JP2002180222A - Immersion member for hot dip metal coating bath - Google Patents

Immersion member for hot dip metal coating bath

Info

Publication number
JP2002180222A
JP2002180222A JP2000377798A JP2000377798A JP2002180222A JP 2002180222 A JP2002180222 A JP 2002180222A JP 2000377798 A JP2000377798 A JP 2000377798A JP 2000377798 A JP2000377798 A JP 2000377798A JP 2002180222 A JP2002180222 A JP 2002180222A
Authority
JP
Japan
Prior art keywords
plating bath
metal plating
immersion member
molten metal
immersion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000377798A
Other languages
Japanese (ja)
Other versions
JP4460144B2 (en
Inventor
Shigeharu Matsubayashi
重治 松林
Tetsuo Nose
哲郎 野瀬
Shigeru Shibamoto
芝本  茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2000377798A priority Critical patent/JP4460144B2/en
Publication of JP2002180222A publication Critical patent/JP2002180222A/en
Application granted granted Critical
Publication of JP4460144B2 publication Critical patent/JP4460144B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Coating With Molten Metal (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an immersion member for hot dip metal coating bath by which durability against thermal shock/repeated thermal fatigue can be improved and replacement at wear and breakage can be facilitated. SOLUTION: The immersion member for hot dip metal coating bath is provided to a pot roll device immersed in a hot dip metal coating bath. This immersion member is a silicon nitride type or silicon carbide type ceramic member fitted to a part or the whole of a sliding part at least of a pot-roll shaft sleeve member or a bearing member of the pot roll device.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、鋼板等の連続溶融
金属めっき装置における溶融金属めっき浴用浸漬部材に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dipping member for a hot-dip metal plating bath in a continuous hot-dip metal plating apparatus for a steel plate or the like.

【0002】[0002]

【従来の技術】金属めっき板を得る方法として、図1に
示すように、加熱炉で加熱焼鈍された金属板を溶融金属
槽に導き、金属板へ溶融金属をめっきし、ポットロール
及びガイドロールを介して、これを引き上げ連続的に金
属めっき板を得る方法が汎用されている。より詳しく
は、連続溶融金属めっき装置による金属板へのめっき方
法は、金属板として鋼板を用いた場合、前処理として表
面を洗浄・活性化した鋼板を溶融金属浴中に挿入して、
浴中のポットロールで方向を変えた後、鋼板の幅方向の
反りを抑えるために2本のガイドロールの間を通過させ
る。この後、さらに鋼板を上方に引き上げ、めっき浴の
直上で鋼板表面に付着した余分の溶融金属を高圧ガスの
ワイピング等により除去して、所定のめっき量に調整し
て、溶融金属めっき鋼板を製造するものである。
2. Description of the Related Art As a method for obtaining a metal plated plate, as shown in FIG. 1, a metal plate heated and annealed in a heating furnace is led to a molten metal tank, and the molten metal is plated on the metal plate, and a pot roll and a guide roll are formed. And a method of continuously pulling up a metal-plated sheet by using a conventional method is widely used. More specifically, the plating method for a metal plate by a continuous hot-dip metal plating apparatus, when a steel plate is used as the metal plate, insert the steel plate whose surface has been cleaned and activated as a pretreatment into a molten metal bath,
After changing the direction with a pot roll in the bath, the steel sheet is passed between two guide rolls to suppress warpage in the width direction. Thereafter, the steel sheet is further lifted upward, and excess molten metal adhering to the steel sheet surface immediately above the plating bath is removed by wiping of a high-pressure gas or the like, and adjusted to a predetermined plating amount to produce a molten metal-plated steel sheet. Is what you do.

【0003】この溶融金属めっき浴に浸漬されるポット
ロールの軸受部材及び軸部スリーブ部材には、一般的
に、耐食性の良好な24Cr-12Ni系ステンレス鋼が用いら
れている。ステンレス鋼は、溶融亜鉛、溶融アルミニウ
ム等の溶融金属との反応性が低く、耐食性は良好である
が、耐摩耗性は充分とは言えず、特に、軸受部材は、軸
部スリーブ部材と極狭い範囲(上側の半分)で常時接触し
ているため、摩耗量は軸部スリーブ部材より大きく、寿
命は4〜8日程度と短い。軸受部材の摩耗が進行すると、
鋼板にバタツキ等が発生し、良好なめっきが行えないた
め、該部材を溶融金属めっき浴中から引き上げ、軸受部
材を交換しなければならない。そのため、溶融金属めっ
き浴中に浸漬されているポットロール等の他の部材に異
常が無くても、操業を停止し、溶融金属めっき浴中に浸
漬されている部品全体を引き上げる必要がある。この際
に、浴温から室温へ急激に冷却されるため、熱衝撃破損
等のダメージが他の部品に発生することもあり、部品全
体を一括交換する場合もあり、生産上の損失は極めて大
きい。このため、溶融金属めっき浴中で使用されるロー
ル寿命の延長を図る様々な提案がなされている。
[0003] Generally, 24Cr-12Ni stainless steel having good corrosion resistance is used for a bearing member and a shaft portion sleeve member of a pot roll immersed in the molten metal plating bath. Stainless steel has low reactivity with molten metals such as molten zinc and molten aluminum, and has good corrosion resistance, but its wear resistance is not sufficient. In particular, the bearing member is extremely narrow with the shaft sleeve member. Since it is always in contact within the range (upper half), the amount of wear is larger than that of the shaft sleeve member, and the service life is as short as about 4 to 8 days. As the wear of the bearing members progresses,
Since the steel plate flaps or the like and good plating cannot be performed, the member must be pulled out of the molten metal plating bath and the bearing member must be replaced. Therefore, even if there is no abnormality in other members such as a pot roll immersed in the hot-dip metal plating bath, it is necessary to stop the operation and pull up the entire part immersed in the hot-dip metal plating bath. At this time, since the temperature is rapidly cooled from the bath temperature to room temperature, damage such as thermal shock damage may occur to other parts, and the whole part may be replaced at a time, resulting in a very large loss in production. . For this reason, various proposals have been made to extend the life of a roll used in a molten metal plating bath.

【0004】特開平3-253547号公報や特開平5-44002号
公報では、溶融亜鉛浴中での軸受部材及び軸部スリーブ
部材に、アルミナ又は窒化珪素・サイアロンを用い、回
転するポットロールを外部から回転駆動する提案がなさ
れている。しかしながら、該提案では、溶融金属として
亜鉛のみを取り上げ、摺動摩耗量及び摩耗係数のみを選
定基準としており、耐熱衝撃性や溶融金属との濡れ性等
については考慮されていない。さらに、アルミナ又は窒
化珪素・サイアロンセラミックスに関しても、組成、焼
成条件(密度、組織)、機械的特性、摺動面粗さ等の諸特
性についての最適条件の記載はない。
In JP-A-3-253547 and JP-A-5-44002, alumina or silicon nitride sialon is used for a bearing member and a shaft sleeve member in a molten zinc bath, and a rotating pot roll is externally mounted. Has been proposed for rotational drive. However, in this proposal, only zinc is used as the molten metal, and only the sliding wear amount and the wear coefficient are used as selection criteria, and heat shock resistance, wettability with the molten metal, and the like are not considered. Further, with respect to alumina or silicon nitride / sialon ceramics, there is no description of optimum conditions for various characteristics such as composition, firing conditions (density, structure), mechanical characteristics, and sliding surface roughness.

【0005】また、モノリシック炭化珪素やジルコニア
セラミックスは、窒化珪素やサイアロンより熱衝撃性に
劣ることが知られている。
Further, it is known that monolithic silicon carbide and zirconia ceramics are inferior to silicon nitride and sialon in thermal shock resistance.

【0006】上記従来技術で開示されている内容に基づ
き、一般的な焼成助剤であるイットリア、アルミナを用
いて、相対密度比99%まで緻密化した市販の窒化珪素セ
ラミックスで、溶融アルミニウム浴中における摺動及び
熱衝撃試験を行った結果、亜鉛浴中の摩耗量を大きく上
回り、溶融アルミニウム浴中からの空冷を3回行っただ
けで破損した。
[0006] Based on the contents disclosed in the above prior art, a commercially available silicon nitride ceramic densified to a relative density ratio of 99% using yttria and alumina, which are general firing aids, is used in a molten aluminum bath. As a result of the sliding and thermal shock tests, the abrasion loss in the zinc bath was greatly exceeded, and it was broken only by performing air cooling from the molten aluminum bath three times.

