JPH059394B2 - - Google Patents

Info

Publication number
JPH059394B2
JPH059394B2 JP58179188A JP17918883A JPH059394B2 JP H059394 B2 JPH059394 B2 JP H059394B2 JP 58179188 A JP58179188 A JP 58179188A JP 17918883 A JP17918883 A JP 17918883A JP H059394 B2 JPH059394 B2 JP H059394B2
Authority
JP
Japan
Prior art keywords
sliding
core material
resistant
damage
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58179188A
Other languages
Japanese (ja)
Other versions
JPS6071581A (en
Inventor
Hiroko Tsuya
Yasutoshi Hasegawa
Taku Murakami
Tomotake Shimauchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Komatsu Ltd filed Critical Agency of Industrial Science and Technology
Priority to JP58179188A priority Critical patent/JPS6071581A/en
Publication of JPS6071581A publication Critical patent/JPS6071581A/en
Publication of JPH059394B2 publication Critical patent/JPH059394B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Coating By Spraying Or Casting (AREA)
  • Valve-Gear Or Valve Arrangements (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は諸種の環境における滑りを伴う機械部
品材料並びに構造材料、例えば内燃機関用シリン
ダ、カム、ピストンリング、ベアリング、ロータ
リバルブ、ポンプのベーン、サイドシール、歯車
並びに切削工具、塑性加工工具等に使用される摺
動損傷に強い耐熱耐摺動損傷無機系構造材料に関
するものである。 従来、このような高温のもとで使用される材料
として高温高強度のSi3N4、SiC、ZrO2等のセラ
ミツクスが検討されているが脆性破壊を起しやす
いため強度のバラツキが大きく、また摺動部に使
用された場合必ずしも良好でない。 これはかかるセラミツクスの脆性破壊の特性と
して、金属等の延性による破壊とは異なり、数ミ
クロン程度の比較的小さな限界長さを越えたクラ
ツクが存在すると極めて容易にクラツクが進展す
るので著しい強度低下がもたらされるからであ
る。そして、部品としての動作並びに組立過程の
表面摺動により、これらの材料中には微細なクラ
ツクを生じ易い。これを防ぐには大別して次の2
種類の方法が考えられている。即ち(1)材料を高靭
性化することにより亀裂の発生を防止する。(2)潤
滑作用を付加して摩擦係数を減少させることによ
り、摺動時に発生する応力を低減する。 このうち前記(1)の方法は各種の研究が行われて
いるが摺動条件によつては必ずしも満足する結果
は得られていない。本発明は前記(2)の方法につい
て鋭意研究してなされたものであり、その目的と
するところは潤滑油が無効となる高温のもとで摺
動特性を良好にすることにより強度と耐久性があ
る耐熱耐摺動損傷無機系構造材料を提供すること
にある。 以下、本発明を説明する。 Cr2O3、TiO2、NbO2、ZrO2、TaC、VC、
MoSi、MoC、WC等のセラミツクス材(以下、
これらの材料を高温自己潤滑セラミツクス材料と
言う)はそれぞれに適した環境物質中では、高温
時に摩擦係数が低下するし、摺動損傷を生ぜず、
耐摩耗性もすぐれている特性を発明者は見い出し
た。しかしながらこれらの高温自己潤滑セラミツ
クス材料の多くは単体では十分な強度を得られな
い。 そこで、高温で強度を有する耐熱構造用セラミ
ツクス材料として一般的に使用されかつそれぞれ
の高温自己潤滑セラミツクス材料と密着性の良い
選択された材料としての金属窒化物(Si3N4
AlN、TiN、BN)若しくは金属炭化物(WC、
SiC)、金属酸化物(Al2O3、ZrO2)などのセラミ
ツクス材料又は前記金属窒化物若しくは金属炭化
物、金属酸化物等を主成分とするサーメツト材等
を素地となる材料を芯材料とし、この芯材料の表
面を高温自己潤滑性セラミツクス材料で被覆する
ことにより、潤滑油が無効となる高温のもとで摺
動特性が良好で、強度と耐久性のある構造材料を
作成した。 芯材料としては表1に示す特性を示すセラミツ
クス材料である。 高温自己潤滑セラミツクス材料の、芯材料表面
への被覆の方法としては、プラズマジエツトによ
る溶射等では密着強度が不十分なので、さらに常
圧焼結、HIP法を併用したり、あるいは粉末に埋
没してのホツトプレス、HIP法、アイソスタチツ
クプレス後の常圧焼結法等の方法で作成すること
とする。作成条件の目安はHIP法の場合、温度
1000ないし2500℃、圧力10ないし3000気圧の範囲
から選択する。他の方法の場合はこれに準じて選
択する。 以下実施例を説明する。 実施例 1 第1図は、Si3N4よりなる芯材料にCr2O3より
なる高温自己潤滑セラミツクス材料を被覆した構
造材料を、500℃の無潤滑高温大気中で10Kg/cm2
の荷重を加えて摺動した場合の表面粗さ曲線であ
る。摺動範囲に於てもほとんで傷を生ぜず、加熱
による亀裂も生じていない。 比較例 第2図は、Si3N4よりなる芯材料をそのまま構
造材料にして上記と同じく500℃の高温大気中で
摺動した場合の表面粗さ曲線である。第1図と違
つて摺動によつて著しい損傷が生じていることが
わかる。 第3図は、炭素鋼よりなる芯材料にCr2O3より
なる高温自己潤滑セラミツクス材料を被覆した構
造材料に500℃の高温下で摺動した場合の表面粗
さ曲線であり、この場合は熱膨張の差による亀裂
が一面に生じていることがわかる。 また芯材料が金属であると熱膨張率の大きな差
のため高温でセラミツクス被膜中に引つぱり応力
を生じ微細なクラツクを発生する。 上記した如く、芯材料の表面に高温自己潤滑セ
ラミツクス材料(例:Cr2O3)を被覆する方法を
行なうと各使用雰囲気中、高温での摺動特性が良
好なため摺動損傷を生じにくく、摺動損傷による
強度低下を防止出来る材料を選べる有利さがあ
る。 実施例 2 表2に芯材料としてSi3N4を用いこの芯材料に
各種の高温自己潤滑セラミツクス材料を被覆した
耐熱耐摺動損傷無機系構造材料セラミツクス材料
の摺動特性並びに耐摺動損傷特性を示す。 実施例 3 表3に芯材料としてSiCを用いこの芯材料に各
種の高温自己潤滑セラミツクス材料を被覆した耐
熱耐摺動損傷無機系構造材料セラミツクス材料の
摺動特性並びに耐摺動損傷特性を示す。 実施例 4 表4に芯材料としてZrOを用いこの芯材料に各
種の高温自己潤滑セラミツクス材料を被覆した耐
熱耐摺動損傷無機系構造材料セラミツクス材料の
摺動特性並びに耐摺動損傷特性を示す。 実施例 5 表5に芯材料としてAl2O3を用いこの芯材料に
各種の高温自己潤滑セラミツクス材料を被覆した
耐熱耐摺動損傷無機系構造材料セラミツクス材料
の摺動特性並びに耐摺動損傷特性を示す。 実施例 6 表6に芯材料としてSi−Al−O−Nを用いこ
の芯材料に各種の高温自己潤滑セラミツクス材料
を被覆した耐熱耐摺動損傷無機系構造材料セラミ
ツクス材料の摺動特性並びに耐摺動損傷特性を示
す。 実施例 7 表7に芯材料として超硬サーメツトを用いこの
芯材料に各種の高温自己潤滑セラミツクス材料を
被覆した耐熱耐摺動損傷無機系構造材料セラミツ
クス材料の摺動特性並びに耐摺動損傷特性を示
す。 実施例 8 表8に芯材料としてAlNを用いこの芯材料に
各種の高温自己潤滑セラミツクス材料を被覆した
耐熱耐摺動損傷無機系構造材料セラミツクス材料
の摺動特性並びに耐摺動損傷特性を示す。 実施例 9 表9に芯材料としてAlNサーメツトを用いこ
の芯材料に各種の高温自己潤滑セラミツクス材料
を被覆した耐熱耐摺動損傷無機系構造材料セラミ
ツクス材料の摺動特性並びに耐摺動損傷特性を示
す。 実施例 10 表10に芯材料としてTiNを用いこの芯材料に
各種の高温自己潤滑セラミツクス材料を被覆した
耐熱耐摺動損傷無機系構造材料セラミツクス材料
の摺動特性並びに耐摺動損傷特性を示す。 実施例 11 表11に芯材料としてBNを用いこの芯材料に各
種の高温自己潤滑セラミツクス材料を被覆した耐
熱耐摺動損傷無機系構造材料セラミツクス材料の
摺動特性並びに耐摺動損傷特性を示す。
