JPS6316124A - Pent roof type piston - Google Patents

Pent roof type piston

Info

Publication number
JPS6316124A
JPS6316124A JP61157953A JP15795386A JPS6316124A JP S6316124 A JPS6316124 A JP S6316124A JP 61157953 A JP61157953 A JP 61157953A JP 15795386 A JP15795386 A JP 15795386A JP S6316124 A JPS6316124 A JP S6316124A
Authority
JP
Japan
Prior art keywords
cavity
piston
side wall
wall surface
pent roof
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61157953A
Other languages
Japanese (ja)
Inventor
Toshio Ichimasa
都志夫 一政
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP61157953A priority Critical patent/JPS6316124A/en
Publication of JPS6316124A publication Critical patent/JPS6316124A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0696W-piston bowl, i.e. the combustion space having a central projection pointing towards the cylinder head and the surrounding wall being inclined towards the cylinder wall
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0618Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston having in-cylinder means to influence the charge motion
    • F02B23/0621Squish flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0645Details related to the fuel injector or the fuel spray
    • F02B23/0669Details related to the fuel injector or the fuel spray having multiple fuel spray jets per injector nozzle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F2001/241Cylinder heads specially adapted to pent roof shape of the combustion chamber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)

Abstract

PURPOSE:To suppress the generation of smoke and improve output because of the superior combustion by making the angle formed by the side wall surface of a cavity formed at the top part of a piston and the tangential line for a piston crown surface, nearly uniform on the whole periphery of the cavity and uniformly dispersing the fuel mist. CONSTITUTION:Since the angle formed by the generating line 6f on the side wall surface of a cavity 6 and the tangential line 3g of a piston crown surface on the opened port edge crossing with the generating line is formed nearly uniform on all the longitudinal sectional surface passing through the piston center line, the introducing angle of a skewish flow V pushed into the cavity 6 in the final period of compression cycle is made uniform over the whole periphery of the cavity 6. Therefore, in the vicinity of the cavity side wall surface 6a, a nearly uniform turbulent flow is generated over the whole periphery. Therefore, the fuel mist injection-supplied from a multiinjection port nozzle 9 can be dispersed uniformly. Therefore, the superior combustion can be achieved by increasing the air utilization rate, and generation of smoke can be reduced, and the output can be improved.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は燃料を燃焼室内に直接噴射供給する直噴式内燃
線間に採用するペントルーフ形ピストンに係り、特にピ
ストン冠面に凹設するキャビティ形状を改良したペント
ルーフ形ピストンに関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a pent-roof type piston adopted between a direct injection internal combustion line for directly injecting fuel into a combustion chamber, and particularly to a pent-roof piston having a cavity shape recessed in the crown surface of the piston. This article relates to a pent roof type piston that has been improved.

[従来の技術] 一般に内燃機関にあっては、吸・排気弁の径を大径化し
たりあるいは各気筒当りの吸・排気弁の数を増加したり
して吸・排気ポートの流路断面積を増大させることによ
り、その吸・排気効率を改善することができる。
[Prior Art] Generally, in internal combustion engines, the cross-sectional area of the flow path of the intake and exhaust ports is increased by increasing the diameter of the intake and exhaust valves or by increasing the number of intake and exhaust valves per cylinder. By increasing , the intake and exhaust efficiency can be improved.

しかしながら、このようにして吸・排気ボートの流路断
面積の増大化を計ると、吸・排気弁はそれらの干渉を避
けるために互いにその弁軸をv型に傾斜せざるを得なく
なる。すると勤弁橢構の配置上の関係からシリンダヘッ
ド下面に開成する燃焼室は、クランク軸の軸線に沿って
中央部分を最も上方に窪ませると共にその両側を次第に
傾斜させてバルブ軸に対して略垂直となるように形成し
たペントルーフ形状(尾根形状)にする必要が生じ、か
つ直接噴射式ディーゼル機関等の直噴式内燃機関にこの
ペントルーフ形燃焼至を採用しようとすると、16以上
という高圧縮比を確保するためには、実願昭60−14
3456号に提案した[ディーゼル灘関の燃焼室構造」
等に示したように、必然的にピストン冠面もシリンダヘ
ッドの下面形状に相応させて逆に上方に突出させたペン
トルーフ形状にしなければならなくなる。
However, if the cross-sectional area of the flow path of the intake/exhaust boat is increased in this way, the valve shafts of the intake/exhaust valves must be inclined in a V-shape to avoid interference between them. Then, due to the arrangement of the valve control structure, the combustion chamber that opens on the lower surface of the cylinder head is recessed upward at the center along the axis of the crankshaft, and gradually inclined on both sides to form a combustion chamber approximately relative to the valve shaft. It becomes necessary to create a vertical pent roof shape (ridge shape), and if this pent roof type combustion engine is used in a direct injection internal combustion engine such as a direct injection diesel engine, a high compression ratio of 16 or higher is required. In order to secure the
[Diesel Nada Seki combustion chamber structure] proposed in No. 3456
As shown in Fig. 2, the piston crown surface must necessarily be made into a pent roof shape that protrudes upward, corresponding to the shape of the lower surface of the cylinder head.

