JPH059455Y2 - - Google Patents

Info

Publication number
JPH059455Y2
JPH059455Y2 JP1986187826U JP18782686U JPH059455Y2 JP H059455 Y2 JPH059455 Y2 JP H059455Y2 JP 1986187826 U JP1986187826 U JP 1986187826U JP 18782686 U JP18782686 U JP 18782686U JP H059455 Y2 JPH059455 Y2 JP H059455Y2
Authority
JP
Japan
Prior art keywords
scavenging
cylinder
port
scavenging port
center
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1986187826U
Other languages
Japanese (ja)
Other versions
JPS6392031U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1986187826U priority Critical patent/JPH059455Y2/ja
Publication of JPS6392031U publication Critical patent/JPS6392031U/ja
Application granted granted Critical
Publication of JPH059455Y2 publication Critical patent/JPH059455Y2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Description

【考案の詳細な説明】 〔産業上の利用分野〕 本考案はユニフロー2サイクルエンジンの掃気
ポートに関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a scavenging port for a uniflow two-stroke engine.

〔従来の技術〕[Conventional technology]

第2図を参照しユニフロー2サイクルデイーゼ
ルエンジンの掃気ポートについて説明する。図に
おいて1はピストン、2はシリンダライナ、3は
掃気ポートであり、掃排気行程の末期にピストン
1が掃気ポート3を開くと、掃気が掃気ポート3
を通つてシリンダ2内へ流入し、筒内の残留燃焼
ガスを図示しない排気弁を通つて押し出し筒内を
掃気する。この際同時に掃気流に旋回速度を与え
充填効率の向上をはかると共に、燃焼の改善をは
かる目的で掃気ポート3の穿孔方向がシリンダ中
心に対して偏心して明けられ、第3図においてθ
で示される掃気口角度が与えられている。θ方向
の延長線と接するシリンダ中心を中心とする円の
直径をDとすると、このDをスワール円直径と呼
んでいる。掃気は掃気ポート3よりシリンダに流
入後、シリンダ内面とで挟まれた領域内で旋回運
動をした後、拡散しつつシリンダ上方へ流れて行
く。
The scavenging port of the Uniflow two-stroke diesel engine will be explained with reference to FIG. In the figure, 1 is a piston, 2 is a cylinder liner, and 3 is a scavenging port. When the piston 1 opens the scavenging port 3 at the end of the scavenging stroke, scavenging air flows through the scavenging port 3.
The remaining combustion gas in the cylinder is pushed out through an exhaust valve (not shown) and scavenges the inside of the cylinder. At this time, the perforation direction of the scavenging port 3 is eccentrically opened with respect to the center of the cylinder in order to simultaneously impart swirling speed to the scavenging air flow, improve charging efficiency, and improve combustion.
The scavenging port angle shown is given. If D is the diameter of a circle centered on the cylinder center that is in contact with the extension line in the θ direction, this D is called the swirl circle diameter. After the scavenging air flows into the cylinder from the scavenging port 3, it makes a swirling motion within the region between the scavenging air port 3 and the inner surface of the cylinder, and then flows upward into the cylinder while being diffused.

〔考案が解決しようとする問題点〕[Problem that the invention attempts to solve]

従来例では掃気に強い旋回流を与えて燃焼改善
を得るために、掃気口に大きな掃気孔角度θを与
えており、しかも各段のスワール円直径D1=D2
=D3である第1従来例では第5図に示すように
掃気口から流入した掃気は、スワール円直径Dと
シリンダ内周との間で旋回運動をしつつ上方に流
れてゆくために、シリンダ中心部には斜線で示す
ように多くの残留ガスが残り、掃排気行程が終了
後もこの残留ガスが排除されずに掃気効率を低下
させ、燃焼に必要な空気量を十分に確保できなく
なつていた。
In the conventional example, in order to improve combustion by providing a strong swirling flow to the scavenging air, a large scavenging hole angle θ is given to the scavenging air port, and the swirl circle diameter of each stage D 1 = D 2
In the first conventional example where = D 3 , as shown in FIG. 5, the scavenging air flowing in from the scavenging port flows upward while making a swirling motion between the swirl diameter D and the inner circumference of the cylinder. A large amount of residual gas remains in the center of the cylinder, as shown by the diagonal lines, and even after the scavenging stroke is completed, this residual gas is not removed, reducing scavenging efficiency and making it impossible to secure a sufficient amount of air necessary for combustion. I was getting used to it.