The present invention is applicable to mechanical parts and structural materials that slip in various environments, such as internal combustion engine cylinders, cams, piston rings, bearings, rotary valves, pump vanes, side seals, gears, cutting tools, plastic working tools, etc. This invention relates to a heat-resistant, sliding damage-resistant inorganic structural material that is resistant to sliding damage. Conventionally, high-temperature, high-strength ceramics such as Si 3 N 4 , SiC, and ZrO 2 have been considered as materials that can be used under such high temperatures, but they tend to cause brittle fracture and have large variations in strength. Moreover, it is not necessarily good when used in sliding parts. This is because, as a characteristic of brittle fracture in ceramics, unlike the ductile fracture of metals, if a crack exists that exceeds a relatively small critical length of several microns, the crack will grow very easily, resulting in a significant decrease in strength. Because it will come. Furthermore, minute cracks are likely to occur in these materials due to movement of the parts and surface sliding during the assembly process. To prevent this, there are two main ways to prevent this:
Various methods are being considered. Namely, (1) the occurrence of cracks is prevented by increasing the toughness of the material; (2) By adding lubrication and reducing the coefficient of friction, stress generated during sliding is reduced. Among these methods, various studies have been conducted on method (1), but satisfactory results have not always been obtained depending on the sliding conditions. The present invention was developed through intensive research into the method (2) above, and its purpose is to improve strength and durability by improving sliding characteristics at high temperatures where lubricating oil becomes ineffective. The purpose of the present invention is to provide an inorganic structural material that is heat resistant and resistant to sliding damage. The present invention will be explained below. Cr2O3 , TiO2 , NbO2 , ZrO2 , TaC , VC,
Ceramic materials such as MoSi, MoC, and WC (hereinafter referred to as
These materials (called high-temperature self-lubricating ceramic materials) have a low friction coefficient at high temperatures in suitable environmental substances, and do not cause sliding damage.
The inventor has discovered that it also has excellent wear resistance. However, many of these high-temperature self-lubricating ceramic materials do not have sufficient strength when used alone. Therefore, metal nitrides (Si 3 N 4 ,
AlN, TiN, BN) or metal carbide (WC,
SiC), a ceramic material such as metal oxide (Al 2 O 3 , ZrO 2 ), or a cermet material containing the above-mentioned metal nitride, metal carbide, metal oxide, etc. as a core material, By coating the surface of this core material with a high-temperature self-lubricating ceramic material, we created a structural material that has good sliding properties, strength, and durability at high temperatures where lubricating oil becomes ineffective. The core material is a ceramic material exhibiting the characteristics shown in Table 1. As methods for coating the core material surface with high-temperature self-lubricating ceramic materials, thermal spraying using a plasma jet, etc., does not provide sufficient adhesion strength, so pressureless sintering, HIP method, etc. are used in combination, or embedding in powder. It will be manufactured using methods such as hot pressing, HIP method, and pressureless sintering method after isostatic pressing. In the case of the HIP method, the guideline for creation conditions is temperature.
Select from the range of 1000 to 2500℃ and pressure 10 to 3000 atm. For other methods, select accordingly. Examples will be described below. Example 1 Figure 1 shows a structural material in which a core material made of Si 3 N 4 is coated with a high-temperature self-lubricating ceramic material made of Cr 2 O 3 at a rate of 10 kg/cm 2 in an unlubricated high-temperature atmosphere of 500°C.