[発明が解決しようとする問題点] ところで、第7図(A)(B)に示すように直噴式内燃
機関の場合、シリンダ室a内に吸入した空気はその圧縮
行程の終期に、ピストン冠面すの略中央部に凹設したキ
ャビティC内に押し込んで16以上の高圧縮比を得るよ
うにしており、その圧縮行程時にはTDC(上死点)付
近において、ピストン冠面すの外周側部とシリンダヘッ
ド下面(図示せず)との間に挟まれて押し潰される空気
によってピストン冠面す上に中央部のキャビティCに向
かうスキッシュ流Vを生じさせ、このスキッシュ流Vを
キャビティC内に導入して噴射ノズルdから噴射される
燃料噴霧Fと空気とを撹拌し−で均一な混合気を生成す
るように1ノでいる。
[Problems to be Solved by the Invention] By the way, in the case of a direct injection internal combustion engine as shown in FIGS. A high compression ratio of 16 or more is achieved by pushing the piston into a cavity C recessed in the center of the piston crown. The air squeezed between the cylinder head and the lower surface of the cylinder head (not shown) generates a squish flow V on the piston crown surface toward the cavity C in the center, and this squish flow V flows into the cavity C. The fuel spray F introduced and injected from the injection nozzle d and the air are stirred at a constant temperature of 1 to produce a uniform air-fuel mixture.

しかしながら、クランク@(図示せず)の軸方向に沿っ
てピストン冠面すの中央部が上方に隆起されたペントル
ーフ形ピストンであると、キ11ビティCの側壁面eを
その全周に亙ってピストン中心線fに対して一様に同角
度に(例えば平行に)形成すると、そのキャビティCの
開口端Q上の任意の一点における側壁面eの母線りとピ
ストン冠面すの接線iとのなす角θが、その周側に沿っ
て均一にはならずに変化してしまい、尾根部jにおける
角度θ(=β)が最大となって(第7図(A))この尾
根部jに直交する部分の角度θ(=α)が最小となる(
第7図(B))。
However, if the piston is a pent roof type piston in which the central part of the piston crown surface is raised upward along the axial direction of the crank (not shown), the side wall surface e of the cavity C is extended over its entire circumference. If they are formed uniformly at the same angle (for example, parallel) to the piston center line f, then the generatrix of the side wall surface e at any point on the opening end Q of the cavity C and the tangent i between the piston crown surface and The angle θ formed by the ridge is not uniform along the circumference but changes, and the angle θ (=β) at the ridge j becomes the maximum (Fig. 7 (A)). The angle θ (=α) of the part perpendicular to is the minimum (
Figure 7(B)).

このため、ピストン冠面す上に生じたスキッシュ流Vが
キャビティC内に押し込まれる際の導入角度が、周側に
亙って変化してしまい、尾根部jに沿ったスキッシュ流
■の導入角度(第7図(A))に比較して、これに直交
する方向から導入されるスキッシュ流■の導入角度(第
7図(B))はキャビティCの内方に向かって側壁面e
から離間してしまう。この結果、噴射ノズルdから噴射
供給される燃料噴霧FはキャビティC内の特に側壁面e
近傍に均一に拡散しなくなり、燃焼時にキャビティC内
の酸素を充分に利用できなくなって出力の低下とスモー
クの発生とを招いてしまう。
For this reason, the introduction angle at which the squish flow V generated on the piston crown surface is forced into the cavity C changes along the circumference, and the introduction angle of the squish flow ■ along the ridge j changes. (Fig. 7 (A)), the introduction angle of the squish flow (Fig. 7 (B)) introduced from the direction perpendicular to this (Fig. 7 (B)) is larger than that of the side wall surface e toward the inside of the cavity C.
I will be separated from. As a result, the fuel spray F injected and supplied from the injection nozzle d reaches inside the cavity C, especially on the side wall surface e.
Oxygen is no longer uniformly diffused in the vicinity, and oxygen in the cavity C cannot be sufficiently utilized during combustion, resulting in a decrease in output and the generation of smoke.