また上記掃気効率を向上させるための第2従来
例では第6図に示すように複数の掃気角度θをも
つ掃気口を組合せ、上方には大きなθを与え、下
方には小さなθを与えると、上部掃気口から流入
した掃気はシリンダ外周を、また下部掃気口から
流入した掃気はシリンダ中心部を流れるようにな
る。即ち(θ1>θ2>θ3)で(D1>D2>D3)とす
ることによつて掃気効率の改善をはかろうとする
ものであるが、この場合においてもシリンダ中心
部に向つて穿孔された掃気口下部33は、ピスト
ンが一番下まで下降してはじめて開口し、ピスト
ンが再び上昇すると直ちに閉止されてしまうの
で、掃気角度θの小さい掃気が流れる時間が短か
くなり、第6図に斜線で示すように、残留ガスは
シリンダ外周は速く排除されるが、中心部はやは
り排除速度が遅くなり、第2従来例の第6図では
第1従来例の第5図のような一定掃気孔角θ1=θ2
=θ3の場合よりは掃気効果率の改善効果はある
が、大幅な改善は得られない。即ち従来技術にお
ける掃気口形状の考え方は、掃気と残留ガスを分
離して順次押しのけて掃気作用を行わせようとす
るものであるため、高い掃気旋回流を与えようと
する場合には遠心力が働いて掃気は外方に流され
るため基本的に矛盾をはらんでおり、掃気効率の
限界レベルは低下せざるを得ない、またこの性質
はピストンのストロークが長くなればなる程顕著
となる傾向がある。
In the second conventional example for improving the scavenging efficiency, scavenging ports having multiple scavenging angles θ are combined as shown in FIG. The scavenging air flowing in from the upper scavenging port flows around the outer circumference of the cylinder, and the scavenging air flowing in from the lower scavenging port flows through the center of the cylinder. In other words, by setting (θ 1 > θ 2 > θ 3 ) and (D 1 >D 2 >D 3 ), the scavenging efficiency is attempted to be improved. The lower part 33 of the scavenging port, which is perforated in the opposite direction, opens only when the piston descends to the lowest position, and is immediately closed when the piston rises again. Therefore, the time during which the scavenging air with a small scavenging angle θ flows is shortened. As shown by diagonal lines in Fig. 6, the residual gas is removed quickly from the outer periphery of the cylinder, but the removal speed is still slow at the center. Constant scavenging hole angle θ 1 = θ 2
Although there is an effect of improving the scavenging efficiency rate compared to the case where = θ 3 , a significant improvement is not obtained. In other words, the concept of the shape of the scavenging port in the prior art is to separate the scavenging air and residual gas and push them away one after another to perform the scavenging action. As the piston works, the scavenging air flows outward, which is fundamentally contradictory, and the critical level of scavenging efficiency has to decrease, and this property tends to become more pronounced as the piston stroke becomes longer. There is.

本考案の目的は従来装置の問題点を解消し、高
い旋回流と掃気効率が得られ、良好な燃焼と高出
力が達成できるユニフロー2サイクルエンジンの
掃気口を提供するにある。
The purpose of the present invention is to provide a scavenging port for a uniflow two-cycle engine that can solve the problems of conventional devices, provide high swirling flow and scavenging efficiency, and achieve good combustion and high output.