This is the surface roughness curve when sliding with a load of . There are almost no scratches in the sliding range, and no cracks due to heating. Comparative Example FIG. 2 shows the surface roughness curve when the core material made of Si 3 N 4 is used as the structural material and is slid in the high temperature atmosphere of 500° C. as described above. It can be seen that, unlike in Figure 1, significant damage has been caused by sliding. Figure 3 shows the surface roughness curve when a structural material in which a core material made of carbon steel is coated with a high temperature self-lubricating ceramic material made of Cr 2 O 3 is slid at a high temperature of 500°C. It can be seen that cracks due to differences in thermal expansion occur all over the surface. Furthermore, if the core material is metal, a large difference in coefficient of thermal expansion will cause tensile stress in the ceramic coating at high temperatures, causing minute cracks. As mentioned above, if the surface of the core material is coated with a high-temperature self-lubricating ceramic material (e.g. Cr 2 O 3 ), sliding damage will be less likely to occur due to good sliding properties at high temperatures in various usage atmospheres. , there is the advantage of being able to choose a material that can prevent a decrease in strength due to sliding damage. Example 2 Table 2 shows the sliding characteristics and sliding damage resistance of Si 3 N 4 as the core material and the heat-resistant and sliding damage-resistant inorganic structural materials in which the core material is coated with various high-temperature self-lubricating ceramic materials. shows. Example 3 Table 3 shows the sliding characteristics and sliding damage resistance of a heat resistant and sliding damage resistant inorganic structural ceramic material using SiC as the core material and coating the core material with various high temperature self-lubricating ceramic materials. Example 4 Table 4 shows the sliding characteristics and sliding damage resistance of heat-resistant and sliding damage-resistant inorganic structural ceramic materials using ZrO as the core material and coating the core material with various high-temperature self-lubricating ceramic materials. Example 5 Table 5 shows the sliding characteristics and sliding damage resistance of heat-resistant and sliding damage-resistant inorganic structural materials using Al 2 O 3 as the core material and coating this core material with various high-temperature self-lubricating ceramic materials. shows. Example 6 Table 6 shows the sliding properties and sliding resistance of heat-resistant, sliding-damaged, inorganic structural materials using Si-Al-O-N as the core material and coating the core material with various high-temperature self-lubricating ceramic materials. Indicates dynamic damage characteristics. Example 7 Table 7 shows the sliding characteristics and sliding damage resistance of heat-resistant, sliding damage-resistant, inorganic structural materials and ceramic materials in which carbide cermet is used as the core material and this core material is coated with various high-temperature self-lubricating ceramic materials. show. Example 8 Table 8 shows the sliding characteristics and sliding damage resistance of a heat resistant and sliding damage resistant inorganic structural ceramic material using AlN as the core material and coating the core material with various high temperature self-lubricating ceramic materials. Example 9 Table 9 shows the sliding characteristics and sliding damage resistant properties of heat resistant and sliding damage resistant inorganic structural materials and ceramic materials using AlN cermet as the core material and coating this core material with various high temperature self-lubricating ceramic materials. . Example 10 Table 10 shows the sliding characteristics and sliding damage resistance of heat-resistant and sliding damage-resistant inorganic structural ceramic materials using TiN as the core material and coating the core material with various high-temperature self-lubricating ceramic materials. Example 11 Table 11 shows the sliding characteristics and sliding damage resistance of a heat-resistant and sliding damage-resistant inorganic structural ceramic material using BN as the core material and coating the core material with various high-temperature self-lubricating ceramic materials.