【0007】[0007]

【発明が解決しようとする課題】すべり軸受に関する上
記技術は、軸受部材及び軸部スリーブ部材の互いに接触
する面を、ステンレス鋼に比べれば溶融金属浴中での耐
食性が良好で、かつ、高硬度のセラミックスでコーティ
ングしたり、または、サーメット、超硬合金やセラミッ
クス焼結体等とすることで、軸受の長寿命化を図ろうと
したものである。しかし、溶融金属めっき浴用部材にと
って、軸受部材と軸部スリーブ部材の最適な組合せは、
材料の耐熱衝撃性、高靭性、難濡れ性等の特性を考慮す
ることがはるかに重要な選定要素である。数百℃に加熱
されたポットロールの引上げ時の空冷に伴う熱衝撃や繰
返し熱疲労に対する耐久性を高め、溶融金属の中でも特
に溶融アルミニウムに対する濡れ性を制御することが不
可欠である。
The above-mentioned technique relating to the plain bearing is characterized in that the surfaces of the bearing member and the shaft sleeve member that come into contact with each other have a better corrosion resistance in a molten metal bath and a higher hardness than stainless steel. It is intended to extend the life of the bearing by coating with ceramics or by using a cermet, a cemented carbide, a ceramic sintered body, or the like. However, the optimal combination of the bearing member and the shaft sleeve member for the molten metal plating bath member is
Considering the properties of the material, such as thermal shock resistance, high toughness, and poor wettability, is a much more important selection factor. It is indispensable to increase the durability against thermal shock and repeated thermal fatigue caused by air cooling when pulling a pot roll heated to several hundred degrees Celsius, and to control the wettability to molten aluminum, especially among molten metals.

【0008】また、取り替え作業が迅速に行えれば、操
業上の機会損失を低減できるため、当該部材の交換を簡
便に行える構造とすることも望まれている。
[0008] Further, if the replacement work can be performed quickly, the opportunity loss in operation can be reduced. Therefore, it is also desired to provide a structure in which the members can be easily replaced.

【0009】そこで、本発明の目的は、熱衝撃や繰り返
し熱疲労に対する耐久性を大幅に向上させ、併せて、摩
耗・破損時の交換作業を著しく簡便にした溶融金属めっ
き浴用浸漬部材を提供することにある。
Accordingly, an object of the present invention is to provide an immersion member for a hot-dip metal plating bath in which the durability against thermal shock and repeated thermal fatigue is greatly improved, and at the same time, the replacement work at the time of wear and breakage is remarkably simplified. It is in.

【0010】[0010]

【課題を解決するための手段】本発明は、上記課題を解
決して、溶融金属めっき浴中で長時間安定して繰り返し
使用でき、交換作業時には簡便に取り替えられる溶融金
属めっき浴用浸漬部材を提供することを目的としてなさ
れたものであり、(1)溶融金属めっき浴に浸漬される
ポットロール装置に付設された浸漬部材であって、該浸
漬部材が、該ポットロール設備の少なくともポットロー
ル軸部スリーブ部材と軸受部材の摺動する部分の一部又
は全部に嵌合してなる、窒化珪素系又は炭化珪素系のセ
ラミックス部材であることを特徴とする溶融金属めっき
浴用浸漬部材、(2)前記浸漬部材が、複数の柱状部材
からなる(1)記載の溶融金属めっき浴用浸漬部材、
(3)前記柱状部材が、前記軸受部の軸方向に嵌合して
なる(2)記載の溶融金属めっき浴用浸漬部材、(4)前
記柱状部材の回転方向の摺動面が、平面又は前記ポット
ロール軸部スリーブ部材の曲率半径以上の円弧状面であ
る(3)記載の溶融金属めっき浴用浸漬部材、(5)前記
柱状部材が、前記ポットロール軸部スリーブ部材に軸方
向に嵌合してなる(2)記載の溶融金属めっき浴用浸漬部
材、(6)前記柱状部材の摺動面が、前記軸受部材の曲
率半径以下の円弧状面である(5)記載の溶融金属めっき
浴用浸漬部材、(7)前記柱状部材の軸方向の摺動面
が、凹凸状及び/又は波形状で、凸部の摺動面高さが軸
方向で揃った形状である(3)又は(5)に記載の溶融金属め
っき浴用浸漬部材、(8)前記セラミックス部材が、理
論密度の95%以上の焼結体密度である(1)〜(7)に記載の
溶融金属めっき浴用浸漬部材、(9)前記セラミックス
部材が、クロム化合物を体積分率で1〜8%含有する窒化
珪素質焼結体である(8)記載の溶融金属めっき浴用浸漬
部材、(10)前記クロム化合物が、窒化クロムである
(9)記載の溶融金属めっき浴用浸漬部材、(11)前記
セラミックス部材が、複合金属ホウ化物を体積分率で20
〜70%含有する炭化珪素質焼結体である(8)記載の溶融金
属めっき浴用浸漬部材、(12)前記複合金属ホウ化物
が、Ti-Zr-B固溶体及び/又はTi-Hf-B固溶体である(11)
記載の溶融金属めっき浴用浸漬部材、を要旨とするもの
である。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems and provides an immersion member for a molten metal plating bath which can be used repeatedly and stably for a long time in a molten metal plating bath and can be easily replaced at the time of replacement work. (1) An immersion member attached to a pot roll device immersed in a molten metal plating bath, wherein the immersion member is at least a pot roll shaft portion of the pot roll equipment. A immersion member for a molten metal plating bath, wherein the immersion member is a silicon nitride-based or silicon carbide-based ceramic member fitted to a part or all of a sliding portion of a sleeve member and a bearing member. Immersion member, the immersion member for the molten metal plating bath according to (1), comprising a plurality of columnar members,
(3) The immersion member for a molten metal plating bath according to (2), wherein the columnar member is fitted in the axial direction of the bearing portion. (4) The sliding surface of the columnar member in the rotation direction is a flat surface or the immersion member. The immersion member for a hot-dip metal plating bath according to (3), which is an arc-shaped surface having a radius of curvature equal to or larger than the radius of curvature of the pot roll shaft sleeve member. (5) The columnar member is fitted in the pot roll shaft sleeve member in the axial direction. (2) The immersion member for a hot-dip metal plating bath according to (2), (6) the immersion member for a hot-dip metal plating bath according to (5), wherein the sliding surface of the columnar member is an arc-shaped surface having a radius of curvature equal to or less than the radius of curvature of the bearing member. (7) The axial sliding surface of the columnar member is uneven and / or corrugated, and the sliding surface height of the convex portion is uniform in the axial direction (3) or (5). (8) The immersion member for a hot-dip metal plating bath according to (8), wherein the ceramic member has a sintered body density of 95% or more of a theoretical density. (1) to (7), (9) the ceramic member is a silicon nitride sintered body containing a chromium compound in a volume fraction of 1 to 8%. (10) The chromium compound is chromium nitride.
(9) The immersion member for a hot-dip metal plating bath according to (9), wherein the ceramic member is a composite metal boride having a volume fraction of 20%.
The immersion member for a hot-dip metal plating bath according to (8), which is a silicon carbide sintered body containing about 70% to 70%, wherein the composite metal boride is a Ti-Zr-B solid solution and / or a Ti-Hf-B solid solution. (11)
A dipped member for a hot-dip metal plating bath as described above.

【0011】[0011]

【発明の実施の形態】本発明者らは、特開平3-253547号
公報や特開平5-44402号公報で提案された溶融亜鉛浴中
ロール軸受を見直し、亜鉛に比べ高融点の溶融アルミニ
ウム浴中でも、従来技術では困難であった摺動摩耗及び
熱疲労部周囲のチッピングや割れ等の欠損を抑えること
ができ、ロール引き上げ後に着地させる際の機械的衝
撃、及び、浴中から取り出され空冷されることで繰り返
し加わる熱応力に対する耐久性に優れた軸受部材の構造
・形状並びに材質を見出した。そして、これらのチッピ
ングや割れ等の欠損は、熱衝撃及び機械的衝撃により生
成、進展するものであり、部材に空孔が多い場合、低強
度、低靭性、溶融金属との濡れ性が良い場合、低熱伝
導、低耐熱衝撃、摺動面が粗い場合、等に顕著であるこ
と、また、摺動摩耗は、摺動部が面ではなく、線接触も
しく点接触である場合等に顕著に抑制されることを確認
した。
BEST MODE FOR CARRYING OUT THE INVENTION The present inventors reviewed the roll bearing in a molten zinc bath proposed in JP-A-3-253547 and JP-A-5-44402 and found that a molten aluminum bath having a higher melting point than zinc. Above all, it is possible to suppress defects such as sliding wear and chipping and cracking around the thermal fatigue portion, which were difficult with the conventional technology, mechanical shock when landing after pulling up the roll, and taking out from the bath and cooling by air. As a result, a structure, a shape and a material of a bearing member having excellent durability against thermal stress repeatedly applied have been found. These defects such as chipping and cracks are generated and propagated by thermal shock and mechanical shock, and when the member has many holes, low strength, low toughness, and good wettability with molten metal. , Low thermal conductivity, low thermal shock, when the sliding surface is rough, etc., and the sliding wear is remarkable when the sliding part is not a surface, but is in line contact or point contact. It was confirmed that it was suppressed.