〔問題点を解決するための手段〕[Means for solving the problem]

本考案に係る2サイクルエンジンの掃気ポート
は離層掃気、すなわち掃気と残留ガスをできるだ
け分離して押しのけ作用によつて排除する従来の
考え方を改め、逆に掃気をシリンダ内でかきま
ぜ、一部残留ガスと混合させつつ掃気作用を行な
わせるという考え方のもとに掃気口の上部は掃気
口角度θを小さくし、掃気口下部は掃気口角度θ
が大きくなるように掃気口を形成することによつ
て、強い掃気旋回流と同時に高い掃気効率を得る
ようにしたことを特徴としている。
The scavenging port of the two-stroke engine according to the present invention has changed the conventional concept of separating the scavenging air, that is, separating the scavenging air and residual gas as much as possible and eliminating them by displacement action, and conversely stirs the scavenging air within the cylinder, so that some residual gas remains. Based on the idea of performing scavenging action while mixing with gas, the upper part of the scavenging port has a smaller scavenging port angle θ, and the lower part of the scavenging port has a smaller scavenging port angle θ.
By forming the scavenging port so that the scavenging air is large, a strong scavenging swirling flow and high scavenging efficiency can be obtained at the same time.

〔作用〕 上部の掃気口は掃気角度θを小さくしているの
で、掃気流れの流線はシリンダ中心から外周まで
満遍なく上方へ分布しているが、下部へゆく程掃
気角度θが大きくなり遠心力のためシリンダ外周
部のみの回転上昇流れとなるため、上部と下部よ
りの掃気口流線が干渉し合つて乱れによる掃気と
排気の混入が生じる。その結果残留ガスの一部は
掃気にまざつて残つてしまうが、掃気の流れは全
体としてシリンダ半径方向に均一な上方流れ分布
となつて、強い旋回流のものではかえつて残留ガ
スの排除能力が高められる。
[Operation] The upper scavenging port makes the scavenging angle θ smaller, so the streamlines of the scavenging flow are evenly distributed upwards from the center of the cylinder to the outer periphery, but the scavenging angle θ increases toward the bottom, causing centrifugal force. As a result, only the cylinder's outer circumference rotates upward, and the scavenging air flow lines from the upper and lower parts interfere with each other, resulting in mixing of scavenging air and exhaust air due to turbulence. As a result, some of the residual gas remains in the scavenging air, but the scavenging air flow has a uniform upward flow distribution in the cylinder radial direction as a whole, and a strong swirling flow actually reduces the ability to remove the residual gas. be enhanced.

〔実施例〕〔Example〕

以下第1〜4図を参照し本考案の一実施例につ
いて説明する。
An embodiment of the present invention will be described below with reference to FIGS. 1 to 4.

第2図の掃気ポート3は第1図〜第3図に示す
ように、全てシリンダライナ2の軸心線に直角方
向即ち水平方向に穿設され、かつシリンダライナ
2の軸線方向に複数段(この実施例の場合は3
段)配置されている。また、各段の掃気口31,
32,33は、第1図に示すように、シリンダラ
イナ2の軸線方向において連通して連続した掃気
口となつている。さらに、シリンダの上部掃気口
31の穿孔方向はシリンダ中心方向をむいてお
り、32,33と下方に行くにつれて掃気口の穿
孔方向がシリンダ中心からそれて掃気口角度θが
大きくなるように形成されている。その結果第3
図に示すように掃気口31〜33の掃気口角度θ1
〜θ3およびスワール円直径D1〜D3はθ1<θ2<θ3
D1<D2<D3となつている。
As shown in FIGS. 1 to 3, the scavenging ports 3 in FIG. In this example, 3
tier) are arranged. In addition, the scavenging ports 31 of each stage,
As shown in FIG. 1, 32 and 33 are continuous scavenging ports that communicate in the axial direction of the cylinder liner 2. Further, the perforation direction of the upper scavenging port 31 of the cylinder faces toward the center of the cylinder, and the perforation direction of the scavenging port deviates from the center of the cylinder as it goes downward to 32 and 33, and the scavenging port angle θ increases. ing. As a result, the third
As shown in the figure, the scavenging port angle θ 1 of the scavenging ports 31 to 33
3 and swirl circle diameter D 1 ~D 3 are θ 1 < θ 2 < θ 3 ,
D 1 < D 2 < D 3 .