【表】 表2〜表11を次に示す。 表2〜表11において摺動試験条件A〜Fは次の
通りである。 A:無給油で400℃以下 B:無給油で500〜700℃ C:合成油(潤滑油)、400℃以下 D:合成油(潤滑油)、400℃以下 E:合成油+硫化物添加、400℃以下 F:H2Sガス雰囲気、1000℃
[Table] Tables 2 to 11 are shown below. In Tables 2 to 11, the sliding test conditions A to F are as follows. A: 400℃ or less without lubrication B: 500 to 700℃ without lubrication C: Synthetic oil (lubricating oil), 400℃ or less D: Synthetic oil (lubricating oil), 400℃ or less E: Synthetic oil + sulfide addition, 400℃ or less F: H2S gas atmosphere, 1000℃

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】 本発明は以上詳述したように、金属窒化物
(Si3N4、AlN、TiN、BN)もしくは金属炭化物
(WC、SiC)、金属酸化物(Al2O3、ZrO2)等の
セラミツクス材料、または前記金属窒化物若しく
は金属炭化物、金属酸化物等を主成分とし若干の
金属を含むサーメツト材を芯材料とし、この芯材
料の表面を、Cr2O3、TiO2、ZrO2、VC、MoSi、
MoC及びWCからなる群から選ばれた少なくとも
1種の高温自己潤滑性セラミツクス材料で焼結被
覆したことを特徴とする耐熱耐摺動損傷無機系構
造材料である。 したがつて、この耐熱耐摺動損傷無機系構造材
料は、各使用雰囲気中、高温での摺特特性が良好
で摺動損傷が生じにくく摺動損傷による強度低下
のないものとなり、しかも高温自己潤滑性セラミ
ツクス材料は芯材の表面に焼結被覆したことによ
り十分な強度で芯材に被覆され、使用中にこれが
剥離するようなことがない。
[Table] As detailed above, the present invention is applicable to metal nitrides (Si 3 N 4 , AlN, TiN, BN), metal carbides (WC, SiC), metal oxides (Al 2 O 3 , ZrO 2 ), etc. The core material is a ceramic material, or a cermet material that is mainly composed of the metal nitride, metal carbide, metal oxide, etc. and contains some metal, and the surface of this core material is made of Cr 2 O 3 , TiO 2 , ZrO 2 . ,VC,MoSi,
This is a heat-resistant and sliding damage-resistant inorganic structural material characterized by being sintered and coated with at least one high-temperature self-lubricating ceramic material selected from the group consisting of MoC and WC. Therefore, this heat-resistant and sliding damage-resistant inorganic structural material has good sliding characteristics at high temperatures in various usage atmospheres, is resistant to sliding damage, and does not suffer from strength loss due to sliding damage. Since the lubricating ceramic material is sintered and coated on the surface of the core material, the core material is coated with sufficient strength and will not peel off during use.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、Si3N4よりなる芯材料にCr2O3より
なる高温自己潤滑セラミツクス材料を被覆した構
造材料を、500℃の無潤滑高温大気中で10Kg/cm2
の荷重を加えて摺動した場合の表面粗さ曲線図、
第2図は、Si3N4よりなる芯材料をそのまま構造
材料に上記と同じく500℃の高温大気中で摺動し
た場合の表面粗さ曲線図、第3図は、炭素鋼より
なる芯材料にCr2O3よりなる高温自己潤滑セラミ
ツクス材料を被覆した構造材料に500℃の高温下
で摺動した場合の表面粗さ曲線図である。
Figure 1 shows a structural material in which a core material of Si 3 N 4 is coated with a high-temperature self-lubricating ceramic material of Cr 2 O 3 at a temperature of 10 kg/cm 2 in an unlubricated high-temperature atmosphere of 500°C.
Surface roughness curve diagram when sliding with a load of
Figure 2 shows the surface roughness curve when a core material made of Si 3 N 4 is used as a structural material and is slid in the same high temperature atmosphere as above at 500℃, and Figure 3 shows a core material made of carbon steel. FIG. 3 is a surface roughness curve diagram when a structural material coated with a high-temperature self-lubricating ceramic material made of Cr 2 O 3 is slid at a high temperature of 500°C.