[問題点を解決するための手段] 本発明は、上記の問題点を解決するために、ピストン冠
面を上方に隆起させてペントルーフ状に形成したピスト
ンの頂部に形成されたキャビティの側壁面と、ピストン
冠面の接線とのなす角をキャビティの全周において略均
一にしてキャビティを形成してペントルーフ形ピストン
を構成するものである。
[Means for Solving the Problems] In order to solve the above-mentioned problems, the present invention has a side wall surface of a cavity formed at the top of the piston, which is formed in a pent roof shape by raising the crown surface of the piston upward. A pent roof type piston is constructed by forming a cavity by making the angle between the piston and the tangent to the piston crown surface substantially uniform over the entire circumference of the cavity.

[作 用] 圧縮行程終期にピストン冠面上に生じるスキッシュ流は
キャビティ内に導入される。この際、キャビティ開口端
の側壁面とピストン冠面とのなす角がその開口端の全周
に亙って略均一になっているため、そのスキッシュ流は
キャビティの開口全周からその側壁面に対して等しい角
度で導入される。これにより、キャビティ側壁面の近傍
にはスキッシュ流によって生じる乱流がその全周に亙っ
て略均一に生成され、そのキャビティ内に噴射される燃
料噴霧は均一に拡散される。
[Function] The squish flow generated on the crown surface of the piston at the end of the compression stroke is introduced into the cavity. At this time, since the angle between the side wall surface of the cavity opening end and the piston crown surface is approximately uniform over the entire circumference of the opening end, the squish flow flows from the entire circumference of the cavity opening to the side wall surface. is introduced at an equal angle to the As a result, a turbulent flow caused by the squish flow is generated substantially uniformly around the entire circumference of the cavity side wall surface, and the fuel spray injected into the cavity is uniformly diffused.

[実施例] 以下に本発明に係るペントルーフ形ピストンの好適一実
施例を添付図面に基づき詳述する。
[Embodiment] A preferred embodiment of the pent roof piston according to the present invention will be described in detail below with reference to the accompanying drawings.

第1図と第2図は本発明の第1実施例を示すもので、第
1図は直噴式ディーゼル機関等の直噴式内燃機関に用い
るペントルーフ形ピストンの側断面図であり、第2図は
そのピストン頂部の平面図である。
1 and 2 show a first embodiment of the present invention. FIG. 1 is a side sectional view of a pent roof type piston used in a direct injection internal combustion engine such as a direct injection diesel engine, and FIG. FIG. 3 is a plan view of the top of the piston.

図示するように、ピストン1はそのピストンピン2の直
上部のピストン冠面3がピストンピン2の軸方向(即ち
、クランク軸方向)に沿って上方に突出され、かつその
両側部は傾斜されてペントルーフ形状(尾根形状)に形
成され、このペントルーフ形状は図示していないが、シ
リンダヘッドの下面に形成されるシリンダヘッド側の燃
焼室形状に相応されている。
As shown in the figure, the piston 1 has a piston crown surface 3 directly above the piston pin 2 that protrudes upward along the axial direction of the piston pin 2 (i.e., the crankshaft direction), and both sides thereof are inclined. It is formed in a pent roof shape (ridge shape), and although this pent roof shape is not shown, it corresponds to the shape of the combustion chamber on the cylinder head side formed on the lower surface of the cylinder head.

具体的には、ピストン冠面3は略六角形状をなして上方
に隆起・され、ピストンピン2の軸心の直上部が尾根部
4の稜線5となって左右対称に形成されると共に、その
ピストン冠面3の略中央部のピストン頂部1aには圧縮
行程の終了時にシリンダヘッド(図示せず)とによって
実質的な燃焼室を形成するためのキャビティ6が凹設さ
れる。また、ピストンピン2の両軸端側のピストン冠面
3の傾斜面3a、3b、3c、3dは湾曲されて形成さ
れ、ピストンピン2の中央部に位置するキャビティ6両
側のピストン冠面3の傾斜面30,3fはほぼ平坦に形
成される。
Specifically, the piston crown surface 3 has a substantially hexagonal shape and is raised upward, and the ridge line 5 of the ridge portion 4 is formed directly above the axis of the piston pin 2, and is formed symmetrically. A cavity 6 is recessed in the piston top portion 1a approximately at the center of the piston crown surface 3 to form a substantial combustion chamber with the cylinder head (not shown) at the end of the compression stroke. In addition, the inclined surfaces 3a, 3b, 3c, and 3d of the piston crown surface 3 on both axial end sides of the piston pin 2 are curved, and the piston crown surface 3 on both sides of the cavity 6 located in the center of the piston pin 2 is curved. The inclined surfaces 30, 3f are formed substantially flat.