次に前記実施例の作用について説明する。 Next, the operation of the above embodiment will be explained.

掃排気行程の初期に掃気口31がまず開口し掃
気はシリンダ半径方向に満遍なく上方への流線を
形成する。続いて掃気口32を開くとこの掃気口
32を通る掃気の流線は遠心力の作用によりスワ
ール円D2より内部には入り得ないので、上部掃
気口31を通る流線と干渉を生じる。さらに引続
き掃気口33が開くと第4図に示すように下方掃
気口角度θの大きな流れは、その上部に形成され
ているスワール円直径Dの小さな流線の水平部分
によつて妨げられ、流線どうしの干渉を生じ乱れ
かくはんを生じる。その結果残留ガスの一部は掃
気流内に取り込まれ掃気の純度は低下するが、全
体としては下部掃気口33に与えられた強い旋回
流のモーメンタムは保存されたまま、シリンダ上
方への掃気流はシリンダ半径方向にほぼ均一に分
布され、残留ガスがかたまつた領域を形成するこ
となく掃気作用が行われ掃気効率が向上する。
At the beginning of the scavenging stroke, the scavenging port 31 first opens, and the scavenging air forms a streamline upward evenly in the cylinder radial direction. Subsequently, when the scavenging port 32 is opened, the streamline of the scavenging air passing through the scavenging port 32 cannot enter inside the swirl circle D 2 due to the action of centrifugal force, so it interferes with the streamline passing through the upper scavenging port 31. When the scavenging port 33 continues to open, as shown in FIG. Interference between wires occurs, causing disturbance and agitation. As a result, some of the residual gas is taken into the scavenging air flow and the purity of the scavenging air decreases, but overall the momentum of the strong swirling flow given to the lower scavenging air port 33 is maintained and the scavenging air flow upwards into the cylinder. is distributed almost uniformly in the radial direction of the cylinder, and the scavenging action is performed without forming a region where the residual gas is concentrated, improving the scavenging efficiency.

またエンジンストロークが長くなればなる程、
掃気ポート3近傍の拡散混合領域の全シリンダ容
積に対する割合が減少するため、従来例にくらべ
掃気効率の向上は大となる。
Also, the longer the engine stroke, the
Since the ratio of the diffusion mixing region near the scavenging port 3 to the total cylinder volume is reduced, the scavenging efficiency is greatly improved compared to the conventional example.

〔考案の効果〕[Effect of idea]

本考案は前記のとおり構成したので、掃気中に
シリンダライナの上部の中心向き流れと下部の切
線向き流れとが干渉し合い、掃気の流線が乱れて
混合、攪拌が促進される。これにより、高い掃気
効率が得られ、エンジンの燃焼を良好とし高出力
と低燃費が実現できる。
Since the present invention is constructed as described above, during scavenging, the center-directed flow in the upper part of the cylinder liner and the tangential-directed flow in the lower part interfere with each other, disrupting the streamlines of the scavenging air and promoting mixing and agitation. As a result, high scavenging efficiency can be obtained, resulting in good engine combustion and high output and low fuel consumption.

【図面の簡単な説明】[Brief explanation of the drawing]