Claims (1)

【特許請求の範囲】[Claims] 1 金属窒化物(Si3N4、AlN、TiN、BN)も
しくは金属炭化物(WC、SiC)、金属酸化物
(Al2O3、ZrO2)等のセラミツクス材料、または
前記金属窒化物若しくは金属炭化物、金属酸化物
等を主成分とし若干の金属を含むサーメツト材を
芯材料とし、この芯材料の表面を、Cr2O3
TiO2、ZrO2、VC、MoSi、MoC及びWCからな
る群から選ばれた少なくとも1種の高温自己潤滑
性セラミツクス材料で焼結被覆したことを特徴と
する耐熱耐摺動損傷無機系構造材料。
1 Ceramic materials such as metal nitrides (Si 3 N 4 , AlN, TiN, BN), metal carbides (WC, SiC), metal oxides (Al 2 O 3 , ZrO 2 ), or the above metal nitrides or metal carbides The core material is a cermet material mainly composed of metal oxides and some metals, and the surface of this core material is made of Cr 2 O 3 ,
A heat-resistant and sliding damage-resistant inorganic structural material characterized by being sintered and coated with at least one high-temperature self-lubricating ceramic material selected from the group consisting of TiO 2 , ZrO 2 , VC, MoSi, MoC, and WC.
JP58179188A 1983-09-29 1983-09-29 Heat resistant and sliding damage resistant inorganic structural material Granted JPS6071581A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58179188A JPS6071581A (en) 1983-09-29 1983-09-29 Heat resistant and sliding damage resistant inorganic structural material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58179188A JPS6071581A (en) 1983-09-29 1983-09-29 Heat resistant and sliding damage resistant inorganic structural material

Publications (2)

Publication Number Publication Date
JPS6071581A JPS6071581A (en) 1985-04-23
JPH059394B2 true JPH059394B2 (en) 1993-02-04

Family

ID=16061473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58179188A Granted JPS6071581A (en) 1983-09-29 1983-09-29 Heat resistant and sliding damage resistant inorganic structural material

Country Status (1)

Country Link
JP (1) JPS6071581A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6257905A (en) * 1985-08-02 1987-03-13 Asahi Chem Ind Co Ltd Spinneret
JPS6321748U (en) * 1986-07-25 1988-02-13
JPH03260047A (en) * 1990-03-09 1991-11-20 Agency Of Ind Science & Technol Thermal spraying material having wear resistance at high temperature and its production
FR2660930A1 (en) * 1990-04-13 1991-10-18 Ceramiques Composites LUBRICANT FOR CERAMIC SURFACE AND LUBRICATION METHOD.
JPH05340212A (en) * 1992-06-05 1993-12-21 Sumitomo Electric Ind Ltd Adjusting shim made of ceramics
SE514372C2 (en) * 1996-03-07 2001-02-19 Skf Nova Ab Lubricated rolling contact device, method and composition for lubricating a rolling contact device and a ceramic roller body

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58204883A (en) * 1982-05-20 1983-11-29 九州耐火煉瓦株式会社 Mechanical part with ceramic sliding portion
JPS59137375A (en) * 1983-01-25 1984-08-07 トヨタ自動車株式会社 Silicon nitride sintered body with sliding properties

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58204883A (en) * 1982-05-20 1983-11-29 九州耐火煉瓦株式会社 Mechanical part with ceramic sliding portion
JPS59137375A (en) * 1983-01-25 1984-08-07 トヨタ自動車株式会社 Silicon nitride sintered body with sliding properties

Also Published As

Publication number Publication date
JPS6071581A (en) 1985-04-23

Similar Documents

Publication Publication Date Title
Hannink et al. Friction and wear of partially stabilized zirconia: basic science and practical applications
Gupta et al. Ta2AlC and Cr2AlC Ag-based composites—New solid lubricant materials for use over a wide temperature range against Ni-based superalloys and alumina
US5575571A (en) Rolling bearing
JP4790135B2 (en) Wear-resistant sliding member
Wang et al. The analysis of the friction and wear mechanisms of plasma-sprayed ceramic coatings at 450 C
JPS60262951A (en) Anticorrosive coating
Lankford et al. Friction and wear behaviour of ion beam modified ceramics
JPH059394B2 (en)
Gomes et al. Tribooxidational effects on friction and wear behavior of silicon nitride/tool steel and silicon nitride/gray cast iron contacts
Sliney et al. Tribology of selected ceramics at temperatures to 900 C
US4902576A (en) High temperature sliding element and method for preventing high temperature sliding wear
Bhushan Overview of Coating Materials, Surface Treatments, and Screening Techniques for Tribological Applications—Part 1: Coating Materials and Surface Treatments
Evtushok et al. Tribological properties of composite materials based on refractory titanium compounds
JPH09241818A (en) Wear resistant coating for turbine member
JPS61250161A (en) Cylinder liner
Liu et al. Wear mechanisms of zirconia/steel reciprocating sliding couple under water lubrication
JPS6237517A (en) Sliding member
Jahanmir Advanced ceramics in tribological applications
JP2002180222A (en) Immersion member for hot dip metal coating bath
Gaydos et al. Lubrication of ceramics in ring/cylinder applications
Dufrane Wear performance of ceramics in ring/cylinder applications
JP2938098B2 (en) BN-SiC composite sintered body
Prakash Friction and wear characteristics of advanced ceramic composite materials
US20050166708A1 (en) Metal-ceramic composites for tribological uses and defined sliding/friction pairs based on said materials
Davis et al. Oxidation‐induced crack healing and erosion life assessment of Ni–Mo–Al–Cr7C3–Al2O3 composite coating