ところで、上記キャビティ6はそのピストン1の中心線
1bを通る任意の縦断面の全てにおいて、その開ロアの
直下の側壁面6aの断面上の母線6bと、その断面上の
開口端7aにおけるピストン冠面3の接13gとのなす
角θが略均一に形成される。即ち、第1図(A)はペン
トルーフ形ピストン1の尾根部4の稜線5に沿った側断
面を示し、(B)はピストン中心線1bを通って(A)
と直交する側断面を示しているが、図示するようにキャ
ビティ6は、その開ロアの直下の側壁面6aの母線6b
と、この母16bに交差するピストン冠面3の開口端7
a上の接線3gとが、その間口端7aの全周に亙る任意
の点で略等しく交わるように形成される。
By the way, in all longitudinal sections passing through the center line 1b of the piston 1, the cavity 6 has a generatrix 6b on the cross section of the side wall surface 6a immediately below the open lower part, and a piston crown at the open end 7a on the cross section. The angle θ between the surface 3 and the tangent 13g is formed to be substantially uniform. That is, FIG. 1(A) shows a side cross section along the ridgeline 5 of the ridge portion 4 of the pent roof piston 1, and FIG.
As shown in the figure, the cavity 6 has a generatrix 6b of the side wall surface 6a directly below the open lower part.
and the open end 7 of the piston crown surface 3 intersecting this base 16b.
The tangent line 3g on the opening end 7a intersects substantially equally at any point over the entire circumference of the opening end 7a.

この第1図と第2図とに示す第1実施例では、母線6b
と接線3gとはθ=90°で交差されて形成され、かつ
キャビティ6はその開ロアが真円状に形成されると共に
、側壁面6aは略キャビティ底部8までその母線6bが
直線となるように形成されている。従って、尾根部4の
稜線5上を通過する接線3Qは略水平となるのでこの部
分での側壁面6aの母線6bは垂直に近くなり(第1図
(A))、この稜線5に直交してピストン中心線1b上
を通過する接線3qはその傾斜角が最大になるのでこの
部分での側壁面6aの母線6bは中心線1bに対して最
も外方に傾くことになる(第1図(B))。このためキ
ャビティ6内はそのキャビティ底部8に向かう程その横
断面の形状が偏平して、稜線5方向に長軸を有する楕円
状あるいは長円状等の度合が強くなっている。
In the first embodiment shown in FIGS. 1 and 2, the bus bar 6b
and the tangent line 3g intersect at θ=90°, and the cavity 6 is formed so that its open lower part is perfectly circular, and the side wall surface 6a is formed so that its generatrix 6b is a straight line up to approximately the cavity bottom 8. is formed. Therefore, since the tangent line 3Q passing over the ridge line 5 of the ridge portion 4 is approximately horizontal, the generatrix 6b of the side wall surface 6a at this portion is close to vertical (FIG. 1(A)) and is perpendicular to the ridge line 5. Since the tangent line 3q passing on the piston center line 1b has the maximum angle of inclination, the generatrix 6b of the side wall surface 6a at this portion is inclined most outwardly with respect to the center line 1b (see Fig. 1( B)). Therefore, the cross-sectional shape of the inside of the cavity 6 becomes flatter toward the cavity bottom 8, and the shape of the cross section becomes more elliptical or oblong with the long axis in the direction of the ridge line 5.

このように形成されたペントルーフ形ピストン1では、
第3図(A)(B)に示すように、圧縮行程終期のTD
C付近でシリンダヘラ、ド下面(図示せず)とピストン
冠面3との間に挟まれて発生するスキッシュ流Vがキャ
ビティ6内に導入されるに際し、その導入角度(スキッ
シュ流■と内壁部とのなす角)が開ロアの周縁全周から
略均一な角度で押し込まれ、キャビティ6の側壁面6a
近傍にはその全周に亙って略均一な乱流が生成される。
In the pent roof type piston 1 formed in this way,
As shown in Figure 3 (A) and (B), TD at the end of the compression stroke
When the squish flow V generated near C is sandwiched between the lower surface of the cylinder spatula (not shown) and the piston crown surface 3, and is introduced into the cavity 6, the introduction angle (squish flow ) is pushed in from the entire periphery of the open lower at a substantially uniform angle, and the side wall surface 6a of the cavity 6
A substantially uniform turbulent flow is generated in the vicinity over the entire circumference.

従って、多噴口ノズル9の各噴口10からキャビティ6
内に噴射供給される燃料噴霧Fはそのスキッシュ流Vの
乱流に撹拌されてキャビティ6内に拡散されるが、この
ときキャビティ6の側壁面6aの近傍にもその全周側に
亙って均一に分布されるようになる。
Therefore, from each nozzle 10 of the multi-nozzle 9 to the cavity 6
The fuel spray F injected into the cavity 6 is agitated by the turbulence of the squish flow V and diffused into the cavity 6, but at this time, the fuel spray F is dispersed in the vicinity of the side wall surface 6a of the cavity 6 and over its entire circumference. It becomes evenly distributed.

この結果、キャビティ6内の酸素を十分に利用して空気
利用率の高い燃焼が行なえるようになり、スモークの発
生の低減と出力の向上とが計れるようになる。
As a result, the oxygen in the cavity 6 can be fully utilized to perform combustion with a high air utilization rate, thereby reducing the generation of smoke and improving the output.

また第4図と第5図とには第2実施例を示す。Further, FIGS. 4 and 5 show a second embodiment.

この第2実施例のペントルーフ形ピストン1の場合は、
図示するようにキャビティ6の底部8側を真円状に形成
しており、このため開ロア側の横断面形状は稜線5と直
交する方向に直軸を有する楕円状となり、その偏平率は
開ロア側に向かう程高くなっている。キャビティ6の側
壁面6aとピストン冠面3とのなす角は、第1実施例と
同様に、ピストン中心線1bを通る任意の縦断面の全て
において、その断面上の側壁面6aの母線6bとこの母
線6bと交差する開口端7a上のピストン冠面3の接線
3gとのなす角θ(=90°)が略均一になるように形
成されており、その効果も第1実施例と同様になってい
る。
In the case of the pent roof type piston 1 of this second embodiment,
As shown in the figure, the bottom 8 side of the cavity 6 is formed in a perfect circular shape, and therefore the cross-sectional shape on the open lower side is an ellipse with a normal axis in a direction perpendicular to the ridgeline 5, and the aspect ratio is It gets higher towards the lower side. Similar to the first embodiment, the angle formed between the side wall surface 6a of the cavity 6 and the piston crown surface 3 is equal to the generatrix 6b of the side wall surface 6a on any longitudinal section passing through the piston center line 1b. It is formed so that the angle θ (=90°) between the generatrix 6b and the tangent 3g of the piston crown surface 3 on the opening end 7a which intersects with it is approximately uniform, and the effect is the same as in the first embodiment. It has become.

また更に、第6図には第3実施例を示す。この第3実施
例のペントルーフ形ピストン1はキャビティ6の同口直
下の側壁面6aに底部8からの高さを等しくしてその径
を絞るように径方向内方に縮径させた棚部11を設けた
ものであり、この棚部11を形成する側壁面6aの母線
6bが所定長さで直線状に形成され、かつこの母線6b
とこの母線6bに交差する開口端7a上のピストン冠面
3の接線3qとのなす角θが、ピストン中心線1bを通
る全ての縦断面において略均一に形成されている。また
、この図示例の第3実施例では、棚部11の下端の横断
面形状及びこの棚部11下の拡径されたキャビティ6部
の横断面形状が真円状に形成されており、棚部11の横
断面形状は、その開ロア側に向かう程偏平率が高く稜線
5と直交する方向に長袖を有した楕円状に形成されてい
る。
Furthermore, FIG. 6 shows a third embodiment. The pent roof type piston 1 of the third embodiment has a shelf portion 11 which is formed on the side wall surface 6a of the cavity 6 immediately below the same mouth, and whose height from the bottom portion 8 is made equal and whose diameter is reduced inward in the radial direction. The generatrix 6b of the side wall surface 6a forming this shelf 11 is formed linearly with a predetermined length, and the generatrix 6b
The angle θ between the tangent 3q of the piston crown surface 3 on the open end 7a that intersects with the generatrix 6b is substantially uniform in all longitudinal sections passing through the piston center line 1b. In addition, in the third embodiment of this illustrated example, the cross-sectional shape of the lower end of the shelf 11 and the cross-sectional shape of the enlarged diameter cavity 6 below the shelf 11 are formed in a perfect circular shape, and the shelf The cross-sectional shape of the portion 11 is formed into an elliptical shape with the oblateness increasing toward the open lower side and having long sleeves in a direction orthogonal to the ridgeline 5.

このように棚部11を設けた第3実施例であると、第1
実°施例及び第2実施例と同様に、キャビティ6内に開
ロアから導入するスキッシュ流の導入角度を、側壁面6
aに対してそのキャビティ6の全周に刀って略均一にす
ることができるばかりか、膨張行程時にピストン冠面3
上に強い逆スキッシュ流が生じても、キャビティ6内の
噴霧・混合気及び火炎はその上側を棚部11で覆われる
のでキャビティ6外に流出し難くなり、その結果スモー
ク及びIIcの排出量を更に低減できるようになり、か
つ出力も更に向上できるようになる。
In the third embodiment in which the shelf portion 11 is provided in this way, the first
Similarly to the embodiment and the second embodiment, the introduction angle of the squish flow introduced into the cavity 6 from the open lower part is determined by adjusting the introduction angle of the squish flow into the cavity 6 from the open lower part.
Not only can the entire circumference of the cavity 6 be made substantially uniform with respect to a, but also the piston crown surface 3 can be made uniform during the expansion stroke.
Even if a strong reverse squish flow occurs upwards, the spray/air mixture and flame inside the cavity 6 are covered by the shelf 11 on the upper side, making it difficult for them to flow out of the cavity 6. As a result, the amount of smoke and IIc discharged is reduced. It becomes possible to further reduce the amount of heat generated and to further improve the output.

尚、第1実施例、第2実施例及び第3実施例ともに、キ
ャビティ6内に噴射する燃料噴霧は底部外周側のコーナ
一部に向けて供給することが望ましい。
In addition, in all of the first, second, and third embodiments, it is desirable that the fuel spray injected into the cavity 6 be supplied toward a part of the corner on the outer circumferential side of the bottom.

[発明の効果コ 以上要するに、本発明によれば次の如き優れた効果を発
揮する。
[Effects of the Invention] In summary, the present invention exhibits the following excellent effects.

(1)  キャビティ側壁面の母線と、この母線に交差
する開口端上のピストン冠面の接線とのなす角を、ピス
トン中心線を通る全ての縦断面において略均一に形成し
たので、圧縮行程終期にキャビティ内にその開口から押
し込まれるスキッシュ流の導入角度を、キャビティ側壁
面に対してその開口の全周に亙り均一にすることができ
る。
(1) Since the angle between the generatrix of the cavity side wall surface and the tangent to the piston crown surface on the opening end that intersects this generatrix is approximately uniform in all longitudinal sections passing through the piston center line, The introduction angle of the squish flow that is forced into the cavity from the opening can be made uniform over the entire circumference of the opening with respect to the side wall surface of the cavity.

(2:J  キャビティ側壁面に対するスキッシュ流の
導入角度がキャビティの全周に亙って均一になるので、
キャビティ内に噴射供給される燃料噴霧を均一に拡散さ
せることができ、これにより空気利用率を高めて良好な
燃焼を達成し得、スモークの発生の低減と出力の向上と
を計ることができる。
(2:J Since the introduction angle of the squish flow with respect to the cavity side wall surface is uniform over the entire circumference of the cavity,
The fuel spray that is injected and supplied into the cavity can be uniformly diffused, thereby increasing the air utilization rate and achieving good combustion, which can reduce smoke generation and improve output.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のペントルーフ形ビス1〜ンの第1実施
例を示す側断面図で、(A)は尾根方向に沿った側断面
図、(B)は(A>に直交する側断面図、第2図はその
第1実施例の平面図、第3図は第1実施例の作用を説明
するための側断面図、第4図は第2実施例の側断面図、
第5図は第2実施例の平面図、第6図は第3実施例の側
断面図、第7図は従来のペントルーフ形ピストンを示す
側断面図である。 図中、1aはピストン頂部、1bはピストン中心線、3
はピストン冠面、3gは接線、4は尾根部、6はキャビ
ティ、6aは側壁面、6bは母線、7aは開口端、8は
キャビティ底部、11は棚部である。
FIG. 1 is a side sectional view showing a first embodiment of the pent roof type screws 1 to 1 of the present invention, in which (A) is a side sectional view along the ridge direction, and (B) is a side sectional view perpendicular to (A>). 2 is a plan view of the first embodiment, FIG. 3 is a side sectional view for explaining the operation of the first embodiment, and FIG. 4 is a side sectional view of the second embodiment.
FIG. 5 is a plan view of the second embodiment, FIG. 6 is a side sectional view of the third embodiment, and FIG. 7 is a side sectional view showing a conventional pent roof type piston. In the figure, 1a is the top of the piston, 1b is the piston center line, and 3
is a piston crown surface, 3g is a tangent, 4 is a ridge, 6 is a cavity, 6a is a side wall surface, 6b is a generatrix, 7a is an open end, 8 is a cavity bottom, and 11 is a shelf.

Claims (5)

【特許請求の範囲】[Claims] (1)ピストン冠面を上方に隆起させてペントルーフ状
に形成したピストンの頂部に形成されたキャビティの側
壁面と、ピストン冠面の接線とのなす角をキャビティの
全周において略均一に形成したことを特徴とするペント
ルーフ形ピストン。
(1) The angle between the side wall surface of the cavity formed at the top of the piston, which is formed in a pent-roof shape by raising the piston crown surface upward, and the tangent to the piston crown surface is formed approximately uniformly around the entire circumference of the cavity. A pent roof type piston characterized by:
(2)上記キャビティが、その同口直下の側壁面に開口
端から所定の長さの直線状の母線を有して形成された上
記特許請求の範囲第1項に記載のペントルーフ形ピスト
ン。
(2) The pent roof type piston according to claim 1, wherein the cavity is formed with a linear generatrix having a predetermined length from the opening end on the side wall surface directly below the opening.
(3)上記キャビティが、その開口端の形状を真円状に
形成された上記特許請求の範囲第2項に記載のペントル
ーフ形ピストン。
(3) The pent roof type piston according to claim 2, wherein the cavity has an open end shaped like a perfect circle.
(4)上記キャビティが、その開口端の形状をペントル
ーフ形の冠面の尾根方向に直交する方向に長軸を有する
楕円状に形成され、かつキャビティ底部が真円状に形成
された上記特許請求の範囲第2項に記載のペントルーフ
形ピストン。
(4) The above-mentioned patent claim, wherein the opening end of the cavity is formed in an elliptical shape with a long axis in a direction perpendicular to the ridge direction of the pent roof-shaped crown surface, and the bottom of the cavity is formed in a perfect circular shape. A pent roof type piston according to item 2 of the range.
(5)上記キャビティが、その開口側にこれを絞るよう
に径方向内方に縮径された棚部を有する上記特許請求の
範囲第4項に記載のペントルーフ形ピストン。
(5) The pent roof type piston according to claim 4, wherein the cavity has a shelf portion whose diameter is reduced radially inward so as to narrow the cavity toward its opening side.
JP61157953A 1986-07-07 1986-07-07 Pent roof type piston Pending JPS6316124A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61157953A JPS6316124A (en) 1986-07-07 1986-07-07 Pent roof type piston

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61157953A JPS6316124A (en) 1986-07-07 1986-07-07 Pent roof type piston

Publications (1)

Publication Number Publication Date
JPS6316124A true JPS6316124A (en) 1988-01-23

Family

ID=15661069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61157953A Pending JPS6316124A (en) 1986-07-07 1986-07-07 Pent roof type piston

Country Status (1)

Country Link
JP (1) JPS6316124A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH046535U (en) * 1990-04-27 1992-01-21
EP0916019B1 (en) * 1997-06-03 2003-09-03 Nissan Motor Company, Limited Piston for cylinder direct injection spark ignition internal combustion engine
WO2007148467A1 (en) 2006-06-23 2007-12-27 Honda Motor Co., Ltd. Direct fuel injection diesel engine
WO2008001534A1 (en) * 2006-06-26 2008-01-03 Honda Motor Co., Ltd. Direct fuel injection diesel engine
WO2008004398A1 (en) 2006-07-04 2008-01-10 Honda Motor Co., Ltd. Fuel direct-injection diesel engine
JP2008255934A (en) * 2007-04-06 2008-10-23 Honda Motor Co Ltd Fuel direct injection engine
WO2008126771A1 (en) 2007-04-06 2008-10-23 Honda Motor Co., Ltd. Direct fuel-injection engine
JP2008255935A (en) * 2007-04-06 2008-10-23 Honda Motor Co Ltd Fuel direct injection engine
WO2009081765A1 (en) * 2007-12-21 2009-07-02 Honda Motor Co., Ltd. Direct fuel-injection engine
JP2013194559A (en) * 2012-03-16 2013-09-30 Mazda Motor Corp Compression self ignition engine

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH046535U (en) * 1990-04-27 1992-01-21
EP0916019B1 (en) * 1997-06-03 2003-09-03 Nissan Motor Company, Limited Piston for cylinder direct injection spark ignition internal combustion engine
EP2034156A1 (en) * 2006-06-23 2009-03-11 Honda Motor Co., Ltd Direct fuel injection diesel engine
US8056532B2 (en) 2006-06-23 2011-11-15 Honda Motor Co., Ltd. Direct fuel injection diesel engine
WO2007148467A1 (en) 2006-06-23 2007-12-27 Honda Motor Co., Ltd. Direct fuel injection diesel engine
EP2034156A4 (en) * 2006-06-23 2011-04-27 Honda Motor Co Ltd Direct fuel injection diesel engine
WO2008001534A1 (en) * 2006-06-26 2008-01-03 Honda Motor Co., Ltd. Direct fuel injection diesel engine
US7992536B2 (en) 2006-06-26 2011-08-09 Honda Motor Co., Ltd. Direct fuel injection diesel engine
EP2034157A1 (en) * 2006-06-26 2009-03-11 HONDA MOTOR CO., Ltd. Direct fuel injection diesel engine
EP2034157A4 (en) * 2006-06-26 2009-08-19 Honda Motor Co Ltd Direct fuel injection diesel engine
WO2008004398A1 (en) 2006-07-04 2008-01-10 Honda Motor Co., Ltd. Fuel direct-injection diesel engine
EP2039905A1 (en) * 2006-07-04 2009-03-25 Honda Motor Co., Ltd Fuel direct-injection diesel engine
US7861685B2 (en) 2006-07-04 2011-01-04 Honda Motor Co., Ltd. Direct fuel injection diesel engine
EP2039905A4 (en) * 2006-07-04 2009-07-15 Honda Motor Co Ltd Fuel direct-injection diesel engine
WO2008126771A1 (en) 2007-04-06 2008-10-23 Honda Motor Co., Ltd. Direct fuel-injection engine
EP2133535A1 (en) * 2007-04-06 2009-12-16 Honda Motor Co., Ltd. Direct fuel-injection engine
EP2133535A4 (en) * 2007-04-06 2010-09-22 Honda Motor Co Ltd Direct fuel-injection engine
JP2008255935A (en) * 2007-04-06 2008-10-23 Honda Motor Co Ltd Fuel direct injection engine
JP2008255934A (en) * 2007-04-06 2008-10-23 Honda Motor Co Ltd Fuel direct injection engine
US8474431B2 (en) 2007-04-06 2013-07-02 Honda Motor Co., Ltd. Direct fuel-injected engine
JP2009150347A (en) * 2007-12-21 2009-07-09 Honda Motor Co Ltd Direct fuel-injection engine
WO2009081765A1 (en) * 2007-12-21 2009-07-02 Honda Motor Co., Ltd. Direct fuel-injection engine
US8714136B2 (en) 2007-12-21 2014-05-06 Honda Motor Co., Ltd. Direct fuel-injection engine
JP2013194559A (en) * 2012-03-16 2013-09-30 Mazda Motor Corp Compression self ignition engine

Similar Documents

Publication Publication Date Title
US4164913A (en) Combustion chamber for an internal combustion engine of direct injection type
US4221190A (en) Combustion chamber for an internal combustion engine of direct injection type
JPS591329B2 (en) internal combustion engine
JPS6316124A (en) Pent roof type piston
US3923015A (en) Combustion chamber of spark ignition internal combustion engine
US4771748A (en) Spark-ignition, air-compressing, internal combustion engine
JP3222379B2 (en) Combustion chamber structure of internal combustion engine
JP2010053710A (en) Fuel injection engine
JPH10317975A (en) Direct cylinder injection spark ignition engine
JPS5838610B2 (en) internal combustion engine
JPS5857613B2 (en) internal combustion engine
JPH0517369B2 (en)
JPH0623540B2 (en) Pentorf type direct injection internal combustion engine
JPS6032929A (en) Combustion chamber of direct-injection type internal- combustion engine
JP3817910B2 (en) Piston for in-cylinder internal combustion engine
JPH0893550A (en) Combustion chamber of direct injection-type diesel engine
JPS60224920A (en) Combustion chamber structure in piston-top surface
EP0909893A2 (en) Direct injection diesel engine
JPH086589B2 (en) Direct injection internal combustion engine
JPH0517370B2 (en)
JPH0533650A (en) Two-cycle internal combustion engine
JPS6231615Y2 (en)
JPS62248821A (en) Bent roof type piston
JPS62282113A (en) Direct injection type internal combustion engine
JPH0133810Y2 (en)