第1〜4図は本考案に係るもので第1図は掃気
ポート3の外観図で第2図の−矢視図、第2
図は掃気ポート付近の構成図、第3図は第2図の
−断面図、第4図は掃気流れの説明図、第5
図は第1従来例の掃気流れ説明図、第6図は第2
従来例の掃気流れ説明図である。 3……掃気ポート、31……上部掃気口、32
……中間部掃気口、33……下部掃気口、θ……
掃気口角度。
Figures 1 to 4 are related to the present invention; Figure 1 is an external view of the scavenging port 3;
The figure is a configuration diagram of the vicinity of the scavenging port, Figure 3 is a cross-sectional view of Figure 2, Figure 4 is an explanatory diagram of the scavenging flow, and Figure 5 is a diagram showing the scavenging flow.
The figure is an explanatory diagram of the scavenging flow of the first conventional example, and Fig. 6 is an explanatory diagram of the scavenging flow of the first conventional example.
FIG. 2 is an explanatory diagram of a scavenging flow in a conventional example. 3...Scavenging port, 31...Upper scavenging port, 32
...Middle scavenging port, 33...Lower scavenging port, θ...
Scavenging port angle.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] シリンダライナに円周方向等間隔に穿設された
掃気ポートが該シリンダライナの軸方向に複数段
配置されてなる2サイクルエンジンにおいて、前
記各掃気ポートはシリンダライナの軸心線に直角
方向に穿設されるとともに、各段の掃気ポートが
シリンダライナの軸線方向に連通されており、前
記掃気ポートのピストンの上死点に近い段を上
部、これと反対側の段を下部とすると、上部は掃
気口中心の向きをシリンダのほぼ中心方向とし、
シリンダライナ下部の掃気ポートになるほど掃気
口中心の向きがシリンダ中心から遠ざかる方向に
穿孔された複数の掃気口角度θを有することを特
徴とする2サイクルエンジンの掃気ポート。
In a two-cycle engine in which scavenging ports are bored in a cylinder liner at equal intervals in the circumferential direction and arranged in multiple stages in the axial direction of the cylinder liner, each of the scavenging ports is bored in a direction perpendicular to the axis of the cylinder liner. At the same time, the scavenging ports of each stage are communicated in the axial direction of the cylinder liner, and if the stage of the scavenging port near the top dead center of the piston is the upper part, and the stage on the opposite side is the lower part, the upper part is The direction of the center of the scavenging port is approximately toward the center of the cylinder,
A scavenging port for a two-stroke engine, characterized in that the scavenging port has a plurality of scavenging ports having angles θ such that the center of the scavenging port is oriented further away from the center of the cylinder as the scavenging port is located at a lower part of a cylinder liner.
JP1986187826U 1986-12-08 1986-12-08 Expired - Lifetime JPH059455Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1986187826U JPH059455Y2 (en) 1986-12-08 1986-12-08

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1986187826U JPH059455Y2 (en) 1986-12-08 1986-12-08

Publications (2)

Publication Number Publication Date
JPS6392031U JPS6392031U (en) 1988-06-14
JPH059455Y2 true JPH059455Y2 (en) 1993-03-09

Family

ID=31138641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1986187826U Expired - Lifetime JPH059455Y2 (en) 1986-12-08 1986-12-08

Country Status (1)

Country Link
JP (1) JPH059455Y2 (en)

Also Published As

Publication number Publication date
JPS6392031U (en) 1988-06-14

Similar Documents

Publication Publication Date Title
US6220215B1 (en) Combustion chamber structure in an internal combustion engine
JPS59213919A (en) Stratified scavenging two-cycle internal-combustion engine
WO2008004449A1 (en) Stratified scavenging two-cycle engine
JP3222379B2 (en) Combustion chamber structure of internal combustion engine
JPH059455Y2 (en)
JPS6316124A (en) Pent roof type piston
JPH0517369B2 (en)
JPH0623540B2 (en) Pentorf type direct injection internal combustion engine
JPS60187714A (en) Combustion chamber of diesel engine
JPS5822970Y2 (en) Combustion chamber of internal combustion engine
JPS597536Y2 (en) Scavenging device for 2-stroke fuel injection engine
JPS6334288B2 (en)
JPS62282113A (en) Direct injection type internal combustion engine
JPH0426657Y2 (en)
JPH0233857B2 (en)
JPH0517386Y2 (en)
JPS62255523A (en) Pent roof type piston
JPH0248674Y2 (en)
JPH0226700B2 (en)
JPH077577Y2 (en) Two-cycle engine decompression device
JPH0610758A (en) Scavenging port in two-cycle diesel-engine
JPS5842498Y2 (en) Internal combustion pile driver
JPH0722025U (en) Combustion chamber structure of swirl chamber type diesel engine
JPH02215921A (en) Combustion chamber of internal combustion engine
JPS6231615Y2 (en)