【0012】本発明の溶融金属めっき浴用浸漬部材は、
溶融金属めっき浴に浸漬されるポットロール装置に付設
された浸漬部材であって、該浸漬部材が、該ポットロー
ル設備の少なくともポットロール軸部スリーブ部材また
は軸受部材の摺動する部分の一部又は全部に嵌合してな
る、窒化珪素系又は炭化珪素系のセラミックス部材であ
る。溶融金属めっき浴用浸漬部材は、高耐熱衝撃性・高
靭性・高耐摩耗性の観点から窒化珪素系または炭化珪素
系セラミックスが好ましい。
The immersion member for a molten metal plating bath of the present invention comprises:
An immersion member attached to a pot roll device immersed in a molten metal plating bath, wherein the immersion member is at least part of a sliding portion of a pot roll shaft sleeve member or a bearing member of the pot roll equipment or A silicon nitride-based or silicon carbide-based ceramic member fitted to all. The immersion member for the hot-dip metal plating bath is preferably a silicon nitride-based or silicon carbide-based ceramic from the viewpoint of high thermal shock resistance, high toughness, and high wear resistance.

【0013】また、浸漬部材の取扱い易さの観点から、
柱状部材を複数嵌合することが好ましい。埋め込み形状
について、ポットロールと直接摺動する面が平面または
ポットロール軸部スリーブ部材の曲率半径以上の上に凸
な円弧状面が好ましいが、特に限定するものではなく、
軸に垂直方向の断面形状が四角形以上の多角形や半円
形、円形でも良い。回転方向に柱状部材を配置すること
は好適ではない。圧縮応力負荷に限定するために、回転
方向と同じ方向に線接触ならびに点接触させる配置を推
奨する。また、ポットロール軸部スリーブ部材の曲率半
径以下の上に凸な円弧状面もしくは曲率半径以上の凹な
円弧状面では埋め込み材に圧縮応力以外が負荷され、圧
縮に比べて破損の確率が高くなることが予想される。好
ましくは、下辺が上辺に比べて長い等脚台形を断面とす
るセラミックス製軸受け片を使用すれば、楔(くさび)や
接着剤等を使用せず、位置決めすることが容易であり、
圧縮応力のみを負荷させることが可能である。さらに、
図2の iii)〜iv)に示したように柱状の埋め込み材の回
転軸と平行な方向に凹凸または波形を順次付与すること
により、線接触から点接触にすることが可能であり、め
っき浴の流動を促進することが可能になることから回転
が円滑なものになることが想定される。隣接する埋め込
み材との凹凸または波形パターンを逆相にするか同相に
するかはめっき浴の流動性やポットロールの回転数によ
って対応すべきである。このような形状にすることによ
り、軸受け部での溶融金属溜りができにくくなり、補修
作業等の作業効率を改善できる。
From the viewpoint of easy handling of the immersion member,
It is preferable to fit a plurality of columnar members. Regarding the embedding shape, a surface directly sliding on the pot roll is preferably a flat surface or an arc-shaped surface convex above the radius of curvature of the pot roll shaft sleeve member, but is not particularly limited.
The cross-sectional shape in the direction perpendicular to the axis may be a polygon, a semicircle, or a circle having a quadrangle or more. It is not preferable to arrange the columnar members in the rotation direction. In order to limit to the compressive stress load, it is recommended to arrange the line contact and point contact in the same direction as the rotation direction. In addition, a potion other than compressive stress is applied to the embedding material on an upwardly convex arc-shaped surface or a concave arc-shaped surface having a radius of curvature equal to or greater than the radius of curvature of the pot roll shaft sleeve member, and the probability of breakage is higher than compression. It is expected to be. Preferably, if a ceramic bearing piece having a lower side longer than the upper side and having an isosceles trapezoidal cross section is used, the positioning is easy without using a wedge (wedge) or an adhesive,
It is possible to apply only compressive stress. further,
As shown in iii) to iv) of FIG. 2, by sequentially providing irregularities or waveforms in a direction parallel to the rotation axis of the columnar embedding material, it is possible to change from line contact to point contact, so that the plating bath It is assumed that the rotation can be smoothed because the flow of the water can be promoted. Whether the concavo-convex pattern or the corrugated pattern with the adjacent embedding material is reversed or in-phase should be determined by the fluidity of the plating bath and the number of rotations of the pot roll. With such a shape, it becomes difficult for molten metal to collect in the bearing portion, and work efficiency such as repair work can be improved.

【0014】また、ポットロールの回転軸部材の摺動部
について、軸受け部材と同じセラミックス材または超硬
粒子を結合金属(銅、チタン、亜鉛等のバインダー)中に
分散させたものでも構わない。この場合も、上記と同様
に軸の曲率より軸受け側の曲率が大きくなければ、軸受
け部材に押し広げようとする引っ張り応力が印加される
こととなり、全く不適である。平面もしくは円弧状であ
れば加工が容易であり、曲率が大きい場合はポットロー
ル側の回転軸の安定性が僅かながら高まることが容易に
予想される。また、回転軸に嵌合する場合は軸受けの曲
率より回転軸側の埋め込み材の曲率が大きくなれば、埋
め込み材の形状が極端に大きくなるか、薄過ぎることに
なるため好適ではない。
The sliding portion of the rotary shaft member of the pot roll may be made of the same ceramic material or ultra-hard particles as those of the bearing member dispersed in a binding metal (a binder such as copper, titanium or zinc). In this case as well, if the curvature on the bearing side is not greater than the curvature of the shaft as described above, a tensile stress for pushing and spreading is applied to the bearing member, which is completely unsuitable. If it is flat or arc-shaped, machining is easy, and if the curvature is large, it is easily expected that the stability of the rotating shaft on the pot roll side is slightly increased. Further, when fitting to the rotating shaft, if the curvature of the embedding material on the rotating shaft side becomes larger than the curvature of the bearing, the shape of the embedding material becomes extremely large or too thin, which is not preferable.

【0015】そして、この部材を上記形状とすることに
より、該部材を嵌合される金属製部材との熱膨張係数差
によって生じる浴中および空冷時の伸縮差の絶対値を小
さくでき、セラミックス側に加わる圧縮または引張応力
を低減することに加え、該セラミックス部材を製造する
上での緻密化を容易にする効用をもたらす。嵌合する部
材の形状は肉厚が5mm以上20mm以下で、2本以上の柱状部
材を用いることが好ましい。5mm未満では、セラミック
ス部材の圧縮強度も低く、使用後に摺動面に生じた摩耗
痕を研磨し、リサイクル利用するときにもトータル寿命
が短くなり好適ではない。1本の柱状部材のみでは、回
転時の安定性が全く得られず相応しくない。また、ロー
ルアームをハンドリングする時の機械的衝撃に対する強
度付与の点からも5〜20mm厚みの範囲が好ましい。幅に
ついては、ポットロール径の大小や柱状部材の嵌合せ本
数に依存するが10〜30mmが好適である。さらに柱状部材
の長さは該部材を嵌合される金属製部材のスリーブ長さ
によって一義的に求められる。一般的には、80〜200mm
程度がよく用いられている。
By forming this member into the above shape, the absolute value of the difference in expansion and contraction in the bath and in air cooling caused by the difference in thermal expansion coefficient between the member and the metal member to which the member is fitted can be reduced. In addition to reducing the compressive or tensile stress applied to the ceramic member, the effect of facilitating densification in manufacturing the ceramic member is brought about. The shape of the fitting member is preferably 5 mm or more and 20 mm or less, and it is preferable to use two or more columnar members. If the thickness is less than 5 mm, the compressive strength of the ceramic member is low, and wear marks formed on the sliding surface after use are polished, so that the total life is undesirably short when recycled. With only one columnar member, stability during rotation cannot be obtained at all, which is not appropriate. Further, the thickness is preferably in the range of 5 to 20 mm from the viewpoint of imparting strength against mechanical impact when handling the roll arm. The width depends on the diameter of the pot roll and the number of column members to be fitted, but is preferably 10 to 30 mm. Further, the length of the columnar member is uniquely determined by the length of the sleeve of the metal member to which the member is fitted. Generally, 80-200mm
The degree is often used.

【0016】図3に示したように、セラミックス製軸受
けを保持するために用いる金属製リング部材との間隙に
噛み込まれた溶融金属との熱膨張係数差に起因する圧縮
または引張応力を軽減するため、セラミックス部材と金
属部材との嵌合部の間隙は1mm以下にすることが好まし
い。
As shown in FIG. 3, the compression or tensile stress caused by the difference in the coefficient of thermal expansion between the metal ring member and the molten metal used to hold the ceramic bearing is reduced. Therefore, it is preferable that the gap between the fitting portions between the ceramic member and the metal member be 1 mm or less.

【0017】上記とは全く逆に、軸受け部が円形の一体
品で構成され、軸受けの曲率以下の上に凸な円弧状面を
有する柱状部材をポットロール軸部スリーブに嵌合する
ことも可能である。但し、軸受け部に埋め込む際に十分
な固定強度が得られるように配慮が必要で、軸受け部の
接触時の摩擦抵抗を軽減するためには摺動部は平面では
なく軸受け部の内径より曲率の小なる円弧状曲面が最も
好適である。さらに、全周に渡って嵌合することが必要
であり、2本以上、好ましくは3本以上、より好ましくは
5本以上で安定した回転が得られる。2本未満では、柱状
部材以外の部分で摺動する機会が増え、金属製の軸部ス
リーブ材が柱状部材より選択的に摩耗し、寿命の延長は
望めなくなる。
Contrary to the above, it is also possible to fit a columnar member whose bearing portion is formed of a circular integral product and has an arc-shaped surface convex upwardly below the curvature of the bearing to the pot roll shaft portion sleeve. It is. However, care must be taken to obtain sufficient fixing strength when embedding in the bearing part.In order to reduce the frictional resistance when the bearing part comes into contact, the sliding part is not a flat surface but has a curvature smaller than the inner diameter of the bearing part. A small arcuate curved surface is most preferred. Further, it is necessary to fit over the entire circumference, two or more, preferably three or more, more preferably
Stable rotation can be obtained with 5 or more. If the number is less than two, the chance of sliding at portions other than the columnar member increases, the metal shaft sleeve material is selectively worn away from the columnar member, and the life extension cannot be expected.

【0018】溶融金属との低い濡れ性、高熱伝導、高耐
熱衝撃、耐摩耗などの特性を同時に向上させる方法とし
ては、充分緻密なSiCまたはSi3N4焼結体において、第2
相(Ti-Zr-B固溶体やCr2N等に代表されるクロム化合物な
ど)形成による焼結体組織を制御することが効果的であ
る。このような焼結体組織は、従来技術に記載されたモ
ノリシック窒化珪素・モノリシックサイアロンからなる
軸受けより、チッピング・割れ等の耐欠損性を著しく向
上させる作用も同時に付与することができる。 TixZryB
2に代表される金属複合ホウ化物は、炭化珪素焼結体中
に分散することにより、高靭性化及び高硬度化する効果
を有し、耐欠損性や耐摩耗性を飛躍的に向上させる。Cr
2Nに代表されるクロム化合物は、窒化珪素質焼結体中に
分散することにより、高靭性化する効果を有し、高温強
度を飛躍的に向上させ、耐クリープ性や耐食性に優れる
特性を付与する。一方で、溶融金属に対する濡れ性を低
下させる作用を持つ。
As a method for simultaneously improving properties such as low wettability with molten metal, high thermal conductivity, high thermal shock resistance, and abrasion resistance, a sufficiently dense SiC or Si 3 N 4 sintered body is used.
It is effective to control the structure of the sintered body due to the formation of a phase (such as a Ti-Zr-B solid solution or a chromium compound represented by Cr 2 N). Such a sintered body structure can also provide an effect of significantly improving chipping resistance, cracking and other chipping resistance as compared with the bearing made of monolithic silicon nitride and monolithic sialon described in the prior art. Ti x Zr y B
The metal composite boride represented by No. 2 has the effect of increasing the toughness and the hardness by dispersing in the silicon carbide sintered body, and dramatically improves the fracture resistance and the wear resistance. Cr
The chromium compound represented by 2N has the effect of increasing toughness by being dispersed in a silicon nitride-based sintered body, dramatically improving high-temperature strength, and exhibiting characteristics of excellent creep resistance and corrosion resistance. Give. On the other hand, it has the effect of reducing the wettability to the molten metal.

【0019】摺動部の面粗さに関し、溶融アルミニウム
が付着し難く、かつ動摩擦係数を軽減するためにRmax
0.2μmに仕上げることが有効である。0.2μmを超える
と、溶融アルミニウムとの濡れ性が低くても、機械的に
付着割合が上昇し、動摩擦係数を著しく増大させるた
め、好ましくない。 平面もしくは上に凸な円弧面での
接触では、加工も比較的容易なことから、Rmax≦0.1μm
の仕上げでも費用対効果の点で優れる場合も多い。
Regarding the surface roughness of the sliding portion, it is difficult to adhere the molten aluminum, and in order to reduce the dynamic friction coefficient, R max
It is effective to finish to 0.2 μm. If it exceeds 0.2 μm, even if the wettability with the molten aluminum is low, the mechanical adhesion ratio is increased and the dynamic friction coefficient is remarkably increased. In the case of contact on a flat surface or an upwardly convex arc surface, machining is relatively easy, so R max ≤ 0.1 μm
Finishing is often cost effective.

【0020】また、埋め込み材の柱状部材形状(図2)と
して、単純な平面もしくは円弧面さらには長手方向に凹
凸もしくは波形の形状であれば、単純研削で付与可能な
ことから、焼結体の仕上げ加工コストを高めることな
く、溶融金属めっき浴用部材の長寿命化を実現すること
ができる。
Further, if the embedding material has a columnar member shape (FIG. 2), if it is a simple flat surface or an arcuate surface, or if it is irregular or corrugated in the longitudinal direction, it can be applied by simple grinding. The service life of the hot-dip metal plating bath member can be extended without increasing the finishing cost.

【0021】炭化珪素(SiC)は、共有結合性の強い物質
であり、常圧不活性ガス(Arなど)中の焼結が単味では困
難であるため、理論密度比95%以上の緻密化に際しては
種々の添加物を加えても構わない。理論密度比95%は、
開気孔がほぼ消滅し、閉気孔が支配的な焼結体組織を意
味しており、めっき浴の部材への浸透を防ぐとともに、
摩耗速度を大幅に低減することが可能な密度領域であ
る。焼結助剤としては、例えばカーボンブラック、各種
ホウ化物、アルミナ、炭素源となりうる有機物、炭化ア
ルミニウム、 窒化アルミニウム、等を用いることがで
きる。窒化珪素(Si 3N4)も同様に、コスト的に有利な常
圧窒素ガス中の焼結が単味では困難であるため、相対密
度95%以上の緻密化に際しては種々の添加物を加えても
構わない。焼結助剤としては、例えばシリカ、アルミ
ナ、イットリア、酸化四三鉄、マグネシア、 AlN-Si3N4
-SiO2-Al2O3共融物、窒化アルミニウム、各種希土類酸
化物、等を用いることができる。
Silicon carbide (SiC) is a substance with strong covalent bonding
Sintering in inert gas at normal pressure (such as Ar)
It is difficult to densify with a theoretical density ratio of 95% or more.
Various additives may be added. 95% of theoretical density
Open pores almost disappear and closed pores dominate the sintered body structure.
To prevent the penetration of plating bath components,
Density range where wear rate can be significantly reduced
You. As sintering aids, for example, carbon black, various types
Borides, alumina, organic substances that can be carbon sources,
Luminium, aluminum nitride, etc. can be used
Wear. Silicon nitride (Si ThreeNFour) Is also cost-effective
Since sintering in pressurized nitrogen gas is difficult by itself,
95% or more densification, even if various additives are added
I do not care. As sintering aids, for example, silica, aluminum
Na, yttria, ferrous oxide, magnesia, AlN-SiThreeNFour
-SiOTwo-AlTwoOThreeEutectic, aluminum nitride, various rare earth acids
And the like can be used.

【0022】焼結方法としては、常圧(無加圧)焼結法、
ガス圧焼結法、熱間静水圧プレス焼結法、ホットプレス
法の何れの方法も用いることが可能であり、更に一種も
しくは複数の焼結法を組み合わせることも可能である。
常圧焼結は、窒素ガスまたはArガス流通中にて行うと、
緻密な焼結体が得られ易い。複雑形状である溶融金属浴
用部材において、高密度化を達成するためには、常圧焼
結後、さらに窒素ガスまたはArガス加圧雰囲気中にて、
熱間静水圧プレス焼結を行うことが好ましい。その中
で、常圧焼結時の最高温度の範囲としては、窒化珪素で
は1550〜1750℃、炭化珪素では1900〜2150℃であること
が好ましく、最高温度での保持時間は2時間以上である
ことが望ましい。窒化珪素の場合、1550℃未満では充分
高い密度が得られず、粒界相に高融点の結晶相を生成さ
せることが困難で、高い破壊靭性値が得られない。ま
た、1750℃より高い温度では、焼結助剤の一部が昇華・
分解し、焼成炉の劣化も著しく好ましくない。常圧焼結
時の保持時間としては、原料として用いる主原料の窒化
珪素の結晶相転移を充分に進行させ、かつ粒界相の均一
化のために上記焼結温度の範囲にて2時間以上の保持が
必要である。炭化珪素の場合、1900℃未満では充分高い
密度(相対密度≧95%)が得られず、粒子分散効果が十分
発現されず高い破壊靭性値が得られない。また、2150℃
より高い温度では異常粒成長が起こる場合が有り、好ま
しくない。
As a sintering method, a normal pressure (no pressure) sintering method,
Any of a gas pressure sintering method, a hot isostatic press sintering method, and a hot press method can be used, and one or more sintering methods can be combined.
Atmospheric pressure sintering is performed while flowing nitrogen gas or Ar gas.
A dense sintered body is easily obtained. In the molten metal bath member with a complicated shape, in order to achieve high density, after normal pressure sintering, further in a nitrogen gas or Ar gas pressurized atmosphere,
It is preferable to perform hot isostatic press sintering. Among them, the range of the maximum temperature during normal pressure sintering is 1550 to 1750 ° C for silicon nitride and 1900 to 2150 ° C for silicon carbide, and the holding time at the maximum temperature is 2 hours or more. It is desirable. In the case of silicon nitride, if the temperature is lower than 1550 ° C., a sufficiently high density cannot be obtained, it is difficult to form a high melting point crystalline phase in the grain boundary phase, and a high fracture toughness value cannot be obtained. At temperatures higher than 1750 ° C, some of the sintering aids
It decomposes and deterioration of the firing furnace is extremely unfavorable. As the holding time during normal pressure sintering, the crystal phase transition of silicon nitride as a main raw material used as a raw material sufficiently proceeds, and at least 2 hours in the above sintering temperature range for uniformization of a grain boundary phase. Must be maintained. In the case of silicon carbide, if it is lower than 1900 ° C., a sufficiently high density (relative density ≧ 95%) cannot be obtained, and the particle dispersing effect is not sufficiently exhibited, so that a high fracture toughness value cannot be obtained. Also, 2150 ° C
At higher temperatures, abnormal grain growth may occur, which is not preferable.

【0023】炭化珪素系セラミックスについては、金属
複合ホウ化物を炭化珪素焼結体中に体積分率で20体積%
未満の分散では、高靭性化が不十分で、体積分率70体積
%超では、常圧焼結時の相対密度95%以上の緻密化が困難
で、炭化珪素本来の硬度、高温強度が得られず好ましく
ない。また、炭化珪素とTi-Zr-B固溶体粒子及び/又はTi
-Hf-B固溶体粒子との熱膨張差やヤング率の相違等によ
り、分散したTi-Zr-B固溶体粒子及び/又はTi-Hf-B固溶
体粒子の近傍に残留応力が発生し、焼結体の破壊に際し
て破壊エネルギーを分散させる作用を有し、靭性を著し
く向上させ、かつ耐摩耗性も向上させる作用もあるた
め、金属複合ホウ化物としてはTi-Zr-B固溶体粒子及びT
i-Hf-B固溶体粒子が好適である。
As for the silicon carbide ceramics, the metal composite boride is incorporated into the silicon carbide sintered body in a volume fraction of 20% by volume.
When the dispersion is less than 70%, the toughness is insufficient, and the volume fraction is 70 volumes.
If it exceeds%, it is difficult to densify to a relative density of 95% or more during normal-pressure sintering, and the inherent hardness and high-temperature strength of silicon carbide cannot be obtained. In addition, silicon carbide and Ti-Zr-B solid solution particles and / or Ti
Residual stress is generated in the vicinity of the dispersed Ti-Zr-B solid solution particles and / or Ti-Hf-B solid solution particles due to the difference in thermal expansion and the difference in Young's modulus from -Hf-B solid solution particles, Has the effect of dispersing the fracture energy upon fracture, has the effect of significantly improving toughness, and also has the effect of improving abrasion resistance; therefore, Ti-Zr-B solid solution particles and T
i-Hf-B solid solution particles are preferred.

【0024】このTi-Zr-B固溶体粒子及び/又はTi-Hf-B
固溶体粒子は、硬質かつ耐酸化性のあるhcp構造の高融
点化合物であり、焼結後に炭化珪素質焼結体中に分散粒
子として残留し、焼結体全体の硬度や破壊靭性値を向上
させる作用を有する。
The Ti-Zr-B solid solution particles and / or Ti-Hf-B
Solid solution particles are hard and oxidation-resistant high-melting compounds with an hcp structure that remain as dispersed particles in a silicon carbide-based sintered body after sintering and improve the hardness and fracture toughness of the entire sintered body. Has an action.

【0025】Ti-Zr-B固溶体粒子及び/又はTi-Hf-B固溶
体粒子の組成は、それぞれTi1-xZrxB 2、Ti1-xHfxB2で表
され、xの範囲は0.02〜0.25が好ましく、より好ましく
は0.02〜0.05である。TiB2にZrB2やHfB2を固溶させる
と、TiB2単体に比べ、硬度や破壊靭性値が上昇する。し
かしながら、xが0.02より小さい場合には、Zr、HfのTiB
2への固溶効果が乏しくなり、十分な高硬度化が図れな
い恐れがあり、一方、xが0.25を越える場合には、マト
リックスの炭化珪素との熱膨張係数が掛け離れてしまう
ため、焼結時に緻密化し難くなり、相対密度の低い焼結
体となり易く、また破壊靭性値も低下する恐れが高くな
る。また、前記固溶体粒子の平均粒径は1〜10μmである
ことが望ましい。より好ましくは3〜5μmである。平均
粒径が1μmより小さいと、靭性への寄与が得られ難く、
一方、10μmより大きいと、硬さや破壊靭性値の低下を
招き易くなる。
Ti-Zr-B solid solution particles and / or Ti-Hf-B solid solution
The composition of the body particles is Ti1-xZrxB Two, Ti1-xHfxBTwoIn table
The range of x is preferably 0.02 to 0.25, more preferably
Is 0.02 to 0.05. TiBTwoTo ZrBTwoAnd HfBTwoSolid solution
And TiBTwoHardness and fracture toughness increase as compared to a single substance. I
However, if x is smaller than 0.02, Zr, Hf TiB
TwoThe effect of solid solution in the alloy is poor, and it is not possible to achieve sufficiently high hardness.
On the other hand, if x exceeds 0.25,
Rix's thermal expansion coefficient is far from silicon carbide
Therefore, it is difficult to densify during sintering, and sintering with low relative density
It is easy to become a body and the fracture toughness value is likely to decrease
You. The average particle diameter of the solid solution particles is 1 to 10 μm.
It is desirable. More preferably, it is 3 to 5 μm. average
If the particle size is less than 1 μm, it is difficult to obtain a contribution to toughness,
On the other hand, if it is larger than 10 μm, the hardness and fracture toughness decrease.
It is easy to invite.

【0026】一方、窒化珪素系セラミックスについて、
窒化珪素質焼結体中にクロム化合物を体積分率で1体積%
未満の分散では、十分な高靭性化、高温高強度化が得ら
れず、8体積%超の分散では耐クリープ性や耐食性が低下
する。クロム化合物の中でも、高硬度の窒化クロム(Cr2
N)粒子を分散させることが有効である。特に、硬質かつ
酸素含有雰囲気下1200〜1400℃での耐酸化性に優れた窒
化クロム(Cr2N)粒子は、窒化珪素質焼結体に物理・化学
的安定性、熱的安定性、機械的安定性に優れ、長期耐久
性を付与することができる。特に、窒化クロム(Cr2N)粒
子は、窒化珪素相、粒界相との熱膨張差やヤング率の相
違等により、焼結終了後に分散粒子近傍に残留応力が発
生し、焼結体の破壊に際して破壊エネルギーを分散させ
る作用を有し、破壊靭性値を高め、耐欠損性を著しく向
上させつつ、耐熱衝撃性も向上させる作用もある。この
窒化クロム(Cr2N)粒子は、硬質かつ耐酸化性のあるhcp
構造の高融点化合物であり、焼結後に窒化珪素質焼結体
中に分散粒子として残留し、焼結体全体の硬度を向上さ
せる作用を有する。窒化クロム(Cr2N)粒子の平均粒径は
0.5〜10μmであることが望ましい。より好ましくは5〜8
μmである。平均粒径が0.5μmより小さいと、靭性への
寄与が得られ難く、一方、10μmより大きいと、硬さや
耐熱衝撃性の低下を招き易くなる。
On the other hand, regarding silicon nitride ceramics,
1 volume% chromium compound in silicon nitride sintered body by volume fraction
If the dispersion is less than 10, sufficient toughness and high-temperature high strength cannot be obtained, and if the dispersion exceeds 8% by volume, the creep resistance and the corrosion resistance decrease. Among the chromium compounds, chromium nitride (Cr 2
N) It is effective to disperse the particles. In particular, chromium nitride (Cr 2 N) particles, which are hard and have excellent oxidation resistance at 1200 to 1400 ° C. in an oxygen-containing atmosphere, provide physical and chemical stability, thermal stability, and mechanical stability to silicon nitride sintered bodies. It has excellent mechanical stability and can provide long-term durability. In particular, chromium nitride (Cr 2 N) particles generate residual stress in the vicinity of dispersed particles after sintering due to a difference in thermal expansion or a difference in Young's modulus between the silicon nitride phase and the grain boundary phase. It has the effect of dispersing the fracture energy at the time of fracture, has the effect of increasing the fracture toughness, significantly improving the fracture resistance, and also improving the thermal shock resistance. The chromium nitride (Cr 2 N) particles are hard and oxidation-resistant hcp
It is a high melting point compound having a structure and remains as dispersed particles in a silicon nitride sintered body after sintering, and has an effect of improving the hardness of the entire sintered body. The average particle size of chromium nitride (Cr 2 N) particles is
Desirably, it is 0.5 to 10 μm. More preferably 5-8
μm. When the average particle size is smaller than 0.5 μm, it is difficult to obtain a contribution to toughness. On the other hand, when the average particle size is larger than 10 μm, hardness and thermal shock resistance are liable to be reduced.

【0027】[0027]

【実施例】次に、本発明の実施例を比較例と共に説明す
る。
Next, examples of the present invention will be described together with comparative examples.

【0028】(実施例1〜5)窒化珪素(Si3N4)粉末(α型、
純度99.7%、平均粒径0.3μm)に窒化クロム(Cr2N)粉末
(平均粒径6.5μm)、イットリア(Y2O3)粉末(平均粒径1μ
m)、マグネシア(MgO)粉末(平均粒径0.8μm)、アルミナ
(Al2O3)粉末(平均粒径0.3μm)、酸化四三鉄(Fe3O4)粉末
(平均粒径3.5μm)、及びAlN-Si3N4-SiO2-Al2O3共融物
の一例としてポリタイプ21R組成粉末(平均粒径2.2μ
m)、同様に炭化珪素(SiC)粉末(α型、純度98.5%、平均
粒径0.4μm)にホウ化チタン(TiB2)粉末(平均粒径3.5μ
m)、ホウ化ジルコニウム(ZrB2)粉末(平均粒径5.5μm)、
炭化ホウ素(B4C)粉末(平均粒径1.5μm)、カーボンブラ
ック粉末(平均粒径0.02μm)を表1に示す所定量(質量%)
添加し、混練時の分散媒として精製水を用い、ボールミ
ルで24時間混練した。セラミックス全粉末原料100gに対
し、精製水の添加量も100gとした。
Examples 1 to 5 Silicon nitride (Si 3 N 4 ) powder (α type,
Chromium nitride (Cr 2 N) powder with a purity of 99.7% and an average particle size of 0.3 μm)
(Average particle size 6.5 μm), yttria (Y 2 O 3 ) powder (average particle size 1 μm
m), magnesia (MgO) powder (average particle size 0.8 μm), alumina
(Al 2 O 3 ) powder (average particle size 0.3 μm), ferric oxide (Fe 3 O 4 ) powder
(Average particle size of 3.5 μm), and a polytype 21R composition powder as an example of the eutectic AlN-Si 3 N 4 -SiO 2 -Al 2 O 3 (average particle size of 2.2 μm
m), silicon carbide (SiC) powder (α type, purity 98.5%, average particle size 0.4 μm) and titanium boride (TiB 2 ) powder (average particle size 3.5 μm).
m), zirconium boride (ZrB 2 ) powder (average particle size 5.5 μm),
Boron carbide (B 4 C) powder (average particle size 1.5 μm), carbon black powder (average particle size 0.02 μm) predetermined amount shown in Table 1 (% by mass)
The resulting mixture was kneaded for 24 hours with a ball mill using purified water as a dispersion medium during kneading. The amount of purified water added was also 100 g with respect to 100 g of the whole ceramic powder material.

【0029】次いで、得られた混合粉末を成形後焼結し
た。成形条件としては冷間静水圧による加圧150MPaと
し、100mm角、高さ22mmの板状成形体を得た。焼結条件
としては、窒素ガスまたはArガス流通中にて、表1中に
示す各温度で4〜8時間保持の無加圧焼結、並びに必要に
応じ熱間静水圧プレス焼結を追加した。
Next, the obtained mixed powder was molded and sintered. The molding conditions were a cold isostatic pressure of 150 MPa, and a 100 mm square, 22 mm high plate-like molded body was obtained. As the sintering conditions, under nitrogen gas or Ar gas flow, pressureless sintering of 4 to 8 hours at each temperature shown in Table 1, and hot isostatic press sintering were added as necessary .

【0030】得られた焼結体から、15mm×20mm×長さ80
mmの固定側軸受けテスト材を研削加工し、溶融アルミニ
ウム浴中軸受け試験(図4)に供した。
From the obtained sintered body, 15 mm × 20 mm × length 80
The mm fixed-side bearing test material was ground and subjected to a bearing test in a molten aluminum bath (FIG. 4).

【0031】板状焼結体から該15mm×20mm×長さ80mmテ
スト材を切り出す際の残材から、機械的性質評価用の試
験片を切り出し、その特性を評価した。硬さは、押込荷
重10kgにて、ビッカース硬さとして測定した。靭性につ
いては、JIS R1607のSEPB法により、室温にて破壊靭性
値KICを測定した。また、耐熱衝撃性としては、曲げ試
験片を大気中にて所定の温度に加熱後、水中急冷し、抗
折強さの劣化が始まる急冷温度差ΔTで評価した。焼結
体密度は、アルキメデス法により相対密度として測定し
た。濡れ性は、通常の溶融液滴と水平板状態の接触角で
測定した。
A test piece for evaluating mechanical properties was cut out from the remaining material obtained when cutting the test material having a size of 15 mm × 20 mm × 80 mm from the plate-like sintered body, and its characteristics were evaluated. Hardness was measured as Vickers hardness at an indentation load of 10 kg. Regarding toughness, the fracture toughness value K IC was measured at room temperature by the SEPB method of JIS R1607. Further, the thermal shock resistance was evaluated by a quenching temperature difference ΔT in which a bending test piece was heated to a predetermined temperature in the atmosphere, then rapidly cooled in water, and the bending strength began to deteriorate. The sintered body density was measured as a relative density by the Archimedes method. The wettability was measured by a contact angle between a normal molten droplet and a horizontal plate.

【0032】得られた各焼結体のアルキメデス密度、機
械的性質、並びに図4に示したアルミニウム浴中軸受け
評価結果を、各配合系ごとに表2に示す。アルミニウム
浴中試験は、以下の条件にて行った。 (1)回転側軸受けテスト材:超硬リング材φ90mm×高
さ60mm (2)固定側軸受けテスト材:セラミックス試験材15mm
×20mm×長さ80mmを3本 (3)溶融アルミニウム温度:680℃ (4)押し当て力:30〜50N (5)すべり速度:2〜3m/秒 (6)摺り合わせ時間:浸漬後、1時間 (7)テスト前の仕上げ面粗さ:Rmax=0.2μm(△△△△程
度、JIS B0031参照) (8)繰り返し熱疲労試験:1時間浴中に漬けた後、浴か
ら引き上げ30分間空冷を繰り返す (9)濡れ性評価試験:アルミニウム塊を50mm角×10mm
厚さの板状 セラミックス上で680℃溶解後、炉外から覗き窓を通し
て観察測定 上記(1)〜(7)の条件にて摩耗量を求める方法として、回
転側、固定側にそれぞれ発生した摩耗痕跡の深さhr、hs
を表面粗さ計にて測定した。また、摩耗痕跡周囲の損傷
有無、チッピング深さ、及び割れ深さを蛍光探傷法や断
面研磨面の光学顕微鏡観察により評価した。再利用に当
たっての軸受け摺り合わせ面の必要研削量は、摩耗痕跡
周囲に割れ・チッピングの損傷が観察されない場合、摩
耗痕跡深さhの1.2倍、チッピングが生じている場合、チ
ッピング深さの1.2倍、そして割れが生じている場合、
割れ深さの1.2倍として表2中に示した。
Table 2 shows the Archimedes density and mechanical properties of each of the obtained sintered bodies, and the results of evaluation of the bearings in the aluminum bath shown in FIG. 4 for each compounding system. The test in the aluminum bath was performed under the following conditions. (1) Rotating side bearing test material: Carbide ring material φ90mm x height 60mm (2) Fixed side bearing test material: Ceramic test material 15mm
3 pieces of 20mm x 80mm length (3) Molten aluminum temperature: 680 ℃ (4) Pushing force: 30-50N (5) Sliding speed: 2-3m / sec (6) Sliding time: 1 Time (7) Finished surface roughness before test: R max = 0.2 μm (approx. △△△△, see JIS B0031) (8) Repeated thermal fatigue test: After soaking in bath for 1 hour, pulling up from bath for 30 minutes Repeat air cooling (9) Wettability evaluation test: 50mm square x 10mm aluminum block
After melting at 680 ° C on a plate-like ceramic with a thickness, observe and measure through a viewing window from outside the furnace.As a method of obtaining the amount of wear under the conditions (1) to (7) above, the wear generated on the rotating side and the fixed side was determined. Trace depth h r , h s
Was measured with a surface roughness meter. Further, the presence or absence of damage around the wear mark, the chipping depth, and the crack depth were evaluated by a fluorescent flaw detection method or an optical microscope observation of the polished surface of the cross section. The required amount of grinding of the bearing rubbing surface during reuse is 1.2 times the wear mark depth h if no cracking or chipping damage is observed around the wear mark, and 1.2 times the chipping depth if chipping occurs. , And if cracks are occurring,
It is shown in Table 2 as 1.2 times the crack depth.

【0033】(比較例6〜9)比較例6〜8は、一般市販のサ
イアロンを用い、リングの一部を軸受けに嵌め込んだ場
合(比較例6)、市販の窒化珪素セラミックスだが異なる
組成のサイアロン系のものを用い全周リングで作製した
場合(比較例7)、市販のサイアロンを用いリングの一部
を軸受けに嵌め込んだ場合(比較例8)、公知の炭化珪素
を用いリングの一部を軸受けに嵌め込んだ場合(比較例
9)の各比較例である。これら比較例の材料も、実施例1
〜5と同様の条件で、溶融アルミニウム浴中試験を行
い、その結果を表2に示した。
Comparative Examples 6 to 9 In Comparative Examples 6 to 8, when a commercially available sialon was used and a part of the ring was fitted into a bearing (Comparative Example 6), commercially available silicon nitride ceramics having different compositions were used. In the case of using a sialon-based material and manufacturing it with an all-around ring (Comparative Example 7), when using a commercially available sialon and fitting a part of the ring into a bearing (Comparative Example 8), using a known silicon carbide When the part is fitted into the bearing (Comparative Example
It is each comparative example of 9). The materials of these comparative examples are also described in Example 1.
The test was performed in a molten aluminum bath under the same conditions as in Examples 5 to 5, and the results are shown in Table 2.

【0034】[0034]

【表1】 [Table 1]

【0035】[0035]

【表2】 [Table 2]

【0036】表2に示すように、本発明の実施例による
ものは、摩耗痕跡深さが固定側・回転側の何れも25μm
以下と非常に少なく、かつ摩耗痕跡周囲には割れ・チッ
ピングの欠損が何れの場合も認められず、耐摩耗性、耐
欠損性共に優れるが、比較例の各軸受けは本発明の実施
例に比べて、摩耗痕跡深さ60μm以上と大きく、かつ割
れ・チッピングのいずれかが発生しており、耐摩耗性、
耐欠損性ともに未達成であることが確認された。必要研
削量も実施例の30μm以下に比べ、比較例では72μm以上
と著しく大きいことが判明した。
As shown in Table 2, according to the embodiment of the present invention, the wear trace depth was 25 μm on both the fixed side and the rotating side.
Very little as below, and cracks and chipping defects are not observed in any case around the wear mark, and both the wear resistance and the chipping resistance are excellent, but each bearing of the comparative example is compared with the example of the present invention. The wear mark depth is as large as 60 μm or more, and either cracking or chipping has occurred.
It was confirmed that both of the fracture resistances were not achieved. The required grinding amount was found to be significantly larger than 72 μm in the comparative example, compared with 30 μm or less in the example.

【0037】アルミニウム浴中軸受け評価試験の条件
(8)、(9)に基づいた結果を、表3に示す。
Conditions for Evaluation Test of Bearing in Aluminum Bath
Table 3 shows the results based on (8) and (9).

【0038】[0038]

【表3】 [Table 3]

【0039】軸受けに繰り返し熱疲労を負荷した場合
も、本発明によるものは20〜30回使用可能であるのに対
し、比較例の各材料では5〜10回と半分以下である。再
研削時の加工費、繰り返し利用を含めた製品の総寿命を
考慮すると本発明の焼結体による軸受け材は極めて有利
であることが確認された。また、濡れ性評価でも本発明
によるものは105〜135°と濡れ難く、比較例の各材料で
は40〜50°と接触角が小さく濡れ易いことが判明した。
耐食性を向上させ、引き上げ時空冷による熱収縮が起こ
る際に、固定側への引張応力を低減する効果が充分に期
待される。このため、溶融アルミニウムと濡れ難いこと
・繰り返し熱疲労の耐久性が高いことはいずれも本溶融
アルミニウム浴中での用途に優位に働くことが容易に推
定され、摩耗量が少なく、割れ・チッピングが発生しな
かったものと考えられる。高温のアルミニウム浴中での
評価結果から、より低温の亜鉛浴中の耐熱衝撃性も満た
すことが容易に想定されるため、本発明は、溶融金属め
っき浴用部材への適用が可能と判断できる。
Even when the bearing is repeatedly subjected to thermal fatigue, the material according to the present invention can be used 20 to 30 times, whereas each material of the comparative example is 5 to 10 times, which is less than half. Considering the processing cost at the time of re-grinding and the total life of the product including repeated use, it was confirmed that the bearing material made of the sintered body of the present invention was extremely advantageous. Also, in the evaluation of the wettability, it was found that the material according to the present invention was difficult to wet, at 105 to 135 °, and that the materials of Comparative Examples had a small contact angle of 40 to 50 ° and were easy to wet.
The effect of improving the corrosion resistance and reducing the tensile stress to the fixed side when heat shrinkage due to air cooling at the time of pulling up is sufficiently expected. For this reason, it is easily presumed that both the low wettability with the molten aluminum and the high durability of repeated thermal fatigue work in applications in the present molten aluminum bath, and the amount of wear is small, cracking and chipping occur. It is probable that it did not occur. From the evaluation results in the high-temperature aluminum bath, it is easily assumed that the thermal shock resistance in the lower-temperature zinc bath is also satisfied. Therefore, it can be determined that the present invention can be applied to a member for a hot-dip metal plating bath.

【0040】[0040]

【発明の効果】本発明により、連続溶融金属めっき装置
における軸受部材の寿命が大幅に延長できる。このこと
により、長時間安定して金属めっき鋼板の生産が可能と
なり、その工業的有用性は非常に大きい。
According to the present invention, the life of the bearing member in the continuous hot-dip metal plating apparatus can be greatly extended. This makes it possible to stably produce a metal-plated steel sheet for a long time, and its industrial utility is very large.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 溶融めっき浴の装置断面模式図FIG. 1 is a schematic cross-sectional view of a hot-dip plating bath.

【図2】 埋め込み部材の長手方向断面図と回転軸方向
断面図
FIG. 2 is a longitudinal sectional view and a rotating shaft sectional view of an embedding member.

【図3】 軸受け部の組み付け構造図FIG. 3 is a structural view of an assembly of a bearing unit.

【図4】 本発明の実施例による軸受け損耗評価時の装
置断面図
FIG. 4 is a cross-sectional view of the apparatus when evaluating bearing wear according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…めっき処理ラインで通板中の鋼板 2…ポットロール 3…ガイドロール 4…加熱機能付き浴槽 5…回転側軸受けテスト材(φ90mm×高さ50mm) 6…固定側軸受けテスト材(15×20×長さ80mm) 7…溶融アルミニウム浴(680℃) 8…保護管付き熱電対 1 ... Steel plate passing through plating process line 2 ... Pot roll 3 ... Guide roll 4 ... Bath with heating function 5 ... Rotating bearing test material (φ90mm x height 50mm) 6 ... Fixed bearing test material (15x20) X length 80mm) 7 ... Molten aluminum bath (680 ℃) 8 ... Thermocouple with thermowell

───────────────────────────────────────────────────── フロントページの続き (72)発明者 芝本 茂 福岡県北九州市戸畑区飛幡町1−1 新日 本製鐵株式会社八幡製鐵所内 Fターム(参考) 4K027 AA02 AA22 AB48 AD17  ────────────────────────────────────────────────── ─── Continuing from the front page (72) Inventor Shigeru Shibamoto 1-1 Futaba-cho, Tobata-ku, Kitakyushu-shi, Fukuoka F-term in Nippon Steel Corporation Yawata Works (reference) 4K027 AA02 AA22 AB48 AD17

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 溶融金属めっき浴に浸漬されるポットロ
ール装置に付設された浸漬部材であって、該浸漬部材
が、該ポットロール設備の少なくともポットロール軸部
スリーブ部材と軸受部材の摺動する部分の一部又は全部
に嵌合してなる、窒化珪素系又は炭化珪素系のセラミッ
クス部材であることを特徴とする溶融金属めっき浴用浸
漬部材。
An immersion member attached to a pot roll device immersed in a molten metal plating bath, wherein the immersion member slides at least a pot roll shaft sleeve member and a bearing member of the pot roll equipment. An immersion member for a molten metal plating bath, wherein the immersion member is a silicon nitride-based or silicon carbide-based ceramic member fitted to part or all of a part.
【請求項2】 前記浸漬部材が、複数の柱状部材からな
る請求項1記載の溶融金属めっき浴用浸漬部材。
2. The immersion member for a molten metal plating bath according to claim 1, wherein the immersion member comprises a plurality of columnar members.
【請求項3】 前記柱状部材が、前記軸受部の軸方向に
嵌合してなる請求項2記載の溶融金属めっき浴用浸漬部
材。
3. The immersion member for a molten metal plating bath according to claim 2, wherein the columnar member is fitted in an axial direction of the bearing portion.
【請求項4】 前記柱状部材の回転方向の摺動面が、平
面又は前記ポットロール軸部スリーブ部材の曲率半径以
上の円弧状面である請求項3記載の溶融金属めっき浴用
浸漬部材。
4. The immersion member for a molten metal plating bath according to claim 3, wherein the sliding surface of the columnar member in the rotation direction is a flat surface or an arc-shaped surface having a radius of curvature equal to or greater than the radius of curvature of the pot roll shaft sleeve member.
【請求項5】 前記柱状部材が、前記ポットロール軸部
スリーブ部材に軸方向に嵌合してなる請求項2記載の溶
融金属めっき浴用浸漬部材。
5. The immersion member for a molten metal plating bath according to claim 2, wherein the columnar member is fitted in the pot roll shaft portion sleeve member in an axial direction.
【請求項6】 前記柱状部材の摺動面が、前記軸受部材
の曲率半径以下の円弧状面である請求項5記載の溶融金
属めっき浴用浸漬部材。
6. The immersion member for a hot-dip metal plating bath according to claim 5, wherein the sliding surface of the columnar member is an arc-shaped surface having a radius of curvature equal to or less than a radius of curvature of the bearing member.
【請求項7】 前記柱状部材の軸方向の摺動面が、凹凸
状及び/又は波形状で、凸部の摺動面高さが軸方向で揃
った形状である請求項3又は5に記載の溶融金属めっき浴
用浸漬部材。
7. The columnar member according to claim 3, wherein the sliding surface in the axial direction of the columnar member is uneven and / or corrugated, and the sliding surface height of the convex portion is uniform in the axial direction. Immersion member for hot-dip metal plating bath.
【請求項8】 前記セラミックス部材が、理論密度の95
%以上の焼結体密度である請求項1〜7に記載の溶融金属
めっき浴用浸漬部材。
8. The ceramic member having a theoretical density of 95%.
8. The immersion member for a hot-dip metal plating bath according to claim 1, which has a sintered body density of not less than 10%.
【請求項9】 前記セラミックス部材が、クロム化合物
を体積分率で1〜8%含有する窒化珪素質焼結体である請
求項8記載の溶融金属めっき浴用浸漬部材。
9. The immersion member for a molten metal plating bath according to claim 8, wherein the ceramic member is a silicon nitride sintered body containing a chromium compound in a volume fraction of 1 to 8%.
【請求項10】 前記クロム化合物が、窒化クロムであ
る請求項9記載の溶融金属めっき浴用浸漬部材。
10. The immersion member for a molten metal plating bath according to claim 9, wherein the chromium compound is chromium nitride.
【請求項11】 前記セラミックス部材が、複合金属ホ
ウ化物を体積分率で20〜70%含有する炭化珪素質焼結体
である請求項8記載の溶融金属めっき浴用浸漬部材。
11. The immersion member for a molten metal plating bath according to claim 8, wherein the ceramic member is a silicon carbide sintered body containing a composite metal boride in a volume fraction of 20 to 70%.
【請求項12】 前記複合金属ホウ化物が、Ti-Zr-B固
溶体及び/又はTi-Hf-B固溶体である請求項11記載の溶融
金属めっき浴用浸漬部材。
12. The immersion member for a molten metal plating bath according to claim 11, wherein the composite metal boride is a Ti-Zr-B solid solution and / or a Ti-Hf-B solid solution.
JP2000377798A 2000-12-12 2000-12-12 Immersion member for molten metal plating bath Expired - Fee Related JP4460144B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000377798A JP4460144B2 (en) 2000-12-12 2000-12-12 Immersion member for molten metal plating bath

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000377798A JP4460144B2 (en) 2000-12-12 2000-12-12 Immersion member for molten metal plating bath

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010008272A Division JP5131289B2 (en) 2010-01-18 2010-01-18 Immersion member for molten metal plating bath

Publications (2)

Publication Number Publication Date
JP2002180222A true JP2002180222A (en) 2002-06-26
JP4460144B2 JP4460144B2 (en) 2010-05-12

Family

ID=18846469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000377798A Expired - Fee Related JP4460144B2 (en) 2000-12-12 2000-12-12 Immersion member for molten metal plating bath

Country Status (1)

Country Link
JP (1) JP4460144B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002206155A (en) * 2001-01-09 2002-07-26 Nippon Steel Corp Immersion member for hot-dip metal coating bath, and its manufacturing method
JP2002241915A (en) * 2001-02-20 2002-08-28 Hitachi Metals Ltd Bearing unit in molten metal bath
JP2002294419A (en) * 2001-04-02 2002-10-09 Hitachi Metals Ltd Roller bearing used in continuous hot-dip metal plating bath
JP2007009311A (en) * 2005-07-04 2007-01-18 Sumitomo Metal Ind Ltd Plain bearing device for hot dip metal plating bath
JP2007145642A (en) * 2005-11-28 2007-06-14 Nippon Steel Corp Immersion member for hot-dip metal plating bath, and manufacturing method of the same
CN112412966A (en) * 2019-08-20 2021-02-26 宝山钢铁股份有限公司 Sliding bearing friction pair for hot-dip production line zinc pot roller based on mixed wear strategy

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002206155A (en) * 2001-01-09 2002-07-26 Nippon Steel Corp Immersion member for hot-dip metal coating bath, and its manufacturing method
JP4499928B2 (en) * 2001-01-09 2010-07-14 新日本製鐵株式会社 Immersion member for molten metal plating bath and manufacturing method
JP2002241915A (en) * 2001-02-20 2002-08-28 Hitachi Metals Ltd Bearing unit in molten metal bath
JP4725759B2 (en) * 2001-02-20 2011-07-13 日立金属株式会社 Bearing device in molten metal bath
JP2002294419A (en) * 2001-04-02 2002-10-09 Hitachi Metals Ltd Roller bearing used in continuous hot-dip metal plating bath
JP4678565B2 (en) * 2001-04-02 2011-04-27 日立金属株式会社 Roller bearing in continuous molten metal plating bath
JP2007009311A (en) * 2005-07-04 2007-01-18 Sumitomo Metal Ind Ltd Plain bearing device for hot dip metal plating bath
JP2007145642A (en) * 2005-11-28 2007-06-14 Nippon Steel Corp Immersion member for hot-dip metal plating bath, and manufacturing method of the same
CN112412966A (en) * 2019-08-20 2021-02-26 宝山钢铁股份有限公司 Sliding bearing friction pair for hot-dip production line zinc pot roller based on mixed wear strategy

Also Published As

Publication number Publication date
JP4460144B2 (en) 2010-05-12

Similar Documents

Publication Publication Date Title
KR101407109B1 (en) cBN SINTERED BODY AND CUTTING TOOL MADE OF cBN SINTERED BODY
US10618845B2 (en) Refractory ceramic product
Dutta et al. Progressive flank wear and machining performance of silver toughened alumina cutting tool inserts
JP2007278314A (en) Piston ring with laminated coat
Li et al. Wear behavior of SiC nanowire-reinforced SiC coating for C/C composites at elevated temperatures
KR20120036971A (en) Coated tooling
TWI386378B (en) Floating plate glass transfer roller, manufacturing method thereof, and method for manufacturing floating flat glass using the same
US10519069B2 (en) Roller for a roller furnace having at least one coating on the surface
Cui et al. Fabrication, mechanical properties and thermal shock resistance of laminated TiB2–based ceramic
JP2002180222A (en) Immersion member for hot dip metal coating bath
Larsson et al. Wear of a new type of diamond composite
JP4499928B2 (en) Immersion member for molten metal plating bath and manufacturing method
Sainz et al. Protective Si–Al–O–Y glass coatings on stainless steel in situ prepared by combustion flame spraying
JP3709115B2 (en) Immersion member for hot-dip aluminum plating bath
JP5131289B2 (en) Immersion member for molten metal plating bath
JP2007145642A (en) Immersion member for hot-dip metal plating bath, and manufacturing method of the same
JP2001311474A (en) Butterfly valve and method of manufacturing same
Attia et al. Hot Pressed Si 3 N 4 Ceramics Using MgO–Al 2 O 3 as Sintering Additive for Vehicle Engine Parts
JP2007302529A (en) Ceramic sintered compact, roll cleaning equipment, and roll cleaning method
Raju et al. Silicon nitride/SiAlON ceramics—a review
JP2000351671A (en) Particle-dispersed silicon carbide-based sintered product and guide roller which use the same and is used for rolling wire rod
JPH0742562B2 (en) Roll for continuous molten metal plating and apparatus using the same
JP5157142B2 (en) High corrosion resistance, thermal shock resistance, difficult adhesion ceramics
JP4050858B2 (en) Bar Smasher Roll
JP2001280514A (en) Butterfly valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090421

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100212

R151 Written notification of patent or utility model registration

Ref document number: 4460144

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130219

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130219

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140219

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees