIG.

【符号の説明】[Explanation of symbols]

1 高温再生器 2 分離器 3 低温再生器 4 凝縮器 5 蒸発器 6 吸収器 7 低温溶液熱交換器 8 高温溶液熱交
換器 9 溶液循環ポンプ 10 ガス分離器 10A 分離器本体 10B 排気管 11 フロート式弁 12 逆止弁 13 冷却水管 14 伝熱管 15 稀溶液吸い込み管 16 補助吸収器 17 管 18 管 19 コイル状管 20 管 21 液冷媒管 22 濃溶液管
1 High temperature regenerator 2 Separator 3 Low temperature regenerator 4 Condenser 5 Evaporator 6 Absorber 7 Low temperature solution heat exchanger 8 High temperature solution heat exchanger 9 Solution circulation pump 10 Gas separator 10A Separator body 10B Exhaust pipe 11 Float type Valve 12 Check valve 13 Cooling water pipe 14 Heat transfer pipe 15 Dilute solution suction pipe 16 Auxiliary absorber 17 pipe 18 pipe 19 Coiled pipe 20 pipe 21 Liquid refrigerant pipe 22 Concentrated solution pipe

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】 蒸発器にて蒸発した冷媒蒸気を吸収器に
て吸収溶液に吸収させて稀溶液を溶液循環ポンプを介し
て高温再生器へ送り、この高温再生器にて加熱すること
によって冷媒と吸収濃溶液に再生・分離し、分離された
冷媒及び吸収濃溶液を前記蒸発器及び吸収器へ還流する
循環系と、前記溶液循環ポンプの下流に配設されたガス
分離器とを含んでなる吸収式冷凍機の抽気装置におい
て、吸収器内の稀溶液を溶液循環ポンプに送るための吸
い込み口を逆U字管で構成したことと、前記ガス分離器
内に稀溶液が滞留する区画と排気管区画とを設け、両区
画の間に稀溶液の液面が低下すると開くフロート式弁を
設け、排気管区画と外部との間に排気管区画の圧力が設
定値を超えたときに開く逆止弁を設けたたことを特徴と
する吸収式冷凍機の抽気装置。
1. A refrigerant by absorbing refrigerant vapor evaporated in an evaporator into an absorbing solution in an absorber and sending a dilute solution to a high temperature regenerator through a solution circulation pump and heating in the high temperature regenerator. And a circulation system that regenerates and separates the absorption concentrated solution into a refrigerant and the absorption concentrated solution, and returns the separated refrigerant and the absorption concentrated solution to the evaporator and the absorber, and a gas separator disposed downstream of the solution circulation pump. In the extraction apparatus of the absorption type refrigerating machine, the suction port for sending the dilute solution in the absorber to the solution circulation pump is composed of an inverted U-shaped tube, and a section in which the dilute solution stays in the gas separator. An exhaust pipe compartment is provided, and a float valve that opens when the liquid level of the dilute solution drops between both compartments is opened between the exhaust pipe compartment and the outside when the pressure in the exhaust pipe compartment exceeds the set value. Extraction type absorption chiller characterized by having a check valve Qi device.
JP3590592U 1992-05-28 1992-05-28 Bleeding device for absorption refrigerator Expired - Fee Related JP2558853Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3590592U JP2558853Y2 (en) 1992-05-28 1992-05-28 Bleeding device for absorption refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3590592U JP2558853Y2 (en) 1992-05-28 1992-05-28 Bleeding device for absorption refrigerator

Publications (2)

Publication Number Publication Date
JPH0594664U true JPH0594664U (en) 1993-12-24
JP2558853Y2 JP2558853Y2 (en) 1998-01-14

Family

ID=12455048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3590592U Expired - Fee Related JP2558853Y2 (en) 1992-05-28 1992-05-28 Bleeding device for absorption refrigerator

Country Status (1)

Country Link
JP (1) JP2558853Y2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009511855A (en) * 2005-10-17 2009-03-19 ▲張▼▲跳▼ Automatic exhaust apparatus having lithium bromide apparatus and no vacuum pump and method thereof
CN107433053A (en) * 2017-09-11 2017-12-05 成都威斯特低温设备有限公司 A kind of gas-liquid separator of constant temperature liquid gas

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009511855A (en) * 2005-10-17 2009-03-19 ▲張▼▲跳▼ Automatic exhaust apparatus having lithium bromide apparatus and no vacuum pump and method thereof
CN107433053A (en) * 2017-09-11 2017-12-05 成都威斯特低温设备有限公司 A kind of gas-liquid separator of constant temperature liquid gas
CN107433053B (en) * 2017-09-11 2023-05-30 成都威斯特低温设备有限公司 Gas-liquid separator for constant temperature liquefied gas

Also Published As

Publication number Publication date
JP2558853Y2 (en) 1998-01-14

Similar Documents

Publication Publication Date Title
JPS6035015Y2 (en) Purge device for refrigeration system
US5636526A (en) Apparatus and method for automatically purging an absorption cooling system
US3949566A (en) Purge arrangement for absorption refrigeration systems
US5067327A (en) Refrigerant recovery and recharging device
JPH0364792B2 (en)
JPS6030686Y2 (en) Purge device for refrigeration equipment
US3367135A (en) Purge arrangement for absorption refrigeration systems
US3131546A (en) Purge arrangements
US3367134A (en) Purge arrangement for absorption refrigeration systems
JPH0594664U (en) Absorption refrigerator bleed device
JP3209927B2 (en) Absorption refrigeration equipment
US3688515A (en) Method and apparatus for removing water and noncondensible gases from certain refrigerants
JPH03160284A (en) Extractor for absorbing refrigerator
JPS6244284Y2 (en)
JPH0744919Y2 (en) Hydrogen gas discharge device
JP4205896B2 (en) Absorption refrigerator
US3174296A (en) Refrigeration purge system
JP2862614B2 (en) Bleed exhaust system for air-cooling absorption air conditioner
CN216245639U (en) Tobacco vacuum moisture regaining machine of multi-stage indirect condensation type composite vacuum device
CN218915501U (en) Vacuum precooler
JPS6111578A (en) Discharger for noncondensable gas from absorption refrigerator
JPS5828907B2 (en) Absorption chiller bleed device
JP2708901B2 (en) Absorption refrigerator
JPH061140B2 (en) Absorption heat pump non-condensable gas discharge device
JP3081334B2 (en) Bleeding device for absorption refrigerator

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees